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Figure SI 1a(i-vi),related to Table 1,
Bacterial transporter SEC,crystallization,
and TMHMM topology prediction
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 Figure SI 1b(i-vi),related to Table 1,
 Eukaryotic transporter SEC,crystallization 
 and TMHMM topology prediction
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 and TMHMM topology prediction
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 Figure SI 1c(i-vii),related to Table 1,
 Control membrane protein SEC,crystallization 
 and TMHMM topology prediction



 
Figure 1, related to Figure 1. Topology and SEC analysis of membrane proteins that 
crystallize in the detergent 12M  
SEC traces in 12M are shown, left panel, with the SDS-PAGE analysis of each 
protein shown (asterix’s indicate the target protein bands). Crystal pictures taken on a 
standard light microscope, middle panel, captured and rendered using AdobeTM 
software. Topology models of each protein as predicted by TMHMM, with helices 
depicted as yellow rods and the position of the cysteines illustrated with red spheres. 
The numbers represent the number of TMs, the fraction of non-TM residues as 
inferred from the topology and the predicted molecular weight of the protein (kDa). a. 
Bacterial transporters: i. BT-1, ii BT-2, iii. BT-3, iv BT-4, v. BT-5, vi. BT-6, vii. BT-
7, viii. BT-8, ix. BT-9, x. AT-1. b. Eukaryotic transporters: i. MT-1, ii. MT-2, iii. 
MT-3, iv. MT-4, v. PT-1, vi. PT-2, vii. PT-3, viii. PT-4. c. Bacterial control 
membrane proteins. i. LacY, ii. AmtB, iii. GlpG, iv. GlpT, v. NhaA, vi. EmrD, vii. 
Mhp1. Note, because AT-1 does not harbour any TM-embedded cysteines it was 
excluded from the stability analysis.     
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 X-ray diffraction of BT-3
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Figure SI 2b(i-ii), related to Table 1, X-ray diffraction 
of control membrane proteins AmtB and Mhp1



3.2Å

4.3Å

6.5Å

13.6Å

NhaA 

GlpG 

iii. 

iv. 

11.5Å

5.9Å

3.9Å

2.9Å

Figure SI 2b(iii-iv), related to Table 1, X-ray diffraction 
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X-ray diffraction of BT-8 



 
Figure 2, related to Figure 1. X-ray diffraction images for bacterial and eukaryotic 
transporters  
a. Proteins for which crystals could be grown to 4-Å or above in 12M after 
optimization. i. PT-2, ii. BT-2, iii. BT-3. b. Diffraction of previously crystallized 
control proteins. i. AmtB (LDAO), ii. Mhp1 (9M), iii. GlpG-tr (10M), NhaA (12M) 
C. Improved diffraction of the peptide transporter using material produced from the 
GFP-based pipeline BT-9, PepTSo (i), using the stability analysis for exchanging BT-5 
into the detergent LDAO (ii) and for the identification of BT-8 as a stable homologue 
for further optimization (iii). Resolution limits are shown as concentric circles with 
numbers representing the resolution in Angstroms.  
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Figure 3, related to Figure 2.  Raw data generated by the CPM assay for the 
bacterial transporter BT-4  
Typical data generated by the CPM assay, as shown here for the bacterial transporter 
BT-4, at 40°C for 130 min in each of the detergents used for analysis as indicated.  
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Figure 4, related to Figure 2. The relationship between mean prokaryotic membrane 
protein stability versus the size of the detergent micelle    
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Figure SI 5(i-ix), related to Fig. 3a, comparing 
monodsipersity profiles to unfolding rates 
in LDAO. 
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Figure SI 5(x-xvii), related to Fig. 3a, comparing 
monodsipersity profiles to unfolding rates 
in LDAO.



 
Figure 5, related to Figure 3. Benchmarking the stability estimate from the CPM 
assay by comparing elution profiles of proteins in 12M to the profiles in LDAO  
Membrane proteins FSEC traces in LDAO (green) and 12M (black) which have been 
ordered from most stable (left) to least stable (right), as determined by their unfolding 
half-life in LDAO: i. BT-8, ii. BT-2, iii. BT-5, iv. BT-9 (PepTSo), v. BT-3, vi. PT-4, 
vii. BT-6, viii. BT-7, ix. PT-1, x. BT-6, xi. MT-1, xii. PT-2, xiii. BT-4, xiv. MT-2, xv. 
MT-3, xvi. PT-3, xvii. MT-4. Green represents the FSEC trace in LDAO and black in 
12M. 
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Figure SI 6a and b, related to Figure 3a and b,
stability comparison of membrane proteins
in the detergent C12E9 and 10M 
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Figure SI 6c, related to Figure 3a and b,
stability comparison of membrane proteins
in the detergent 9M 
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Figure 6, related to Figure 3. Comparing the purified stability of 24 membrane 
proteins in commonly used crystallisation detergents  
Bars represent the half-life for each protein calculated from the thermal stability assay 
data for a. C12E9, b. 10M and c. 9M. The cut-off threshold for reliable detergent 
exchange was set at 17 min as depicted by a dashed line. 
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Figure 7, related to Figure 3. Stabilization and X-ray diffraction of the sugar 
transporter MT-2 is improved by addition of lipids  
a. Unfolding rates for the sugar transporter, MT-2, from R. norvegicus in standard 
purification buffer (squares) and with the final addition of 0.1 mg/ml lipid 
phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol in a ratio 
3:1:1 to the purification buffer (circles). b.  Improvement of X-ray diffraction from 
crystals of MT-2 using sample prepared in the absence (upper panel) and presence 
(lower panel) of additional lipids to the crystallization buffer. 
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Figure SI 8a and b, related to Figure 3b and 3c,
comparing the stability measured for each 
protein in different detergents 



Figure 8, related to Figure 4. Membrane protein stability is predominantly intrinsic  
a. Bars represent the unfolding half-life for each protein in 9M (black bars) and 
plotted against that measured in 10M (grey bars); unfolding rates for 9M were plotted 
from the highest to lowest (left to right). Inset is a linear curve indicating the average 
stability difference between 10M and 9M. Asterisk for protein BT-9 indicates that we 
considered this difference as an outlier and, as such, was not included in calculation 
of the correlation co-efficient as displayed in inset. b. Bars represent the unfolding 
half-life for each protein in C12E9 (filled) and plotted against that measured in 12M 
(non-filled); unfolding rates for 12M were plotted from the highest to lowest (left to 
right). Inset is a linear curve indicating the average stability difference between 12M 
and C12E9. The > sign above BT-3, BT-9 bars indicates that the half-life although 
consistent in both 12M and C12E9, was longer than the time measured to assess 
stability. 
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Figure SI 9, related to Table 1,
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Figure 9, related to Table 1. Comparing stability of peptide transporter homologues 
Bars represent the unfolding half-life for each peptide transporter in each of the 
detergents C12E9, 12M, 10M, 9M and LDAO. Black bars = BT-8, white bars = BT-9, 
light grey bars = BT-7 and dark-grey bars = BT-1. The > sign above BT-9 bars 
indicates that the half-life was longer than the time measured to assess stability. 
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