Supporting Information for Molecular structural differences between diabetic/obese and healthy glycogen

Mitchell A. Sullivan, Jiong Li, Chuanzhou Li, Francisco Vilaplana, David Stapleton, Angus A. Gray-Weale, Stirling Bowen, Ling Zheng and Robert G. Gilbert

Experimental Procedures

Glycogen Extraction and Purification

The procedure for liver-glycogen extraction and purification used here has been described previously in the literature.¹ The livers from mice were homogenized in five volumes of glycogen isolation buffer, an inhibitor of glucosidase activity (50 mM Tris, pH 8, 150 mM NaCl, 2 mM EDTA, 50 mM NaF, 5 mM sodium pyrophosphate, and mini-complete protease inhibitors (Roche Applied Science, Indianapolis, IN)). The samples were centrifuged at 6000 g for 10 min at 4 °C with the resulting supernatant centrifuged further at 50 000 g for 30 min at 4 °C. The pellets were resuspended in 1.5 mL of glycogen isolation buffer and layered over a 22.5 mL, stepwise sucrose gradient (25%, 50% and 75% in glycogen fraction pelleted through all three sucrose layers whilst the microsomal layer only penetrated to the 25–50% sucrose fraction. The supernatant was discarded and the pellets were resuspended in 1 mL of deionized water and the samples were centrifuged at 4000 g for 10 min at 10 °C and the supernatant was discarded. This step was repeated a further two times. Pellets were resuspended in 1 mL of deionized water and the samples were at the samples were lyophilized.

Dissolution of Glycogen for SEC

Extensive work has been carried out recently on the development of a procedure to avoid the loss and degradation of starch upon dissolution.^{2, 3} This procedure was employed here for the dissolution of glycogen in order to avoid similar detriment. Purified mouse-liver glycogen was directly dissolved in the SEC eluent of DMSO (HPLC grade, Sigma-Aldrich) with 0.5 wt % LiBr (ReagentPlus) on a thermomixer at 80 °C for 6 h at a concentration of 0.5 g L⁻¹.

Utilizing a procedure described in the literature,⁴ samples were injected into an Agilent 1100 Series SEC system (PSS GmbH. Mainz, Germany) using a GRAM preColumn, 30 and 3000 columns (PSS GmbH. Mainz, Germany) in series, in a column oven at 80 °C. The flow rate of the chromatography was carried out at 0.3 mL min⁻¹ which is expected to result in minimal shear scission of the glycogen.⁵ The system included multi-angle laser light scattering (MALLS) (BIC-MwA7000, Brookhaven Instrument Corp., New York, USA) detection followed by detection from a refractive index detector (RID) (Shimadzu RID-10A, Shimadzu Corp., Japan). Pullulan standards (PSS GmbH, Mainz, Germany), with a MW range of 342 Da to 2.35×10^6 Da were directly dissolved into eluent and run through the system to generate a universal calibration curve, allowing the determination of the hydrodynamic volume from the elution volume. The Mark-Houwink parameters for pullulan in DMSO/LiBr (0.5 wt %) at 80 °C are K = 2.427×10^{-4} dL g⁻¹ and $\alpha = 0.6804$ (Kramer and Kilz, PSS, Mainz, private communication).

Debranching of Glycogen

The procedure for debranching starch⁶ is used here for glycogen. 0.9 mL of deionized water was added to glycogen (1–2 mg). Samples were heated at 100 °C for 15 min before cooling to room temperature. 0.1 M of sodium acetate buffer (0.1 mL, pH 3.5) was added with isoamylase solution (25 μ L, 5 U) to the dispersions. The mixtures were incubated in a water bath at 37 °C for 3 h. The samples were then lyophilized.

Labeling Glycogen Chains

Using a proven labeling procedure,⁷ 5 μ L of 0.2 M APTS in aqueous glacial acetic acid (15%) and 5 μ L of freshly prepared 1 M aqueous sodium cyanoborohydride was added to 1 mg of debranched glycogen. The same reactants were also added to 0.5 mg of maltohexaose to act as an internal marker. The mixtures were incubated at 40 °C for 15 h and diluted by a factor of 100 with water.

Capillary Electrophoresis

Labeled mouse glycogen were diluted by a factor of 10,000 and 20 µL of each sample was loaded into each well. Samples were injected for 3 s and then electrophoresed using 3730 buffer with EDTA (Applied Biosystems, Cheshire, UK) for a period of 5000 s at a voltage of 15 kV and a current of 400 mA using an Applied Biosystems (Applied Biosystems Division Headquarters, Foster City, CA, U.S.A) 3730 Genetic Analyzer with a 50 cm capillary array, which was equipped with an argon-ion laser at 488 nm. Data were collected using Data Collection v3.0 software and analyzed using GeneMapper® v3.7 software. The detection system was calibrated using G5 RCT dye (Applied Biosystems Division Headquarters, Foster City, CA, U.S.A).

Statistical analysis

All results were expressed as the mean \pm standard deviation. Statistical significance was evaluated with the non-parametric Kruskal-Wallis test followed by the Mann-Whitney test for three groups comparison or evaluated with the non-parametric Mann-Whitney test for two groups comparison. Differences were considered statistically significant at *P* < 0.05. Results are given in Fig. S1.

Details of mice

Animals were always sacrificed between 8 and 10 am. They were anaesthetized by a chloral hydrate solution (50 mg mL⁻¹), with a dosage at 500 mg per kg body weight or higher to achieve euthanasia.

Table S1: Mouse information

Age groups	Age when sacrificed (months)	Genotype (n)	Body weight (g)	Non-fasting blood glucose (mM)	Liver weight (g)
	1.5	db/db	23.4 ± 1.4^{a}	9.2 ± 1.5	1.63 ± 0.2^{a}
		(4)			
Young		db/+	15.1 ± 1.6	8.5 ± 1.6	0.8 ± 0.1
		(8)			
	3	db/db	$39.0\pm2.2^{a,b}$	$14.9\pm2.2^{a,b}$	$2.6\pm0.3^{a,b}$
		(5)			
		db/+	21.0 ± 0.9	9.2 ± 0.8	1.0 ± 0.1
		(6)			
		+/+	21.4 ± 0.7	10.4 ± 0.7	1.2 ± 0.1
		(4)			
Adult	4.5	db/db	$48.2 \pm 1.9^{a,b}$	8.6 ± 1.5	$3.2\pm0.4^{a,b}$
		(3)			
		db/+	23.4 ± 1.4	8.0 ± 0.1	1.1 ± 0.1
		(6)			
		+/+	23.2 ± 1.6	9.3 ± 0.6	1.1 ± 0.2
		(5)			

 $^{\rm a}P < 0.05$ compared to the db/+, $^{\rm b}P < 0.05$ compared to the +/+

Fig. S2: Identification of mice for Fig. 1. M1, M2, M3, M4, M8 are all db/db; M5/7, M9 and M10 are all db/+.

Fig. S3: Identification of mice for Fig. 2. M1, M2, M3, M4, M8 are all db/db; M5/7, M9 and M10 are all db/+.

Fig. S4: Identification of mice for Fig. 3.

References

1. Ryu, J.-H.; Drain, J.; Kim, J. H.; McGee, S.; Gray-Weale, A.; Waddington, L.; Parker, G. J.; Hargreaves, M.; Yoo, S.-H.; Stapleton, D. *International Journal of Biological Macromolecules* 2009, *45*, 478-482.

2. Schmitz, S.; Dona, A. C.; Castignolles, P.; Gilbert, R. G.; Gaborieau, M. *Macromolecular Bioscience* 2009, *9*, 506-14.

3. Syahariza, Z. A.; Li, E.; Hasjim, J. Carbohydrate Polymers 2010, 82, 14-20.

4. Sullivan, M. A.; Vilaplana, F.; Cave, R. A.; Stapleton, D. I.; Gray-Weale, A. A.; Gilbert, R. G. *Biomacromolecules* 2010, *11*, 1094-1100.

5. Cave, R. A.; Seabrook, S. A.; Gidley, M. J.; Gilbert, R. G. *Biomacromolecules* 2009, 10, 2245-53.

6. O'Shea, M. G.; Morell, M. K. *Electrophoresis* 1996, 17, 681-6.

7. O'Shea, M. G.; Samuel, M. S.; Konik, C. M.; Morell, M. K. Carbohydrate Research 1998, 307, 1-12.