

Supplementary Figure S1 | A schematic representation of the photosynthetic chain. The light-induced charge separation occurs in Photosystems I and II, triggering the turnover of the cytochrome b_6f complex which acts as a quinol plastocyanin oxidoreductase, which contributes, via the Q-cycle, to building up the proton motive force (pmf). As indicated, 6 H⁺ are translocated per 2 electrons transferred from water to NADP⁺. (Plastocyanin (PC), Ferredoxin (Fd), Ferredoxin NADP Reductase (FNR)). As highlighted, this process involves the bifurcated electron transfer (blue arrows) from the quinol (QH₂) to the Fe₂S₂ cluster, on the one hand, and to the heme b_1 on the other hand. This bifurcated electron transfer step is widely considered as being mechanistically mandatory and thus expected to be impeded when the heme b_1 is not available as an electron acceptor. The inactivation of the Q_i site in the Q_iKO case promotes this situation yet the present finding that the strain bearing this mutation can grow phototrophically reveals that the blockage can be alleviated.

Supplementary Figure S2 | Light-induced redox changes of cytochrome *f*. Signal at 554 nm with a baseline drawn between 546 and 573 nm. The two kinetics were normalized on the PSI amount. Black, *WT*; Blue, *QiKO*. Cytochrome *f* oxidation in the presence of 100 μ M TDS.

Supplementary Figure S3 | Phototrophic growth of the WT, Q_iKO and ftsH1-R420C strains in anaerobic conditions. Cell growth curves of WT (black squares), ftsH1-R420C (red circles), Q_iKO (green triangles) in minimal medium under 40 μ E·m⁻²·s⁻¹ of light and bubbled with a controlled atmosphere of 2% CO₂ and 98% N₂. Cells grown in heterotrophy were inoculated in 500 ml minimal medium at a concentration of 10⁴ cells·ml⁻¹. The cell density was determined by using a Malassez counting chamber. As the Q_iKO strain results from the combination of the *petB*-H202Q and *ftsH1*-R420C mutations, its growth behavior should be compared to that of the *ftsH1*-R420C strain rather than to that of the WT. Both the *ftsH1*-R420C and Q_iKO strains showed a similar lag phase, after which the growth rate of the latter was slightly slower than that of the former.

Supplementary Figure S4 | DNP-INT enables Rieske Fe_2S_2 protein movement while preventing quinol binding and oxidation in Q_0 site. The figure shows the relative efficiency of the light-induced oxidation of cytochrome *f* as a function of the amount of light-induced charge separation in Photosystem I. Blue, TDS (20 μ M); Black, DNP-INT (20 μ M). Whereas both inhibitors prevent the oxidation of a quinol at the Q_0 site, the amount of oxidized cytochrome *f* is lower in the presence of DNP-INT than of TDS. The latter is known to lock the head of the Rieske protein in the so-called proximal configuration³⁷ thereby preventing electron transfer between its Fe_2S_2 cluster and cytochrome *f*. The lower cytochrome *f* oxidation yield observed in the presence of DNP-INT shows that, at variance with TDS, this inhibitor allows the redox equilibration between the Rieske protein and cytochrome *f* and thus does not prevent the Rieske head movement.

Supplementary Figure S5 | DNP-INT inhibits the oxydation of b_1 . Light-induced redox kinetics of cytochrome *b* at 564 nm with a baseline drawn between 546 and 573 nm in Q_iKO . Black, filled symbols, mildly reducing conditions; open symbols, after preillumination to get similar contents of pre-reduced and pre-oxidized heme *b*; Red, strongly reducing conditions. Green, DNP-INT (20 μ M) in strongly reducing conditions. As expected by its quinone analog nature³⁸, DNP-INT inhibits reduction of heme b_1 but also prevents the reoxidation of pre-reduced heme b_1 . Since DNP-INT does not impede the Rieske protein movement (Supplementary Fig. S4), this demonstrates that reoxidation of heme b_1 does not occur through the Rieske protein but rather via the reduction of the semiquinone intermediate.

Supplementary References

- 37. Zhang, Z. et al., Electron transfer by domain movement in cytochrome bc_1 . *Nature* **392**, 677-684 (1998).
- 38. Delosme, R., Joliot, P., and Trebst, A., Flash-induced oxidation of cytochrome b_{563} in algae under anaerobic conditions Effect of Dinitrophenylether of iodonitrothymol. *Biochim Biophys Acta* **893**, 1-6 (1987).