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SI Results and Discussion
1 Numerical and Analytical Results. To obtain analytical results
for the relaxation of a single fiber, we performed calculations
by using the mean field theory. There are several simplifying
assumptions that are taken into account in these calculations.
For instance, we assume that the concentration of enzyme parti-
cles is low enough to avoid correlations between particles that
means that the particles do not interact with each other and the
exclusion volume need not be included in the calculation. Also,
we do not formally take into account the transition state in the
model. The reason is that we focused more on the diffusion and
concentration effects as well as on how tension on the fiber affects
the relaxation of the force. This level of description of the local
enzyme reaction is not necessary in the current model because we
would not be able to extract such information from the experi-
mental data. Consequently, the enzyme reaction is simply an
on-off binding process. The chemical reaction step (peptide bond
“hydrolysis”) that includes interaction of the enzyme with the
transition “state” is embedded within the probabilities pon and
poff . The rate limiting step of the reaction is then governed by
the lower value of these probabilities.

To obtain an expression for the number of particles leaving the
fiber per unit of time hτi, we assume that the number of bound
particles nB has reached the steady state as we show in Fig. S1.
According to the results presented in the main text, pon increases
as the number of particle visits increases until it reaches the
isotropic value of 1∕3. This behavior also affects nB as can be seen
from the cross-over region in all curves. As poff increases, the
cross-over region becomes shorter and nB reaches the steady state
earlier with a lower saturation value.

We can also calculate more explicitely the average waiting time
hτi between two unbinding events. We first calculate the average
number of particles leaving the spring hnLi during one time step.
Fig. S2 shows an array of 5 springs with nB ¼ 3 and nL ¼ 2 for the

next time step. The probability PnL for two particles to leave the
fiber at the next time step is related to poff as follows:

PnL ¼ 3p2offð1 − poffÞ:

From this particular case, we can generalize for any value of nB
and nL as follows:

PnL ¼ nB!
nL!ðnB − nLÞ!

pnLoffð1 − poffÞðnB−nLÞ:

By using the definition of the average value and the probability
PnL above, we obtain

hnLi ¼ ∑
nB

nL¼0

nLPnL ¼ nBpoff :

Thus, the rate of change of nB is the difference between the
number of particles that bind and the number of particles that
leave the fiber per unit time as described in the main text.

2 Network.To mimic the geometry of a real elastin sheet, we build
a two-dimensional network of fibers arranged randomly as de-
scribed in the main text. Fig. S3 shows the network configurations
before stretch (Fig. S3A) and after 20% uniaxial stretch in the
positive x direction (Fig. S3B) at time 0. Notice that the network
is homogeneous. After 200 time steps, the network becomes
heterogeneous as shown by the colors (Fig. S3C). However, the
displacements of the nodes remain in the neighborhood of their
initial displacement (Fig. S4) that explains why the network shows
an exponential decay of stiffness similar to that of individual
fibers.
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Fig. S1. The number of bound particles as a function of time for different values of poff. The sum of the number of free and bound particles is constant and is
given by nB þ nF ¼ Np ¼ 512.

Fig. S2. An example of five springs with three bound particles. During the next time step, two of the particles leave the fiber.
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Fig. S3. In panel A the network is shown before stretch where the initial sizes are Lx ¼ Ly ¼ 200. The colors indicates the magnitude of the normalized spring
constant K∕Kmax on each fiber (edge). All edges are red, which means that the spring constants are equal to unity. In panel B, the network is under tension but
t ¼ 0 and all spring constants are still equal to unity. In panel C t ¼ 200 and the distribution of force on the network is heterogeneous, thereby generating
different degrees of degradation on each spring (fiber).

Araújo et al. www.pnas.org/cgi/doi/10.1073/pnas.1019188108 2 of 3

http://www.pnas.org/cgi/doi/10.1073/pnas.1019188108


t=1
t=200

t=1
t=200

Fig. S4. The typical position of the network nodes at different times t ¼ 1 and t ¼ 200. In the Inset we can see the node displacements after the relaxation
process takes place.
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