
Supplemental Methods  1 
Experimental Diets.   2 

After a 1-wk acclimation on standard pelleted diet, rats were assigned to one of four diet 3 
groups, which differed in the type of fat and fiber as previously described (4).  Diets contained (g/100 4 
g diet):  dextrose, 51.00; casein, 22.40; D,L-methionine, 0.34; AIN-76 salt mix, 3.91; AIN-76 vitamin 5 
mix, 1.12; choline chloride, 0.13; pectin or cellulose, 6.00.  The total fat content of each diet was 15% 6 
by weight with the n-6 PUFA diet containing 15.0 g corn oil/100 g diet and the n-3 PUFA diet 7 
containing 11.5 g fish oil/100g diet plus 3.5 g corn oil/100 g diet to prevent essential fatty acid 8 
deficiency. 9 
 10 
mRNA Analysis.   11 

Following incubation in PBS containing 100 µg/ml cycloheximide, colonic epithelial cells were 12 
allowed to swell in LSB (20 mM Tris pH 7.5, 10 mM NaCl and 3 mM MgCl2) containing 1 mM 13 
dithiothreitol and 50 U RNase inhibitor for 2 min followed by lysis in LSB containing 0.2 M sucrose and 14 
1.2% Triton X-100.  After removal of nuclei by centrifugation, the supernatant was layered over a 15-15 
50% linear sucrose gradient (in LSB) and centrifuged at 247,000 x g for 2 h at 4°C in a swinging 16 
bucket rotor.  Gradients were fractionated, aliquots were taken for absorbance at 254 nm, and 3 vol of 17 
denaturation solution (Ambion Totally RNA kit) was immediately added to the remainder of each 18 
fraction.  Samples were frozen at -80°C until RNA was isolated using the Totally RNA kit (Ambion) as 19 
per manufacturer’s instructions followed by DNase treatment.  Both total RNA and polysome RNA 20 
were analyzed on an Agilent Bioanalyzer to assess RNA integrity.  CodeLink rat whole genome 21 
bioarrays (Applied Microarray) were used to assess gene expression (3). 22 
 23 
Gene set enrichment analysis (GSEA).   24 

GSEA was used to determine whether a “gene set” of interest is uniformly randomly distributed 25 
(or not) in a larger list of genes (gene list) sorted according to a t-test for differential expression (8, 9).  26 
In experiments described herein, the target list corresponds to genes in the total or polysomal 27 



expression data sets which are ranked by the respective t-test for differential expression.  The gene 28 
sets are made up of the putative targets of microRNAs obtained from Target Scan.  GSEA calculates 29 
an enrichment score (ES) that reflects the degree to which the targets within the gene set are over-30 
represented in the respective gene list.  A p-value is assigned to the ES score by a permutation test, 31 
which states whether the enrichment is significant or not.  GSEA then calculates a normalized 32 
enrichment score (NES), which takes into account the number of genes within the independent gene 33 
set.  34 
 35 
 Cumulative distribution function analysis.    36 

For each comparison group (i.e., Tumor/Saline, CA/FA, and CCA/FPA), both polysomal and 37 
total mRNA expression data sets were created using appropriate samples (rows=probes, 38 
columns=rats).  Each data set was individually median and quantile normalized using only rows 39 
containing all “good” probe readings.  Average probe values for each of the two treatments in the data 40 
set were computed, and then used as expression data (e.g., probe fold change between treatments 41 
would be the ratio of these averages).  Based on a previous analysis, differentially expressed 42 
microRNAs were identified for each comparison group, and for each microRNA, mRNAs were 43 
classified according to Target Scan by conserved 8mer, conserved 7mer types + non-conserved 8mer 44 
and 7mer types, and “other”. These groupings roughly correspond to “strong”, “weak”, and “non” 45 
targets (7).  Distributions of fold change between treatments for each of these groups were estimated 46 
using those mRNA that are available in the data set.  A comparison of the empirical fold change 47 
distributions of conserved 8mer targets and “non” targets was made for selected microRNA’s of 48 
known interest using the Kolmogorov-Smirnov test, and p-values and their associated q-values (false 49 
discovery rate levels) were computed. 50 
 51 
Classification of microRNAs as biomarkers of colon tumor development.    52 

For this analysis, the main goal was to determine if microRNA expression can be used to 53 
discriminate between the different experimental treatments: Tumor vs saline (T vs S), corn oil+AOM 54 



vs fish oil+AOM (CA vs FA) and corn oil+cellulose+AOM vs fish oil+pectin+AOM (CCA vs FPA).  We 55 
have previously used a linear classifier algorithm for feature set identification (2, 10).  For the purpose 56 
of identifying feature sets, we designed classifiers that categorize samples based on the expression 57 
values of the microRNAs from the intersection of the microRNAs altered in tumor versus (not altered) 58 
saline.  Classifiers for microRNAs feature sets of sizes 1, 2, and 3 were identified.  Generally, there 59 
are two reasons why it is desirable to design classifiers involving small numbers of features: (a) the 60 
limited number of samples often available in clinical studies makes classifier design and error 61 
estimation problematic for large feature sets (5) and (b) small microRNAs sets facilitate design of 62 
practical diagnostic panels.  For similar reasons, simple classifiers are preferable for small samples; 63 
indeed, for small samples, if good classification is possible, then a simple classifier such as linear 64 
discriminant analysis (LDA) using a small number of microRNAs will typically outperform a complex 65 
classifier (6)   66 67 
 Given a set of features on which to base a classifier, one has to address not only the classifier 68 
design from sample data but also the estimation of its error, i.e., the precision with which the error of 69 
the designed classifier estimates the error of the optimal classifier.  When data are limited, an error 70 
estimator may have a large variance and therefore may often be low even if it is approximately 71 
unbiased.  This can produce many feature sets and classifiers with low error estimates.  The algorithm 72 
used in this study mitigates this problem by applying the bolstered error estimation (1).  Basically, this 73 
approach “bolsters” the original empirical distribution of the available data by means of suitable 74 
bolstering kernels placed at each data point location.  The error can be computed analytically in some 75 
cases, such as in the case of LDA.  The result of the overall approach is a list of “best” feature sets 76 
from among all possible feature sets.  Hence, the best feature set is the one possessing minimum 77 
classification error.  Because we only have data and not the underlying feature-label distributions, the 78 
errors have been estimated from the data.  This approach takes into account that, in small-sample 79 
settings, we do not have much confidence in any single feature set and that it is much more likely that, 80 



if there is an adequate sized collection of good performing feature sets, then there are likely to be 81 
some that perform well on the overall population (6). 82 
 83 
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