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This supplementary material expands the description of the visco-elastic tube law (Section 1), details the numerical
solution of the visco-elastic 1-D formulation (Section 2), and provides all the physiological data used in the
55-artery models (Section 3).

1. Visco-elastic tube law

The nonlinear 1-D equations of incompressible and axisymmetric flow in Voigt-type visco-elastic vessels con-
sidered in this study are an extension of the 1-D formulation developed by Sherwin et al. (2003) and Alastruey
(2006). Here the dynamics of the arterial wall were modelled using a generalised string model of the form (Quar-
teroni et al., 2000; Formaggia et al., 2003)
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The assumptions and parameters of this model are the same as those described in Section 2.1. In addition, Pext is
the external pressure, ρw(x) the wall mass density and ã(x) a coefficient related to the longitudinal pre-stress state
of the vessel. Assuming Pext = 0 and neglecting the inertia and longitudinal pre-stress terms yield the visco-elastic
tube law shown in Eq. (1).

2. Numerical solution

A discontinuous Galerkin scheme was used to solve the equations in (1) in the 55-artery network in Fig. 1. This
is a convenient scheme for high-order discretisation of convection-dominated flows (Cockburn and Shu, 1998),
such as arterial flows. It allows us to propagate waves of different frequencies without suffering from excessive
dispersion and diffusion errors.

The equations in (1) can be written in the following conservative form
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A0) being the elastic component of pressure. The flux F was separated into an elastic (Fe)

and a viscous (Fv) term, and ∂A
∂t = −

∂(AU)
∂x was used for the viscous term in the tube law.
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The discrete form of this conservative form in a domain Ω = [a, b] discretised into a mesh of Nel elemental
non-overlapping regions Ωe = [xl

e, x
u
e], such that xu

e = xl
e+1 for e = 1, . . . ,Nel − 1, and

⋃Nel
e=1 Ωe = Ω, is given by

(Alastruey, 2006)
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for all ψδ in Vδ, where (u, v)Ω =
∫

Ω
uv dx is the standard L2(Ω) inner product, Uδ and ψδ denote the approximation

of U and test functions ψ, respectively, in the finite space Vδ of piecewise polynomial vector functions (they may
be discontinuous across inter-element boundaries), and Fu = Fu

e + Fu
v is the approximation of the flux at the

interface.
The term Fu

e was treated through the solution of a Riemann problem, as described by Alastruey (2006). The
term Fu

v requires a different treatment. Various ways of dealing with this term were analysed by Zienkiewicz et al.
(2003). Here, Fu
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The expansion bases were selected to be a polynomial space of order P and the solution was expanded on each

region Ωe in terms of Legendre polynomials Lp(ξ); i.e.
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with ξ in the reference element Ωst = {−1 ≤ ξ ≤ 1}.
The choice of discontinuous discrete solution and test functions allows us to decouple the problem on each

element, the only link coming through the boundary fluxes. Legendre polynomials are particularly convenient
because the basis is orthogonal with respect to the L2(Ωe) inner product. Visco-elasticity was neglected at the
boundary conditions of the network and the junctions, which were implemented as described in Alastruey (2006)
for both the purely elastic and visco-elastic models. The discretisation in time was performed by a second-order
Adams-Bashforth scheme.

3. Physiological data

The physiological data of the 55 arteries in Fig. 1 were taken from Alastruey (2010) and are shown in Tables 1
to 2. A constant γ = 0.1 MPa s m−1 was assumed in all the arteries based on data in Armentano et al. (1995). The
‘well-matched model’ is a version of the 55-artery model with zero reflection coefficients for forward-travelling
waves at the arterial junctions. For each of the three edges a, b and c connected at a junction, the reflection
coefficients R j

f ( j = a, b, c) are defined as the ratio of the change of pressure across the reflected wave to the
change of pressure in the incident wave. Using a linearised version of the purely elastic 1-D equations, they can be

expressed as a function of the characteristic admittance of the edge Y j
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The last two columns of Table 1 show these coefficients at the inlet and outlet of segments connected to junctions.
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Table 1: Length, initial radius and wave speed of each arterial segment in the 55-artery network in Fig. 1. The last two columns show the
reflection coefficients at the inlet and outlet of segments connected to junctions. The radii and wave speeds in brackets yield well-matched
junctions for forward-travelling waves (with R f = 0.000 at the outlets of internal segments).

Arterial segment Length (cm) Radius (mm) c (m s−1) R f inlet R f outlet
1. Ascending aorta 4.0 14.5 (14.7) 4.0 (6.2) - 0.1
2. Aortic arch I 2.0 11.2 (12.6) 4.0 (5.8) −0.3 0.0
3. Brachiocephalic 3.4 6.2 (7.0) 4.3 (6.3) −0.8 0.2
4. R. subclavian 3.4 4.2 (5.4) 4.8 (6.5) −0.5 0.2
5. R. common carotid 17.7 3.7 (4.7) 4.9 (6.8) −0.6 0.8
6. R. vertebral 14.8 1.9 (2.4) 8.3 (11.3) −0.9 -
7. R. brachial 42.2 3.2 (5.2) 5.5 (6.7) −0.4 0.4
8. R. radial 23.5 1.6 (3.7) 8.8 (9.0) −0.8 -
9. R. ulnar I 6.7 2.2 (4.5) 7.8 (8.3) −0.6 0.1
10. R. interosseous 7.9 0.9 (1.9) 13.2 (14.1) −0.9 -
11. R. ulnar II 17.1 1.9 (4.3) 8.2 (8.5) −0.2 -
12. R. internal carotid 17.7 1.3 (3.8) 9.9 (9.0) −0.9 -
13. R. external carotid 17.7 1.3 (3.8) 9.6 (8.7) −0.9 -
14. Aortic arch II 3.9 10.7 (11.9) 3.9 (5.7) −0.1 0.0
15. L. common carotid 20.8 3.7 (4.2) 4.9 (7.2) −0.9 0.8
16. L. internal carotid 17.7 1.3 (3.4) 9.9 (9.6) −0.9 -
17. L. external carotid 17.7 1.3 (3.4) 9.6 (9.2) −0.9 -
18. Thoracic aorta I 5.2 10.0 (11.2) 4.0 (5.8) −0.1 0.4
19. L. subclavian 3.4 4.2 (4.7) 4.8 (7.0) −0.9 0.2
20. L. vertebral 14.8 1.9 (2.0) 8.3 (12.5) −0.9 -
21. L. brachial 42.2 3.2 (4.6) 5.5 (7.1) −0.4 0.4
22. L. radial 23.5 1.6 (3.2) 8.8 (9.5) −0.8 -
23. L. ulnar I 6.7 2.2 (4.0) 7.8 (8.9) −0.6 0.1
24. L. interosseous 7.9 0.9 (1.7) 13.2 (14.9) −0.9 -
25. L. ulnar II 17.1 1.9 (3.8) 8.2 (9.1) −0.2 -
26. Intercostals 8.0 1.8 (3.1) 6.3 (7.3) −1.0 -
27. Thoracic aorta II 10.4 6.6 (10.7) 4.6 (5.7) −0.5 −0.1
28. Abdominal aorta I 5.3 6.1 (9.2) 4.6 (5.8) −0.2 −0.2
29. Celiac I 1.0 3.9 (5.9) 4.8 (6.1) −0.7 0.4
30. Celiac II 1.0 2.0 (4.0) 6.8 (7.4) −0.7 −0.5
31. Hepatic 6.6 2.2 (4.6) 5.6 (6.1) −0.6 -
32. Gastric 7.1 1.8 (2.2) 6.0 (8.3) −0.6 -
33. Splenic 6.3 2.8 (3.4) 5.3 (7.3) 0.1 -
34. Superior mesenteric 5.9 4.4 (4.1) 4.8 (7.6) −0.6 -
35. Abdominal aorta II 1.0 6.0 (8.4) 4.4 (5.7) −0.2 −0.1
36. L. renal 3.2 2.6 (3.5) 5.4 (7.2) −0.9 -
37. Abdominal aorta III 1.0 5.9 (7.9) 4.4 (5.9) −0.1 0.0
38. R. renal 3.2 2.6 (3.5) 5.4 (7.2) −0.8 -
39. Abdominal aorta IV 10.6 5.6 (7.3) 4.4 (5.9) −0.1 0.0
40. Inferior mesenteric 5.0 1.6 (2.5) 6.2 (7.6) −0.9 -
41. Abdominal aorta V 1.0 5.2 (6.8) 4.2 (5.7) −0.1 0.1
42. R. common iliac 5.8 3.6 (5.1) 4.9 (6.3) −0.5 0.2
43. L. common iliac 5.8 3.6 (5.1) 4.9 (6.3) −0.5 0.2
44. L. external iliac 14.4 3.0 (4.8) 7.2 (8.7) −0.4 0.0
45. L. internal iliac 5.0 2.0 (4.1) 10.7 (11.6) −0.8 -
46. L. femoral 44.3 2.2 (3.6) 8.0 (9.7) −0.5 0.2
47. L. deep femoral 12.6 2.2 (3.6) 7.8 (9.5) −0.5 -
48. L. posterior tibial 32.1 1.9 (3.8) 11.5 (12.8) −0.4 -
49. L. anterior tibial 34.3 1.3 (2.0) 13.1 (16.5) −0.8 -
50. R. external iliac 14.4 3.0 (4.8) 7.2 (8.7) −0.4 0.0
51. R. internal iliac 5.0 2.0 (4.1) 10.7 (11.6) −0.8 -
52. R. femoral 44.3 2.2 (3.6) 8.0 (9.7) −0.5 0.2
53. R. deep femoral 12.6 2.2 (3.6) 7.8 (9.5) −0.5 -
54. R. posterior tibial 32.1 1.9 (3.8) 11.5 (12.8) −0.4 -
55. R. anterior tibial 34.3 1.3 (2.0) 13.1 (16.4) −0.8 -
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Table 2: Peripheral resistances and compliances at the terminal segments of the 55-artery network in Fig. 1. They lead to a total resistance of
134.2 MPa s m−3 and a total compliance (as defined by Alastruey (2010)) of 12.0 m3 GPa−1. In all these segments, the pressure at which flow to
the microcirculation ceases is zero. The compliances in brackets correspond to the network with well-matched junctions for forward-travelling
waves.

Arterial segment Resistance Compliance
(1010 Pa s m−3) (10−10 m3 Pa−1)

6. R. vertebral 0.60 0.93 (0.84)
8. R. radial 0.53 1.06 (0.96)
10. R. interosseous 8.43 0.07 (0.06)
11. R. ulnar II 0.53 1.06 (0.96)
12. R. internal carotid 1.39 0.40 (0.36)
13. R. external carotid 1.39 0.40 (0.36)
16. L. internal carotid 1.39 0.40 (0.36)
17. L. external carotid 1.39 0.40 (0.36)
20. L. vertebral 0.60 0.93 (0.84)
22. L. radial 0.53 1.06 (0.96)
24. L. interosseous 8.43 0.07 (0.06)
25. L. ulnar II 0.53 1.06 (0.96)
26. Intercostals 0.14 4.02 (3.64)
31. Hepatic 0.36 1.54 (1.39)
32. Gastric 0.54 1.03 (0.93)
33. Splenic 0.23 2.41 (2.18)
34. Superior mesenteric 0.09 6.00 (5.43)
36. L. renal 0.11 4.94 (4.47)
38. R. renal 0.11 4.94 (4.47)
40. Inferior mesenteric 0.69 0.81 (0.73)
45. L. internal iliac 0.79 0.70 (0.64)
47. L. deep femoral 0.48 1.17 (1.06)
48. L. posterior tibial 0.48 1.17 (1.06)
49. L. anterior tibial 0.56 1.00 (0.90)
51. R. internal iliac 0.79 0.70 (0.64)
53. R. deep femoral 0.48 1.17 (1.06)
54. R. posterior tibial 0.48 1.17 (1.06)
55. R. anterior tibial 0.56 1.00 (0.90)
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