SUPPORTING INFORMATION

Alanyl-Phosphatidylglycerol Synthase:

Mechanism of Substrate Recognition during tRNA-dependent Lipid

Modification in Pseudomonas aeruginosa

Stefanie Hebecker¹, Wiebke Arendt¹, Ilka U. Heinemann², Jana H. J. Tiefenau¹,

Manfred Nimtz³, Manfred Rohde⁴, Dieter Söll², and Jürgen Moser^{1*}

¹ Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany

² Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA

³ Helmholtz Centre for Infection Research, Department of Structural Biology, 38124 Braunschweig, Germany

⁴ Helmholtz Centre for Infection Research, Microbial Pathogenesis, 38124 Braunschweig, Germany

* For correspondence.
Dr. Jürgen Moser
Phone: +49 531 391 5808, Fax: +49 531 391 5854
E-mail: j.moser@tu-bs.de

TABLE S1. Enzymatic activity of A-PGS₅₄₃₋₈₈₁ after chemical modification or treatment with chelating agents under *in vitro* and modified *in vitro* (using Ala-tRNA^{Ala}) conditions.

A-PGS was purified in the absence of reducing agents and subsequently modified with phenylmethylsulfonyl fluoride, diisopropylfluorophosphate and p-hydroxyphenylglyoxal, respectively. After an extensive dialysis step proteins were subjected to the standard *in vitro* and modified *in vitro* A-PGS₅₄₃₋₈₈₁ assays as described under "Experimental Procedures". Ethylenediaminetetraacetic acid and 1,10-phenanthroline, respectively, were added directly to the assays. The relative *in vitro* activity and activity in modified *in vitro* assays of the corresponding unmodified A-PGS₅₄₃₋₈₈₁ was set as 100 %, and all other values were related to this value. Assays were performed in duplicate, standard deviation \pm 10 %. n.t. = not tested.

Modifying / chelating agent	Concentration	Relative activity in	Relative activity in
	[mM]	in vitro assays [%]	modified in vitro
			assays [%]
phenylmethylsulfonyl fluoride	0.1	100	n.t.
	1	100	n.t.
diisopropylfluorophosphate	0.1	100	n.t.
	1	100	n.t.
p-hydroxyphenylglyoxal	0.5	90	n.t.
	1	90	100
	5	60	n.t.
	10	60	100
ethylenediaminetetraacetic acid	3	100	100
	10	100	100
	20	n.t.	100
1,10-phenanthroline	1	100	n.t.
	3	n.t.	100
	5	n.t.	75
	10	45	35
	20	n.t.	20

TABLE S2. Determination of metal ion content of purified A-PGS₅₄₃₋₈₈₁.

Purified GST-A-PGS₅₄₃₋₈₈₁ protein was concentrated (10.5 mg/ml – 161 μ M) and subjected to inductively coupled plasma - mass spectrometry (ICP-MS) experiments. In parallel the sole GST protein (4 mg/ml – 154 μ M) was analyzed to determine the background level of the employed purification strategy. Experiments were performed in duplicate.

Metal ion	Concentration of metal ion in GST-A-PGS ₅₄₃₋₈₈₁ [µM]	Concentration of metal ion in GST [µM]
Fe ²⁺	4.3	1.6
Ni ²⁺	0.2	0.2
Cu ²⁺	0.3	0.2
Mg^{2+}	18.8	1.2
Mn ²⁺	0.4	0.02
Zn^{2+}	0.9	0.2

TABLE S3. **Primers used in this study.** The sequence for T7 promoter is underlined; restriction sites are shown in italics. Exchanged nucleotides for mutagenesis of *P. aeruginosa* A-PGS are in bold.

Primer		
1	5pGPaBamf	GTAGGATCCCGCGCGCGCACC
2	6pGPaXhor	GATCTCGAGTCAGCGTTTCACCAATC
3	QCA856NSTOPfw	CTACCTGGCCGTGCCAAACTAGGGCTCGACCCGCTGGTG
4	QCA856NSTOPrv	CACCAGCGGGTCGAGCCCTAGTTTGGCACGGCCAGGTAG
5	27alaSNdeIfw	ATAGCCATATGAAAAGCGCTGAAATCCG
6	28alaSBclIrv	ATAGCTGATCATCAGAGCCCTTGCTCGAC
7	D579Afw	GCCCTGACCGGCGCTAAGGCCCTGCTC
8	D579Arv	GAGCAGGGCCTTAGCGCCGGTCAGGGC
9	D579Nfw	GCCCTGACCGGCAACAAGGCCCTGCTC
10	D579Nrv	GAGCAGGGCCTTGTTGCCGGTCAGGGC
11	K580Sfw	CCCTGACCGGCGAC TCT GCCCTGCTCTTCC
12	K580Srev	GGAAGAGCAGGGCAGAGTCGCCGGTCAGGG
13	K580Qfw	CTGACCGGCGACCAGGCCCTGCTCTTC
14	K580Qrev	GAAGAGCAGGGCCTGGTCGCCGGTCAG
15	Y635Afw	CCCGCCCGGTGTTCGCTCAGGTGCGTGCCG
16	Y635Arev	CGGCACGCACCTGAGCGAACACCGGGCGGG
17	K654Sfw	GGCCTGACCGCCCTCTCTCGGCGAAGAAGC
18	K654Srev	GCTTCTTCGCCGAGAGAGAGGGCGGTCAGGCC
19	K654Qfw	CTGACCGCCCTCCAGCTCGGCGAAGAAG
20	K654Qrev	CTTCTTCGCCGAGCTGGAGGGCGGTCAG
21	E657Dfw	CTCAAGCTCGGCGACGAAGCGCGAGTC
22	E657Drv	GACTCGCGCTTCGTCGCCGAGCTTGAG
23	E657Qfw	CCTCAAGCTCGGCCAGGAAGCGCGAGTCG
24	E657Qrv	CGACTCGCGCTTCCTGGCCGAGCTTGAGG
25	E658Dfw	CAAGCTCGGCGAAGACGCGCGAGTCGAC
26	E658Drv	GTCGACTCGCGCGTCTTCGCCGAGCTTG
27	E658Qfw	CTCAAGCTCGGCGAACAGGCGCGAGTCGACC
28	E658Qrv	GGTCGACTCGCGCCTGTTCGCCGAGCTTGAG
29	S709Afw	GAGCTGAAGGCGATA G C T GACGCCTGGCTG
30	S709Arv	CAGCCAGGCGTCAGCTATCGCCTTCAGCTC
31	S709Nfw	GAGCTGAAGGCGATAAACGACGCCTGGCTGGGC
32	S709Nrv	GCCCAGCCAGGCGTCGTTTATCGCCTTCAGCTC
33	D710Afw	GAAGGCGATATCGGCTGGCTGGGCGG
34	D710Arv	CCGCCCAGCCAGGCAGCCGATATCGCCTTC
35	D710Nfw	CTGAAGGCGATATCGAACGCCTGGCTGGGC
36	D710Nrv	GCCCAGCCAGGCGTTCGATATCGCCTTCAG
37	E720Qfw	GCAAGCAGGTGCGCCAGAAAGGCTTCTCCC
38	E720Qrv	GGGAGAAGCCTTTCTGGCGCACCTGCTTGC
39	S724Afw	CGCGAGAAAGGCTTCGCTCTGGGCCGCTTCAC

40	S724Arv	GTGAAGCGGCCCAGAGCGAAGCCTTTCTCGCG
41	S724Nfw	CGCGAGAAAGGCTTCAACCTGGGCCGCTTCACC
42	S724Nrv	GGTGAAGCGGCCCAGGTTGAAGCCTTTCTCGCG
43	Y732Afw	CCGCTTCACCCCGGCGGCTCTGAACTTCTTCCGC
44	Y732Arev	GCGGAAGAAGTTCAGAGCCGCCGGGGGTGAAGCGG
45	S763Afw	GCCGCGAACTGGCGGCTCTCGACCTGATGCGC
46	S763Arv	GCGCATCAGGTCGAGAGCCGCCAGTTCGCGGC
47	S763Nfw	CGCGAACTGGCGAACCTCGACCTGATGC
48	S763Nrv	GCATCAGGTCGAGGTTCGCCAGTTCGCG
49	D765Afw	GAACTGGCGAGCCTCGCTCTGATGCGCGTG
50	D765Arev	CACGCGCATCAGAGCGAGGCTCGCCAGTTC
51	D765Nfw	CTGGCGAGCCTCAACCTGATGCGCG
52	D765Nrev	CGCGCATCAGGTTGAGGCTCGCCAG
53	R768Sfw	GAGCCTCGACCTGATGTCTGTGCACCCGGACGCG
54	R768Srev	CGCGTCCGGGTGCACAGACATCAGGTCGAGGCTC
55	R768Qfw	CCTCGACCTGATGCAGGTGCACCCGGACG
56	R768Qrev	CGTCCGGGTGCACCTGCATCAGGTCGAGG
57	M778Afw	CGCGCCGAAGCTGACCGCTGAGTTCCTCATGCTC
58	M778Arev	GAGCATGAGGAACTCAGCGGTCAGCTTCGGCGCG
59	Y831Afw	GCGGGGCGAACAGTTCGCTAATTTCCAGGGGCTGC
60	Y831Arev	GCAGCCCCTGGAAATTAGCGAACTGTTCGCCCCGC
61	R837Sfw	CTACAATTTCCAGGGGCTGTCTCGCTTCAAGGACAAGTTCC
62	R837Srev	GGAACTTGTCCTTGAAGCGAGACAGCCCCTGGAAATTGTAG
63	R837Qfw	CTACAATTTCCAGGGGCTGCAGCGCTTCAAGGACAAGTTC
64	R837Qrev	GAACTTGTCCTTGAAGCGCTGCAGCCCCTGGAAATTGTAG
65	K840Sfw	CAGGGGCTGCGACGCTTCTCTGACAAGTTCCAGCCC
66	K840Srev	GGGCTGGAACTTGTCAGAGAAGCGTCGCAGCCCCTG
67	K840Qfw	GCTGCGACGCTTCCAGGACAAGTTCCAGC
68	K840Qrev	GCTGGAACTTGTCCTGGAAGCGTCGCAGC
69	K842Sfw	CTGCGACGCTTCAAGGACTCTTTCCAGCCCGACTGGG
70	K842Srev	CCCAGTCGGGCTGGAAAGAGTCCTTGAAGCGTCGCAG
71	K842Qfw	GACGCTTCAAGGACCAGTTCCAGCCCGAC
72	K842Qrev	GTCGGGCTGGAACTGGTCCTTGAAGCGTC
73	alatRNA1fw	AATTCTAATACGACTCACTATAGGGGGCCATAGCTCAGCTGGGAGAGCGCCTG
		CTTTGCACGCAGGAGGTCAGGAGTTCGATCCTCCTTGGCTCCACCAG
74	alatRNA1rv	<i>GATCC</i> TGGTGGAGCCAAGGAGGATCGAACTCCTGACCTCCTGCGTGCAAAG
	1.0014.00	CAGGCGCTCTCCCAGCTGAGCTATGGCCCC <u>TATAGTGAGTCGTATTA</u> G
75	alatKNA2fw	AATTC <u>TAATACGACTCACTATA</u> GGGGCTATAGCTCAGCTGGGAGAGCGCTTG
<u> </u>		
76	alatinAZIV	
1	1	AAUUUTUTUUAUUAUUAUUAUUAUUAUUAUUAUUAUUAUU

Bacterial strain or plasmid		Genotype or phenotype	Reference
E. coli			
	BL21 (λDE3)	B F ⁻ dcm ompT hsdS($r_B^- m_B^-$) gal λ (DE3)	Stratagene, La Jolla, USA
	Rosetta (DE3) pLysS	$F^- ompT hsdS_B(r_B^- m_B^-) gal dcm (DE3) pLysSRARE2 (Camr)$	Novagen, Darmstadt, Germany
	TOP10	F- mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80lacZ Δ M15 Δ lacX74 recA1 ara Δ 139 Δ (ara-leu)7697 galU galK rpsL (Str ^r) endA1 nupG	Invitrogen (Grant <i>et al.</i> , 1990)
	K-12, strain AG1, clone JW2667	<i>recA1 endA1 gyrA96 thi-1 hsdR17(rK⁻mK⁺) supE44 relA1</i> carrying plasmid pCA24N which encodes for AlaRS from <i>E. coli</i> , Cam ^r	(Kitagawa <i>et al.</i> , 2005)
	K-12, strain AG1, clone JW2498	<i>recA1 endA1 gyrA96 thi-1 hsdR17(rK⁻mK⁺) supE44 relA1</i> carrying plasmid pCA24N which encodes for HisRS from <i>E. coli</i> , Cam ^r	(Kitagawa <i>et al.</i> , 2005)
Plas	mids		
	pBADmyc-His-A/ PA0920	pBADmyc-His-A containing PA0920 gene fused to the sequence for C-terminal His ₆ -tag cloned between <i>Hind</i> III and <i>NcoI</i> sites, Ap ^r	(Klein et al., 2009)
	pBAD-His-A/ PA0920	pBAD-His-A containing the PA0920 gene fused to the sequence for N-terminal His ₆ -tag cloned between <i>Xho</i> I and <i>Hind</i> III sites, Ap ^r	(Klein et al., 2009)
	pBAD-His-A/ PA0920 _{1-855N}	pBAD-His-A/PA0920-derivative, deletion of amino acids 857 – 881, amino acid exchange alanine 856 to asparagine	This work
	pGEX-6P-1/ PA0920∆aa1-542	Expression vector for <i>E. coli</i> carrying base pairs 1627 - 2643 of ORF PA0920 cloned into <i>Bam</i> HI/ <i>Xho</i> I sites, <i>tac</i> -promoter, sequence for an N-terminal GST-tag with specific restriction site for PreScission TM Protease, Ap ^r	This work
	pGEX-6P-1/ PA0920∆aa1-542 D579A	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange aspartate 579 to alanine	This work
	pGEX-6P-1/ PA0920∆aa1-542 D579N	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange aspartate 579 to asparagine	This work
	pGEX-6P-1/ PA0920∆aa1-542 K580S	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange lysine 580 to serine	This work
	pGEX-6P-1/ PA0920∆aa1-542 K580Q	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange lysine 580 to glutamine	This work
	pGEX-6P-1/ PA0920Δaa1-542 Y635A	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange tyrosine 635 to alanine	This work
	pGEX-6P-1/ PA0920∆aa1-542 K654S	pGEX-6P-1/PA0920\[Delta a1-542-derivative, amino acid exchange lysine 654 to serine	This work
	pGEX-6P-1/ PA0920∆aa1-542 K654Q	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange lysine 654 to glutamine	This work
	pGEX-6P-1/ PA0920Δaa1-542 E657D	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange glutamate 657 to aspartate	This work

TABLE S4. E. coli strains and plasmids used in this study.

pGEX-6P-1/ PA0920∆aa1-542 E657Q	pGEX-6P-1/PA0920\u03c4aa1-542-derivative, amino acid exchange glutamate 657 to glutamine	This work
pGEX-6P-1/ PA0920∆aa1-542 E658D	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange glutamate 658 to aspartate	This work
pGEX-6P-1/ PA0920∆aa1-542 E658Q	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange glutamate 658 to glutamine	This work
pGEX-6P-1/ PA0920∆aa1-542 S709A	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange serine 709 to alanine	This work
pGEX-6P-1/ PA0920∆aa1-542 S709N	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange serine 709 to asparagine	This work
pGEX-6P-1/ PA0920∆aa1-542 D710A	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange aspartate 710 to alanine	This work
pGEX-6P-1/ PA0920∆aa1-542 D710N	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange aspartate 710 to asparagine	This work
pGEX-6P-1/ PA0920∆aa1-542 E720Q	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange glutamate 720 to glutamine	This work
pGEX-6P-1/ PA0920∆aa1-542 S724A	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange serine 724 to alanine	This work
pGEX-6P-1/ PA0920∆aa1-542 S724N	pGEX-6P-1/PA0920\u03c4aa1-542-derivative, amino acid exchange serine 724 to asparagine	This work
pGEX-6P-1/ PA0920∆aa1-542 Y732A	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange tyrosine 732 to alanine	This work
pGEX-6P-1/ PA0920∆aa1-542 S763A	pGEX-6P-1/PA0920\u03c4aa1-542-derivative, amino acid exchange serine 763 to alanine	This work
pGEX-6P-1/ PA0920∆aa1-542 S763N	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange serine 763 to asparagine	This work
pGEX-6P-1/ PA0920∆aa1-542 D765A	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange aspartate 765 to alanine	This work
pGEX-6P-1/ PA0920∆aa1-542 D765N	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange aspartate 765 to asparagine	This work
pGEX-6P-1/ PA0920∆aa1-542 R768S	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange arginine 768 to serine	This work
pGEX-6P-1/ PA0920∆aa1-542 R768Q	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange arginine 768 to glutamine	This work
pGEX-6P-1/ PA0920∆aa1-542 M778A	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange methionin 768 to alanine	This work

-			
	pGEX-6P-1/	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange	This work
	Y831A	tyrosine 851 to aranine	
	pGEX-6P-1/ PA0920∆aa1-542 R837S	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange arginine 837 to serine	This work
	pGEX-6P-1/ PA0920∆aa1-542 R837Q	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange arginine 837 to glutamine	This work
	pGEX-6P-1/ PA0920∆aa1-542 K840S	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange lysine 840 to serine	This work
	pGEX-6P-1/ PA0920∆aa1-542 K840Q	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange lysine 840 to glutamine	This work
	pGEX-6P-1/ PA0920∆aa1-542 K842S	pGEX-6P-1/PA0920∆aa1-542-derivative, amino acid exchange lysine 842 to serine	This work
	pGEX-6P-1/ PA0920∆aa1-542 K842Q	pGEX-6P-1/PA0920\aa1-542-derivative, amino acid exchange lysine 842 to glutamine	This work
	pGEX-6P-1/ A-PGS _{543-855N}	pGEX-6P-1/PA0920∆aa1-542-derivative, deletion of amino acids 857 – 881, amino acid exchange alanine 856 to asparagine	This work
	pET28b(+)PA0903	Expression vector for <i>E. coli</i> carrying the gene encoding alanyl- tRNA-synthetase (ORF PA0903) cloned into <i>NdeI/Bam</i> HI sites, T7-promoter, sequence for an N-terminal His-tag, Kan ^r	This work
	pUC18tRNA ^{Ala1}	pUC18 containing ORF PA4280.3 (coding for tRNA ^{Ala1}) from <i>P. aeruginosa</i> cloned into the <i>Eco</i> RI and <i>Bam</i> HI restriction sites of the MCS under control of a T7 promoter and with a 3' <i>Bst</i> NI restriction site, Ap ^r	This work
	pUC119tRNA ^{Ala2}	pUC119 containing ORF PA3133.2 (coding for tRNA ^{Ala2}) from <i>P. aeruginosa</i> cloned into the <i>Eco</i> RI and <i>Bam</i> HI restriction sites of the MCS under control of a T7 promoter and with a 3' <i>Bst</i> NI restriction site. Ap ^r	This work

Supplemental Figure S1

FIG. S1. Sequence alignment of orthologous aa-PGS proteins.

Homologous aa-PGS proteins from *Listeria monocytogenes* (Lm), *Listeria innocua* (Li), *Clostridium perfringens* MprF2 (Cp2), *Staphylococcus aureus* (Sa), *Staphylococcus epidermis* (Se), *Staphylococcus xylosus* (Sx), *Bacillus cereus* (Bc), *Bacillus anthracis* (Ba), *Bacillus subtilis* (Bs), *Clostridium perfringens* MprF1 (Cp1) and *Pseudomonas aeruginosa* (Pa). Partially conserved positions are boxed in gray, completely conserved positions in black. The first amino acid of the soluble A-PGS₅₄₃₋₈₈₁ variant from *P. aeruginosa* is highlighted in red. The proposed C-terminal helix is underlined. Amino acid positions that have been mutagenized by site-directed mutagenesis and point mutations that have been analyzed in the present study are indicated.

CLUSTAL 2.0.12 multiple sequence alignment

τ		-
Lm	HLWLVGFVGVFIAVVSLVIIYIYLSTTKEKLGSPFEAVKVREHLAKWG-GNEVSHTMFLR 546) -
	HLWLVGFVGVFIAVVSLVIIIIISTTKEKLGSPFEAVKVREHLAKWG-GNEVSHTMFLR 546)
Cp2	RFGF1AFALVTV1VATYFLN1RKRIPVRTFDQCSEY1EKIIEE/K-GDSLTHLVFLK 535) -
Sa	VLRYYFWLTILIIAIIIGMIAWLFDYQFSKVRISSKIEDCEEIINQYG-GNYLSHLIYSG 545)
Se	LLRYYFWITILIVILIVGLIAWLFDYKFERPHRMTDVSICESIIHEYG-GNYLSHLVYSG 545)
Sx	ILRYYFWITILLVATIVGVIVWWFEYRYRSSNSRDNIATCESTIDKYN-GNYLSHLMYSG 545)
BC	VKRSALAAAFFVPTFLLIGSLIANRYRNEFPGQPANDKRLQNFLDEHG-GNVLSHLGFLG 563	\$
Ba	VKRSALAAAFFVPTFLLIGSLIANRYRNEFPGQPANDKRLQNFLDEHG-GNVLSHLGFLG 563	}
Bs	ITHATIMAIIIVPLFFLIFTVVYHK-RTKPIGEKADPERLAAFLNEKG-GNALSHLGFLG 556	5
Cpl	YLRIALFTYISFIIFVIIWYLTMPKIEDDERYMDADLEKVSKFFKEIDYGTIFSHLVYLK 265	5
Pa	ALRAALGSCLLLLALALGWLL <mark>R</mark> AAPPAIREPN-AEELQRAARIIRHSDQPDGGLALTG 578	3
Lm	DKLLFWAAEGEVLFSYRIIADKMVIMGEPTGNMDKMEAAIEEVMMNADRFGYRPVFYEVR 606	5
Li	DKLLFWAANGEVLFSYRIIADKMVIMGEPTGNMEKMEDAIEEVMTNADRFGYRPV <mark>FY</mark> EVR 606	5
Cp2	DKYIYLNEDKDLFIQYEVYGDKLFVLGNPVGNNENLFREIEKFCEYADNYGYTPV <mark>FY</mark> QVN 599)
Sa	dKqfftnenktaflmyrykasslvvlgdPlgdenafdelleafynyaeylgydvi <mark>fy</mark> qvt 605	5
Se	DKDCFIDENEKAFLMYRYKSNTLVVLGDPIGDPNTFESLLEKFYQFAEYRGYNII <mark>FY</mark> QIS 605	5
Sx	DKKFFINDNKDAFVMYRYHNNTYIILGDPIGNSESFYSLLEAFYKEAEYLGYDIIFYQVT 605	5
Вс	dKqfffssdgkalllfsitgkrlvvlgdPigdpssyrtvlqeflaeadrfgyicv <mark>fy</mark> qie 623	3
Ba	dKqfffssdgkalllfsitgkrlvvlgdPigdpssyrtvlqeflaeadrfgyicv <mark>fy</mark> qie 623	3
Bs	DKRFYFSSDGNALLLFGKIARRLVVLGDPSGQRESFPLVLEEFLNEAHQKGFSVL <mark>FY</mark> QIE 616	5
Cp1	dkkvfwanegeslimyskykdkiivlgdPiatkenlyscieefqaftnlygydvv <mark>fy</mark> eie 325	5
Pa	DKALLFHESDDAFLMYARRGRSMIALYDPIGPAMQRAELIWQFRDLCDLHHARPV <mark>FY</mark> QVR 638	3
	D579 -> D579A, D579N	
	K580 -> K580S, K580Q Y635 -> Y	635A
Lm	GTMIPYLHDHCFDFIKLCDDCFVDVQNDTMSCKKKKGERALMNKLEREGYTFEIIEDP 664	ł
Li	GTMIPYLHDHCFDFIKLCDDCFVDVQNDTMSCKKKKGERALMNKLDREGYTFEIIQDP 664	ł
Cp2	EEMISYLHSN g ydfm <mark>kiCeb</mark> akVdVke <mark>b</mark> kVVGnkmkslktsrskVtkegytfhmvebp 657	1
Sa	DQHMPLYHNF <mark>C</mark> NQFFKLGEEAIIDLTQESTSGKKRRGFRATLNKFDELNISFEIIEBP 663	3
Se	DRHMPLYHNFGNQFFKLGEBAIIDLTTFTTSGKKRRGFRATLNKIEDLNISFEIIEBP 663	3
Sx	DKYMSLYHSFGNQFFKLGEEAVINLTSFTTSGKKKRGLRATLNKLDDLGYSFEVLEEP 663	3
Bc	SKWMSLYHDFGYNFFKLGEEAVVDLNTFTITGKKRAGMRATFNRFEREGYTFSIHQEP 681	_
Ba	SKWMSLYHDF <mark>G</mark> YNFF K LGEEAVVDLNTFTITGKKRAGMRATFNRFEREGYTFSIHQPP 681	-
Bs	REDMALYHDF <mark>G</mark> YNFF <mark>K</mark> L GEE AYVDLNTFTLTGKKKAGLRAINNRFEREEYTFHVDHPP 674	ł
Cp1	eknfstyhda <mark>g</mark> yyff <mark>klgeb</mark> aridlee <mark>f</mark> nli <mark>G</mark> skksafrntlrrveregynfsiiePp 383	3
Pa	AENLPFYMDI <mark>G</mark> LTAL KLGEE ARVDLLR <mark>F</mark> DLENK <mark>G</mark> KEMKDLRYTWNRGQRDGLALEFHEP- 697	1
	E657 -> E657D, E657Q	
	E658 -> E658D, E658Q	

K654 -> K654S, K654Q

Sa	К	840
Se	К	840
Sx	NN	841
Bc	RKNS	861
Ba	RKNS	861
Bs	SKKDSV	856
Cpl	SKERVEKK	569
Pa	GLTGLVKR	881

Supplemental Figure S2

FIG. S2. Activity of mutant A-PGS proteins under in vivo conditions.

Separation of polar membrane lipids by 2D-TLC and detection by 5% (w/v) molybdatophosphoric acid staining is shown. Lipids were extracted from *E. coli* BL21 (λ DE3) cells overproducing different A-PGS₅₄₃₋₈₈₁ mutants. Positions of phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG) are shown. A-PG is indicated by an arrow.

A-PG formation by the wild type A-PGS₅₄₃₋₈₈₁ protein is shown in *panel A*. A-PG formation by the mutant enzymes in the *in vivo* assay were classified as: +++, activity comparable to wild type enzyme (mutant protein K654S, *panel B*); +, decreased activity when compared to wild type enzyme (mutant protein Y732A, *panel C*); -, no detectable A-PGS activity (mutant protein D765N, *panel D*).

References Supporting Information

- Grant, S.G., Jessee, J., Bloom, F.R., and Hanahan, D. (1990) Differential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. *Proc Natl Acad Sci U S A* **87**: 4645-4649.
- Kitagawa, M., Ara, T., Arifuzzaman, M., Ioka-Nakamichi, T., Inamoto, E., Toyonaga, H., and Mori, H. (2005) Complete set of ORF clones of *Escherichia coli* ASKA library (a complete set of *E. coli* K-12 ORF archive): unique resources for biological research. *DNA Res* 12: 291-299.
- Klein, S., Lorenzo, C., Hoffmann, S., Walther, J.M., Storbeck, S., Piekarski, T., *et al.* (2009) Adaptation of *Pseudomonas aeruginosa* to various conditions includes tRNAdependent formation of alanyl-phosphatidylglycerol. *Mol Microbiol* **71**: 551-565.