The American Journal of Human Genetics Volume 88

Supplemental Data

Loss of BRCC3 Deubiquitinating Enzyme

Leads to Abnormal Angiogenesis

and Is Associated with Syndromic Moyamoya

Snaigune Miskinyte, Matthew G. Butler, Dominique Hervé, Catherine Sarret, Marc Nicolino, Jacob D. Petralia, Francoise Bergametti, Minh Arnould, Van N. Pham, Aniket V. Gore, Konstantinos Spengos, Steven Gazal, France Woimant, Gary K. Steinberg, Brant M. Weinstein, and Elisabeth Tournier-Lasserve

Figure S1: Moyamoya angiopathy in F3 III-7, aged 18 yo.AP/lateral left internal carotidartery (ICA) injections (A/B) and AP/ lateral right ICA injections (C/D) showing bilateralsupraclinoidICAocclusionsandextensiveMoyamoyacollaterals.

Figure S2: Cerebral angiography in F3 III-2, aged 21 yo. AP left internal carotid artery (ICA) injection (A) showing multiple areas of irregularity and narrowing suggesting prior occlusion with partial recannalization and occlusion of the left A1 anterior cerebral artery. Right ICA injection demonstrates occlusion of the cervical ICA (lateral, B) with reconstitution of the right cavernous ICA through multiple collaterals including moyamoya vessels (AP, C; lateral, D).

Figure S3: X chromosome haplotype analysis in family F1. Informative microsatellite markers and the haplotype cosegregating with the disease are shown.

Figure S4 : Western blot analysis of $p8^{MTCP1NB}$ and BRCC3 proteins. A: BRCC3 (36 KDa) and $p8^{MTCP1NB}$ (8 KDa) proteins are not detected in EBV cell lines lysates from patients F1 II-2 and F2 II-2 while they are readily detectable in control EBV cell lysates and HUVEC endothelial cells. B: BRCC3 and $p8^{MTCP1NB}$ proteins are detected in both human arteries and veins (arteries > veins).

Figure S5 : *brcc3* **Endothelial Expression Transgene.** (A) The strategy employed to generate an endothelial *brcc3* expression transgene is shown. A red fluorescent *mCherry* cassette (red) was PCR-amplified with primers containing *attB1* and *2A* peptide (blue) sequences^{38,39}. The *brcc3* (gray) coding sequence was PCR-amplified with primers containing *2A* peptide and *attB2* sequences. A bridging PCR generated an *attB1-mCherry-2A-attB2* cassette, which was cloned into the pENTR/D-TOPO[®] vector (InvitrogenTM). The resultant vector was recombined with pDEST-I-*SceI-flk (unpublished, A.V. Gore)* and p3E-*polyA* to generate a *SceI-flk1-mCherry-2A-brcc3-SV40polyA-SceI* transgene in a LR clonase reaction. ⁴⁰ (**B**) Table lists the names and nucleotide sequences for the primers used in the construction of the *flk-mCherry-2A-brcc3* transgene.

Β.

Hyperoartia	Actinopterygii	Amphibia	Mammalia	Sauropsida
Petromyzon marinus	Danio rerio Gasterosteus aculeatus Oryzias latipes Takifug u rubripes Tetraodon nigrovirdis	Xenopus laevis Xenopus tropicalis	Ailuropoda melanoleuca Bos Taurus Callithrix jacchus Equus caballus Canis familiaris Homo sapiens Monodelphis domestica Mus musculus Ornithorhynchus anatinus Otolemur garnettii Rattus norvegicus	Anolis carolinensis Gallus gallus Taeniopygia guttata

Figure S6 : Phylogeny of the *MTCP1* **locus.** (**A**) A phylogenetic tree showing the presence (green) or absence (red) of *MTCP1* homologs at various stages of vertebrate evolution. *MTCP1* likely arose during tetrapod evolution given its presence in each of the mammalian and sauropsid species surveyed and its absence in amphibians as well as all of the more divergent relatives. (B) Table listing each of the species surveyed for the presence or absence of *MTCP1*.

Primer	Primer sequence 5' - 3'	Product size	Position within the	
name	_	(bp)	gene	
FCD21016	F :CAGAAATCAGATCATGTTGAGAGG	236	F8 coagulation factor	
ECD21910	R : TTCACTGAGCAGAAAAAGAAGC	230	VIII, intron 1	
ECD17738	F : GCAGTGGATCAGATGTCAATGT	387	centromeric to exon 1	
	R : TCAGTACCTGGAGGCGAGTT	507	of FUNDC2	
ECD21451	F : ATATGGCTTTGCCTTTGCAT	250	FUNDC2	
	R : TGTCAATCCCTTTCTCTGTGG	230	intron 1	
ECD13623	F :TTTGAGAGGACAAACTAGAGGACT	517	FUNDC2	
	R : TGCTCCACATTAAGTGACCAAT		encompasses exon 2	
ECD07678	F: GGCATATGGCTTCGCATATAG	676	FUNDC2	
	R : TGCAGAACAAGCAGAGTATGAA		encompasses exon 4	
ECD07752	F: GCAGTTTTTCAACCCACTCC	674	<i>MTCP1</i> exons 2, 3, 4, 5	
			MTCD1 interact	
ECD13141		526	MICPI intron 1	
			PPCC2 intron 2	
ECD15347		473	BRCC3 Introli 2	
	E · CCCTCCATTATTTCCTCCTCC		BRCC3 intron 3	
ECD20126	$\mathbf{R} \cdot \mathbf{A} \mathbf{C} \mathbf{G} \mathbf{A} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{C} \mathbf{A} \mathbf{T} \mathbf{G} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{G} \mathbf{A}$	297	BREES Introll 5	
	F · TTCACCCTTGTCCCTTCAAC		BRCC3 intron3	
ECD02005		846	DACCS Indons	
	F : GACAACTTGCCACTCAACCA		BRCC3	
ECD05774	R : CATTGTCGCAGTGTTTGACC	728	encompasses exon 4	
	F : TTTTCATGCCACTGATGAGG	215	BRCC3 intron 5	
ECD22603	R : TGCCTTTGCAAAAAGTAGGA	215		
07018	F: CCTTGGCACGTTTGACAT	210	MTCP1 Intron 1	
5151	R: GCTTGGCTGCTGCTACTTTC	218		
STS2 ^a	F: ATCCGCCTTGAGAACAGCTA	178	MTCP1 Exon 1	
	R: AACTTCGGTTCGAGTGACCT	128		
STS3 ^a	F: CGCCGCTCACAGAGTACG	155	MTCP1 Exon 1	
5155	R: AGCAGCACCTGGGAAACG	155		
STS4 ^a	F :TTTGTCTCAACCACGCTCTG	175	BRCC3 Exon 1/intron 1	
6104	R: CCTAAATCGAGGATGCCTGT	110		
STS5 ^a	F: GCAAGGCAGGTCAGAAAGAC	155	BRCC3 Intron 1	
	R: AGGCTCTTCGATACCCTTCA			
STS6 ^a STS7 ^a	F:CTGTAAGGATCACATGGCACA	228	MTCP1 Intron 1	
	R:GGCACTATATCCATCACCAA		MTCD1 Intern 1	
		194	MICPI Intron 1	
			MTCD1 Intern 1	
STS8 ^a	P.GGGAGAGGGATTCAGATCAA	166		
Brooknointa				
Dicasponts DrimerF1 ^b				
STSP7 ^c	GGCCTGTGTATGAGTCCTGA			
9191/	OUCCIDIAIUAUICCIDA			

Table S1. Primers used for walking PCR and breakpoints sequencing ^a Walking PCR primers used in family F2 ^b Breakpoints sequencing primers used in family F1 ^c Breakpoints sequencing primers used in families F2 and F3

BRCC3 exons	Primer name	primer sequence 5' - 3'	Product size (bp)	
1	BRCC3ex1Fs	F: GGTCCAGGGAGAGTTGTACG		
	BRCC3ex1Rs	R: CGCACCTTCTGTTAGGCTCT	1235	
	STSR4	CCTAAATCGAGGATGCCTGT		
2	BRCC3F2 ^a	F:GCCGAAGAGGATGAGGAAAT	311	
	BRCC3R2	R:CCCCGGAGTGATAATGGTAA		
2	BRCC3F3 ^a	F:TTGTGCATGTGTCCCAGATT	477	
3	BRCC3R3	R:AGAGCAGCAAGAGGGTGGTA		
4	BRCC3F4 ^a	F:TGAGGTTGGGTGTCTTTTATTTG	501	
	BRCC3R4	R:GGCATTTAGGAGCAGGAATG	501	
5	BRCC3F5 ^a	F:GCATTGGAAACCATGTGGA	547	
	LR-BRCC3R1	R:CCTGGACAGTAATGATATTCAGCA		
	LR-BRCC3F2	F:CTATTACCACATTCCATAGCAGAGC		
6	BRCC3R6	R:CTTTCCCCAAGAAATCCACA	563	
	BRCC3ex6 ^a	GCCTGTACAATCTGAATCCTAGG		
7	BRCC3F7 ^a	F:GCAGATGTTTGGTTGTGACC	407	
/	BRCC3R7	R:AAAGGAAATGTCAGGCAGGA	497	
o	BRCC3F8 ^a	F:CCATCTTGGTGTGTGGGTTTC	220	
0	LR-BRCC3R2	R:GCATTCTCACTTTCCTCCTTGATA	528	
	LR-BRCC3F3	F:CTATGGAACTAGGGAATACTGGCTCT	1096	
9 - 10	BRCC3R10	R:CCCAGAGTTTACAAGAAATGTTGG		
	BRCC3F10 ^a	AGCTTTGGTGAGAGACAGCA		
11	BRCC3F11-2 ^a	F:CAGGCTTCCCTCTGGCTTAT	666	
11	BRCC3R11	R:CCTTGCCATTGTACCACTCA	000	
MTCP1				
exons				
	STSF1	F:CCTTGGCACGTTTGACAT		
	STSR3	R:AGCAGCACCTGGGAAACG		
1	stSG604434F ^a	ATCCGCCTTGAGAACAGCTA	857	
	LR-BRCC3F1 ^a	GCTGTGAGTTGGAAATAAACAAAAAT		
	STSF3 ^a	CGCCGCTCACAGAGTACG		
2-3-4	MTCP1F2*	F:GCAGTCAGCAGCACTACCTG	844	
	MTCP1Rex	R:CACAACTGAATAGAGCCAAAACAA	044	
MTCP1NB				
exons			1	
2	MTCP1NBF	F:AAGGGTTTCTTCTGCGAATG	598	
	MTCP1NBR ^a	R:TGCTAATCACCTGGAGTGAAAA		
3	MTCPNBF1 ^a	F:TTTCCCTAACGAACCTGTCG	682	
	LR-MTCP1R	R: TGAGTCCTTTCACCTAACATACCTC		

 Table S2. Primers used for BRCC3, MTCP1/MTCP1NB amplification and sequencing.

 a

 Sequencing primers

Probe ID ^a	rs	position	Mother F1 II-2	Affected F1 II-3	Affected F1 II-4
CN_404039		153899986	2	1	1
CN_923663		153903800	2	1	1
CN_923664		153904537	2	1	1
CN_923665		153913201	2	1	1
CN_923667		153921900	1	0	0
CN_923668		153924357	1	0	0
CN_923670		153928244	1	0	0
SNP_A-	rs1448032	153933999	1	0	0
4304694					
SNP_A-	rs2051161	153939045	1	0	0
1868149					
CN_404047		153942523	1	0	0
CN_923672		153943426	1	0	0
CN_923673		153947727	1	0	0
CN_923674		153949766	1	0	0
CN_923676		153959531	2	1	1
SNP_A-	rs5945287	153967224	2	1	1
8311882					
CN_923679		153967285	2	1	1
CN_923681		153971361	2	1	1

Table S3 : Affymetrix SNP 6.0 array data suggesting an Xq28 deletion in family F1:^a

Copy number states of the SNP and copy number probes with their respective positions are shown. Physical probe positions refer to NCBI built 36.3. The GTC v 4.0 software was used to estimate the relative likelihood of each copy number level to be 0, 1, 2, 3 or 4. In the region bracketed by the probes CN-923665 and CN_923676 the copy number level in the obligatory carrier mother (F1 I-2) is estimated at 1 and in her two affected sons (F1 II-3 and F1 II-4) at 0, indicating the loss of genetic material.

Supplemental References

38. Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E., and Tsien, R.Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572.

39. Szymczak, A.L., and Vignali, D.A. (2005). Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin. Biol. Ther. *5*, 627–638.

40. Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B.D., Hardy, M.E., Campbell, D.S., Parant, J.M., Yost, H.J., Kanki, J.P., and Chien, C.B. (2007). The Tol2kit: A multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. *236*, 3088–3099.