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S1. DEVICE FABRICATION

Our planar quadrupole trapping devices are fabricated on a SiO2/Si wafer (Fig. S1a).

The insulating SiO2 layer has a thickness of 3 µm which is thermally grown. LOR 5A resist

(Microchem Corp) is spined on the substrate at a speed of 3000 rmp for 1 min, followed

by baking at 175 ◦C for 5 min on the hotplate. Another layer of positive photoresist S1808

(Shipley) is then spun on top of the baked LOR. Then a standard UV lithography and devel-

oping process is applied to pattern the bi-layer structure. 20-nm-thick Cr and 300-nm-thick

Au is e-beam evaporated at the speed of 3 Å/s. The whole wafer is thereafter immersed into

the N-Methylpyrrolidone (NMP) solution heated at 60◦C to remove the bi-layer photoresist.

Finally, the wafer is diced and is ready to be integrated with the microfluidic chamber. The

microfluidic chamber is formed by poly(dimethylsiloxane) (PDMS) using SU-8 as a molding

master (Fig. S1c and d). The detailed protocols can be found in ref. [1]. Oxygen plasma

treatment was used to permanently bond the PDMS to the device surface and form an anti-

evaporation microfluidic channel(Fig. S1e). An inlet and an outlet were punched through

before assembling(Fig. S1f ). Once the device was assembled, it could be repeatedly used

for a long time.

Figure S1. Schematic device fabrication flow
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S2. VIDEO PROCESSING METHOD

We use a particle tracking algorithm that has been described in detail elsewhere [2] to

extract the motion fluctuations. The videos are taken by a high-sensitivity digital CCD

camera (Olympus DP70) with the highest shutter speed as fast as 1/44000 s. Videos are

decomposed into frame sequences using the software VirtualDub (http://www.virtualdub.

org/). The particle tracking is then carried out in NIH ImageJ platform (http://rsb.

info.nih.gov/ij/) with a particle tracking plugin tool developed by G. Levy (https:

//weeman.inf.ethz.ch/ParticleTracker/). Fig. S2 illustrates the trajectory extraction

process.

However, video based position extraction method does not measure the instantaneous

particle position and has a problem of ’motion blur’, which results from time-averaging a

signal over a finite integration time (shuttle time or acquisition time) [3]. This will lead

to the underestimation of the real variance. Wong et al. showed both theoretically and

experimentally that the relation between the measured variance V ar(Xm) and the real

variance V ar(Xr) can be linked by motion blur correction function S(α) [3], V ar(Xr) =

V ar(Xm)/S(α), where S(α) = 2
α
− 2

α2 (1− e−α), and α is a dimensionless parameter, defined

by expressing the exposure time W in unit of the trap relaxation time τ , i.e. α = W/τ .

Figure S2. Illustration of trajectory extraction method

As for the position variance extraction experiments, we set the shutter speed as 1/80 s and

used a 100× objective, leading to an on-screen magnification of 125 nm/pixel. The recording
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frame rate is 8 fps. We estimate the relaxation time in the experiment as τ = ξ/k ∼ 1ms

(where ξ = 6πηr, the Stokes’ drag coefficient). As a result, the motion blur correction

function value S(α)|α=12.5 = 0.1472. Therefore, the real variance V ar(Xr) is corrected as,

V ar(Xr) = 6.79× V ar(Xm), or in terms of standard deviation, Std(Xr) = 2.6× Std(Xm)

S3. SOLUTION PREPARATION

The solution used in the experiment was prepared by the following steps:

(1) The beads were firstly diluted to a density of ∼ 106 particle/mL by deionized (DI)

water (milli-Q grade, resistivity 18 MΩ · cm), in order to eliminate the particle-particle

interactions during the experiment.

(2) In order to thoroughly remove the residual ions from the stock solution, the beads

prepared in step 1 were washed five times in DI water by centrifuging the beads in a 10 mL

tube at 13500 G for 10 min, re-suspending in DI water each time.

The prepared solution in the 10 mL tube was extracted and then pumped into the mi-

crofluidic chamber. The conductivity of the fresh suspension solution in the 10 mL tube

(exposed to air) is measured as 0.1 µS/cm (EC 215 Multi-range Conductivity Meter, Hanna

Instruments) and this slowly goes up to maximum 2.0 µS/cm during the course of an exper-

iment (due to the absorption of ambient gas). This measured conductivity variation sets the

lower and upper bound for the solution inside the microfluidic chamber. In fact, since the

microfluidic channels are not directly exposed to air, little change of the solution conduc-

tivity inside the trap chamber is expected. Since the solution conductivity directly affects

the effective charge of the particle (see Section S4), long-term measurements were carried

out on a single trapped particle to investigate the drift of solution conductivity. We find

that we can stably trap particles for a minimum of 4 hours (we did not explore longer), and

over this time the trap stiffness (k = kBT/δ
2) only changed by < 3% (Fig. S3), indicating a

stable solution conductivity during the 4-hour period.

S4. EFFECT OF SOLUTION CONDUCTIVITY

Maintaining a low solution conductivity is critical to observe the Paul trapping effects

(instead of DEP effects) for our current devices. Notice that the charge we used in the

5



Figure S3. Long-term trap stiffness for a single trapped bead (particle radius 491 nm and device

size R0=4 µm).

derivations in the main text is the effective charge rather than the bare charge. A charged

surface in contact with a conductive liquid creates an induced electric double layer (EDL). A

significant fraction of the particle’s charge is neutralized by the strongly bounded counterions

in the Stern layer. The charged particle plus the thin Stern layer is further screened by

diffusive counterions within a characteristic Debye length λD. To determine the effective

charge Qeff , we look at the motion of charged particles, which is induced by electrostatic

forces, friction, and electrophoretic retardation forces. Among them, the electrophoretic

retardation force originates from the delayed response of the surrounding ionic atmosphere

to the motion of a charged particle. The electrophoretic mobility including this retardation

effect can be described by Henry’s formula [4],

µE =
2

3

εζ

η
f (α) (S1)

where α = a/λD is the ratio of particle radius to the Debye length of the electrolyte solution,

ε is the dielectric constant of the electrolyte, ζ is the zeta-potential, and η is viscosity of

the solution. Ohshima et al. [5] showed that f (α) is a monotonic increasing function that
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varies from 1 to 3/2. Since ζ-potential can be expressed in Debye-Hückel form [6],

ζ =
Qbare

4πεa (1 + a/λD)
(S2)

where Qbare is the bare charge of particle. The electrophoretic mobility µE can be rewritten

as,

µE =
Qbare

6πηa (1 + a/λD)
f

(
a

λD

)
(S3)

The effective charge of particle can thus be estimated as,

Qeff =
f (a/λD)

(1 + a/λD)
Qbare (S4)

At a high ionic concentration c, the Debye length (λD∼c−1/2) becomes very small, as a

result, a/λD�1 and f (a/λD) → 3/2. Therefore, Qeff ≈ 3
2
λD
a
Qbare�Qbare. The effective

charge is greatly reduced in salt solutions. However, a significant amount of charge of

the particle is required for Paul trap to function (Paul trap would not work with neutral

particles). For most DEP trapping experiments reported, high salt concentrations were

added to adjust the conductivity of the suspension medium [7–11]. Therefore the Paul

trap effects can not be seen easily in these experiments. In contrast, it is easy to see that

Qeff → Qbare when a → 0 and/or λD → ∞. This will happen for ultrasmall particles or

very low ionic concentrations.

S5. MOVIE ILLUSTRATIONS

The affiliated video shows typical dynamics for four basic operations.

(i) Trapping with small fluctuations.

(ii) Trapping with large fluctuations.

(iii) Unstable trapping region, ejection.

(iv) Resuming trapping.

Table SI summarizes the working conditions for each part of the video. It is worth

noting that for the two particles in part (iv), one particle is leaving while the other is

trapped. This is believed to be due to the inter-particle coulomb repulsion. We observe in

the experiment that the trapping mostly occurred for single beads, though up to 4 beads

trapped simultaneously are also occasionally observed.
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TABLE SI. Working parameters for each part in the video ab

Video part RF voltage (V) DC voltage (V) Frequency (MHz) b q a

i 1.72 0 3 1.89 0.2727 0

ii 0.92 0 3 1.89 0.1458 0

iii 0.68 0 3 1.89 0.1078 0

iv 1.84 0 3 1.89 0.2917 0

a The device size is 2R0=7.4 µm, bead radius is rp=490 nm.
b b, q and a parameters are calculated by using Q/ΓM = 4.77× 10−6 e/amu.

S6. CALCULATION OF THE ELECTRIC POTENTIAL FOR THE REAL PLA-

NAR DEVICE GEOMETRY

Figure S4. (a) The electric potential distribution in x−z plane calculated for the real 3D geometry.

(b) Comparison of the x-component potential for the real device with finite height (averaged over

z from 0 to 1 µm) and an ideal 2D device at one instant of time (t=0).

We numerically calculated (using COMSOL software package, http://www.comsol.com,
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COMSOL Multiphysics Ouick Start and Quick Reference, COMSOL LAB.)) a 3D potential

distribution in the trap for an AC potential of 5 Vpp (peak to peak voltage) on the electrodes

for the device geometry extracted from a SEM image. Fig. S4(a) shows the potential profile

in a cross section (x − z plane) for this realistic geometry. From the result it is seen that

as long as the spherical particle remains within the height of the electrodes, it is close to an

ideal 2D trap. Above the electrodes, the potential changes as if the device size is increased.

The lines around z= 2 µm (chamber height 2.5 µm) shows where along the z axis the

microfluidic chamber walls restrict the motion of the particle. Fig. S4(b) is a comparison of

the x-component potential for the real device with finite height (averaged over z from 0 to

1 µm) and an ideal 2D device at one instant of time (t=0).

S7. CONSIDERATION OF DEP TRAPPING MECHANISM

S7.1. Theoretical calculation of DEP impact on stability diagram

Besides the direct interaction of the particle’s net charges and the electric field (Paul trap),

there are also interactions between the particle’s polarizability and the electric field. Here

we consider the impact of dielectrophoretic (DEP) forces on the q−a stability diagram. The

dimensionless form of the equation of motion in x-direction of a charged particle of radius

a in the Paul trap defined by parameters a and q (Eq. [3] of the main text), with damping

defined by factor b, in presence of DEP forces, can be written as

d2x

dτ 2
+b

dx

dτ
+[a+αmK(Ω)(aU+qV )−2q(1+2αmK(Ω)U) cos 2τ+αmK(Ω)qV cos 4τ ] = 0 (S5)

where αm = 4πa3εm/QR
2
0, and K(Ω) is the Clausius-Mossotti factor. It is easy to see that

the expression above is reduced to homogeneous part of Eq. [3] in the main text when

K(Ω)=0 (without DEP effect).

We consider two extreme cases of DEP, the one with positive K(Ω)=1 (positive DEP,

pDEP), and the one with K(Ω) = −1/2 (negative DEP, nDEP). We treat the above equation

numerically, and find that the effect of DEP is significant only for extremely small q and a

factors of Paul trap (for example, small charges of the particle). The stability diagram (solid

line) from Fig. 3 in the main text is shown in Fig. S5 by solid blue line. DEP corrections

only contribute a small perturbation near the q − a origin (q < 0.01), far below the region
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Figure S5. Magnified q − a stability diagram near origin

of experimental interest (q > 0.1). The impact of DEP on the stability is negligible for the

parameters of the Paul trap used in the present study.

S7.2. Particle size dependence experiment

The time averaged DEP force can be estimated as 〈Fdep〉 = πεma
3Re[K(ω)]∇E2

0(~r). It

scales with the particle volume (∼ a3). Therefore, the DEP trap stiffness will decrease

as a function of particle volume. On the contrary, time averaged Paul trap force can be

estimated by 〈Fpt〉 = Q2∇E2
0(~r)/(4MΩ2(1 + (ξ/MΩ)2)). Instead of a simple dependence

on the particle volume, the Paul trap stiffness depends on the charge Q and mass M in a

complex way. Measurements of the trap stiffness as a function of the particle size reveal

whether the trapping mechanism in our experiment is dominated by DEP effect or Paul trap

effect.
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We used the polystyrene beads with radius ranging from 240 nm to 1.5 µm. All of

these beads are surface functionalized with carboxylate surface groups. Their sizes are well

characterized while the surface charge density is undetermined. The surface charges do not

necessarily scale with the surface area of the particle. The suspension solution is thoroughly

washed using the same procedure described above. All the trap stiffness are extracted under

the condition of V=1.5 V, U= 0 V, and f=2.5 MHz, using the device with the same size

(8 µm between electrode tips). Fig. S6 shows the measured trap stiffness as a function of

the particle radius. As is shown, the trap stiffness does not scale with the particle volume

(∼ a3). In fact, when the particle radius reduces from 0.491 µm to 0.24 µm, the trap stiffness

increases from 4 pN/µm to 15.2 pN/µm. This strongly proves that the trapping mechanism

is not due to the DEP effect, as one would expect a decrease of trap stiffness when decreasing

the particle size. We note that the irregular dependence of the trap stiffness on the particle

radius in Fig. S6 comes from the irregular Q/M ratio for different particles.

Figure S6. Trap stiffness as a function of the particle radius
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S7.3. Frequency dependence experiment

Figure S7. Particle can be trapped in the center of the device (local electric field minima) even

when the operation frequency is in the positive DEP region.

Both the Paul trap and DEP effects are frequency dependent, but in a very different

way. For DEP effect, the sign associated with the real part of Clausius-Mossotti (CM)

factor (Re[K(ω)], which is frequency dependent) dictates the behavior of the particle [12].

For Re[K(ω)]>0, particles will be directed toward a local electric field maxima (positive

DEP, pDEP), while for Re[K(ω)]<0, particle is attracted to a local electric field minima

(negative DEP, nDEP). In other word, nDEP drags the particle to the center of the device

while pDEP pushes the particle out of the device center. The frequency that produces a

change from pDEP to nDEP is referred to as the crossover frequency fco (Hz) and is given

by (1/2π)[(σp − σm)(σp + 2σm)/(εm − εp)(εp + 2εm)]1/2, where σ and ε are the conductivity

and permittivity, respectively, with p and m denoting the particle and medium.Note that

this crossover frequency theory is well supported by experiments [10]. For a Paul trap, the
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particle confinement to the center of the trap is determined by if the a = 4QU/MR2
0Ω

2and

q = 2QV/MR2
0Ω

2 parameters are within the stability region or not. It is because of this

frequency dependence that we can experimentally map out the stability diagram for Paul

trap (Figure 4a in main text). DEP trap would not have the (q,a) stability boundary.

To more convincingly rule out the DEP effect as the trapping mechanism in the considered

region of the trap parameters, we carried out the following frequency dependence experiment.

Using the suspension of the low conductivity solution (prepared by the same procedure

described in Section S3), we measured the solution conductivity as σm = 2µS/cm. σp =

40µS/cm(by taking into account the surface conductance). With εp = 2.55ε0 and εm = 78ε0,

we calculate the crossover frequency frequency as fco=670 KHz. Therefore, the particle will

undergo a pDEP force and should be kicked out of the device center when fco <670 KHz. In

our experiment, the bead can be trapped in the center of the device even when the frequency

is ramped down to 20 KHz due to Paul trapping (Fig. S7). Therefore, DEP effect is not

a dominant mechanism. It is the Coulomb interaction of the particle charge and the Paul

trap quadrupole oscillating field, together with the damping (friction) forces of the water

that confine the particle toward the trap center even when the particle is subject to a pDEP

force, which tends to push the particle out of the center.
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S8. ANOTHER SET OF LINEAR FITTING DATA

Fig. S8 shows another independent set of the data by examining another single trapped

particle when frequency f=3 MHz. A linear dependence of the rms fluctuation on 1/V is

clearly seen. The reduced χ2 value calculated from the linear fit in Fig. S8 is 0.26.

Figure S8. Dependence of the standard deviation of position fluctuations of a trapped bead on AC

voltage at fixed frequency (3 MHz) for another independent experiment.
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