ABACUS Manual & Tutorial

Damian Fermin dfermin@umich.edu

Assumptions

This manual covers the usage of Abacus to obtain spectral counts. This manual does not cover using PeptideProphet or ProteinProphet. The assumption is that you know how to use these tools and/or have already generated the necessary files.

The following files are required to use Abacus:

- 1. PeptideProphet (pepXML) files
- 2. ProteinProphet (protXML) files
- 3. Protein database in FASTA format

Optionally, if you would like to report gene identifiers in the output you need a tabdelimited file that maps geneIDs to the proteinIDs found in the FASTA file. If you are using the either the REFSEQ or Uniprot protein databases, tools to download this mapping for you are available at: <u>http://www.nesvilab.org/geneMappers</u> or <u>http://dfermin.com/software</u>. Included in each distribution is the source code for you to edit and view.

Sample data

You can download a sample data set on which to test Abacus at this link: #######. The sample data is from a MudPIT experiment that analyzed the expressed prostatic secretions of 9 prostate cancer patients [1]. The sample data consists of PeptideProphet and ProteinProphet for just 2 of the patients. The zip file is approximately 22MB in size and contains the following files:

File	Description
interact-prostate_sec_1.pep.xml	PeptideProphet results file, sample #1
interact-prostate_sec_2.pep.xml	PeptideProphet results file, sample #2
interact-prostate_sec_1.prot.xml	ProteinProphet results file, sample #1
interact-prostate_sec_2.prot.xml	ProteinProphet results file, sample #2
interact-COMBINED.prot.xml	ProteinProphet results file, samples #1 and #2
uniprot_Hs_rel2010-09.fa	FASTA file used for search
gene2uniprot.txt	Gene-to-Protein Mapping file
tutorial_output.xls	Excel file, the expected results of running Abacus

Pre-installation

Abacus requires JAVA so please make sure you have the latest version of the JAVA Runtime Environment (JRE) installed on your computer. You can download it for free at http://www.java.com/en/download/.

Running Abacus

For the impatient

Open a command prompt or terminal in the folder that contains the Abacus.jar file. Double-click on the Abacus icon. However, if you are using Linux, type the following in the terminal:

java -Xmx1g -jar abacus.jar

This will bring up the main menu. Have fun.

For the more patient (Tutorial)

This tutorial will assume you are using the sample data set mentioned above. Once you have downloaded and unzipped the archive you should have a new folder called "sample_data". Ideally, you want your folder structure to look something like this for the tutorial to work smoothly:

Run Abacus

From the "Top Folder", double click on the Abacus icon. If you are using Linux, type the following command at the terminal:

```
java -Xmx1g -jar abacus.jar
```

This starts up the graphical user interface (GUI) component of the program.

Abacus Main Menu		Output Formatting		
dbName: ABACUSDB Decoy Tag:	rev_	Output Options		⊖ Custom
maxIniProb Threshold: 0.99 iniProb Threshold:	0.50	Denant		
Combined File Prob: 0.90 Min Protein Prob:	0	Desired Output Fle	elds (Custom Output Only)	
markiti fuffini	prot yml	ProtID	wt_maxIniProb	ALL_numSpecsUniq
pepxill suffix: pep.xmi protoine suffix.	piot.xiii	GenelD	🗌 maxIniProbUniq	Expt_ID
		ProtLen	ALL_ID	Expt_Pw
Source Directory:	Select Folder	is Fwd	ALL_Pw	Expt_numPepsTct
FASTA File	Select File	🗌 defline	ALI_localPw	Expt_numPepsUniq
	Succerne	🗌 numXML	ALL_numPepsTot	Expt_numSpecsTot
Gene Map File:	Select File	- maxPw	ALL_numPepsUniq	Expt_numSpecsUniq
Combined File:	Select File	maxiniProb	ALL_numSpecsTot	Expt_numSpecsAdJ
OutputFile: ABACUS_output.txt	Select File			
		Load Parameter File Parameter File:		Load File
Keep DB In(NSAF) Run Save	Clear Form			Exit

Each field in this menu is explained in the next section. Once you have made your selections on this menu you can either:

- Run Abacus
- Save the parameters to a file
- Exit the program

For the sample data set, use the default parameters given by Abacus for now. Then:

- 1. Select the folder that contains the sample data.
- 2. Select the FASTA file.
- 3. Select the gene2prot.txt file.
- 4. Select the COMBINED file.
- 5. Select a location to save the output file.

After you have done 1-5 above, click Run. A new window should pop up. This is the Abacus console. It will report what is going on in the program. If an error occurs, it will be printed to this console. You will not be able to close this window until Abacus finishes.

After Abacus has finished running, you will find the ABACUS_output.txt in the output path you specified. You can compare your results to the sample output provided for the tutorial (tutorial_output.xls). Assuming you used the default parameters, the files should be identical.

You can save this test run to a text file by clicking on Save. Abacus parameter files can be loaded using the "Load File" button. Alternatively, you can run Abacus with a particular parameter file from the command line using this command:

```
java -Xmx1g -jar abacus.jar -p <PARAMETER_FILE_NAME>
```

When you run Abacus from the command line as shown above, the GUI does not appear and the program starts running immediately. All job information is printed to the command line. *In general, it is faster to run Abacus from the command line.*

The parameter file once generated can be edited manually with any text editor (vi, WordPad, etc.). Each field in the file is documented to help you understand what it is and does.

The GUI Options

Each region of the GUI is explained below. The sections of the screen are broken up and numbered based upon the image below:

000	
Abacus Main Menu	Output Formatting
dbName: ABACUSDB Decoy Tag: rev_	Default O Spec O Cene O Cuitom
maxIniProb Threshold: 0.99 iniProb Threshold: 0.50	
Combined File Prcb: 0.90 Min Protein Prob: 0	Desired Output Fields (Custom Output Only)
nonYML Suffix: non-yml	ProtID wt_maxiniProb ALL_numSpecsUniq
pepame sumx. pepami	GenelD maxIniProbUniq Expt_ID 2h
	ProtLen ALL_ID Expt_Pw
Source Directory: Select Folder	isFwd ALL_Pw E>pt_numPepsTot
FASTA File:	☐ defline
	numXML ALL_numPepsTot E>pt_numSpecsTot
Gene Map File: Select File	maxPw ALL_numPepsUriq Expt_numSpecsUriq
Combined File: Select File	🗌 maxIniProb 🔄 ALL_numSpecsTot 🔄 E>pt_numSpecsAcj
OutputFile: ABACUS_output.txt Select File	
	Load Parameter File
	Parameter File: 1000 CLoad File
Keep DB In(NSAF) Run Save Clear Form	4 (Exit

1. Main Menu

Main Menu Options	Description
dbName	The name to be given to the database: this is trivial and only needs to be changed
	if you want to save the database for further analysis. (More on this later)
Decoy Tag	If your search database contains decoy proteins, include the first few characters
	of the protein identifiers. If you didn't use decoys, you can ignore this field.
maxIniProb Threshold	In order to be considered as a candidate protein by Abacus, a protein must have
	associated with it at least one peptide with a probability above this threshold in
	the COMBINED file.
iniProb Threshold	Only peptides in the pepXML files with probabilities above this threshold will be
	used for spectral counting.
Combined File Prob.	The minimum probability score a protein needs in the COMBINED file in order
	to be retained by Abacus as a candidate protein.
Min Protein Prob.	The minimum probability a protein needs in the individual files in order to be
	reported by Abacus as being present in the individual files.
pepXML Suffix	The file extension used for pepXML files.
protXML Suffix	The file extension used for protXML files.
Source Directory	The path to where the XML files are on the computer
FASTA File	The path to the FASTA file to be used
Gene Map File	The path to the text file that maps gene ID's to protein ID's (optional)
Combined File	The path to the COMBINED file.
Output File	The path to the output file that Abacus will make. A default is provided based
	upon the output options.

2. Output Options

The output Options panel is broken up into two parts. Part 'A' is about choosing the output file type. Part 'B' is only relevant if you are generating a custom output file.

2a. Output Options

Output Options	Description
Default	The output file produced contains all of the fields normally reported by Abacus. This is
	the most verbose output format.
QSpec	The output file that is generated is formatted for submission to QSpec [2].
Gene	By selecting this output option, Abacus runs in gene-centric mode. All of the
	analysis is carried out at the gene level. The output file mirrors that of the Default
	output option, but is formatted differently to focus on genes. This option can only be
	used if a Gene Map file is provided (see section 1 above).
Custom	The output file contains only the fields selected by the users. The available fields are
	described in 2b below.

2b. Desired Output Fields (Custom Output Only)

Field	Description
ProtID	The protein identifier.
GeneID	The gene identifier. This can only be reported if a Gene Map file is given.
ProtLen	The length of the protein in amino acid residues.
isFwd	Indicates if a protein or gene is a real or decoy entry. '1' means the entry is real
	(i.e. "is Forward"); '0' means the entry is a decoy.
defline	The description of the protein or gene.

numXML	The number of protXML files in which the protein was identified.
maxPw	The maximum ProteinProphet probability observed for the entry among the individual protXML files
mayIniProh	The maximum Dentide Prophet probability observed for the entry in the combined
maximiFi00	file.
wt_maxIniProb	For the maxIniProb value observed, this field indicates its degeneracy in the
	experiment. This is the "weight" (wt) of the peptide as reported in the protXML
	files. A peptide with a weight of 1 is unique to a single protein. A peptide with a
	weight of 0.5 is shared between two proteins.
maxIniProbUniq	The maxIniProb value observed among the peptides that are <i>unique</i> (i.e. $wt > 0.9$)
	to the protein.
ALL_ID	The protein identifier in the combined file for the protein entry. This is formatted as
	<number>-<letter> to coincide with the labeling schema of the protXML</letter></number>
	file.
ALL_Pw	The ProteinProphet probability assigned to the protein group in the COMBINED
	file.
ALL_localPw	The ProteinProphet probability assigned to the specific protein identifier reported
	in the Abacus output. This value is from the COMBINED file.
ALL_numPepsTot	The total number of peptides reported in the COMBINED file for the protein.
ALL_numPepsUniq	The number of <i>unique</i> peptides reported in the COMBINED file for the protein.
ALL_numSpecsTot	The total number of spectra reported in the COMBINED file for the protein.
ALL_numSpecsUniq	The number of unique spectra reported for the protein in the COMBINED file.
	Unique spectra are recorded from peptides that are unique to the protein (i.e. wt >
	0.9).
Expt_ID	The protein identifier for the protein in a particular experiment protXML file. This
	is formatted as <number>-<letter> to coincide with the labeling schema of</letter></number>
	the protXML file.
Expt_Pw	The ProteinProphet probability assigned to the specific protein identifier reported
	in the Abacus output within the given experiment's protXML file.
Expt_numPepsTot	The total number of spectra reported for the protein in the experiment's protXML
	file.
Expt_numPepsUniq	The number of <i>unique</i> peptides reported for the protein in the experiment's
	protXML file.
Expt_numSpecsTot	The total number of spectra reported for the protein in the experiment's protXML
Expt_numSpecsUniq	The number of unique spectra reported for the protein in the experiment's
	protXML file.
Expt_numSpecsAdi	The <i>adjusted spectral count</i> for the protein in the experiment's protXML file

There are 7 experimental (Expt) fields. If you had N protXML files, there will be $N \times 7$ experimental fields in your Abacus output.

3. Load Parameter File

This field allows you to load a parameter file into the GUI. All of the data contained in the parameter file will be used to fill out the various parts of the GUI. Once loaded, you can change the options as you see fit.

Field	Description
Keep DB	By default, Abacus does not retain the temporary files it uses to generate the final
	output. By checking this box, the HyperSQL that is created by Abacus for data
	processing will not be deleted when Abacus is done.
ln(NSAF)	This option adds one additional column to the output file for every spectral count fields
	(total, unique, and adjusted). This is the Normalized Spectral Abundance Factor as
	described here [3]. This is discussed later on.
Run	Run Abacus.
Save	Save the current options to a parameter file for later use.
Clear form	Restore the Main Menu back to its default settings.
Exit	Quit Abacus.

4. Management Bar

Normalized Spectral Abundance Factor (NSAF)

As mentioned above, Abacus can report NSAF values for all 3 spectral count fields. The actual value reported by Abacus is calculated using this method:

$$(NSAF)_{k} = \left[\left(\frac{(SpC/L)_{k}}{\sum_{i=1}^{N} (SpC/L)_{i}} \right) \right]$$

Optionally, NSAF is log-transformed.

HyperSQL Database Access

Abacus uses the HyperSQL Database to store and query the information it reports. The user can access the contents of the database directly should the default output be insufficient. To do this, Abacus must be run with the 'Keep DB' option checked. Please note that when keeping the database Abacus takes longer to generate results.

Once Abacus is done, move to the folder where the database files were created by using the command line. This is usually the folder that contains Abacus. The name of the database is whatever you specified in the 'dbName' field.

Once in the folder, type the following command from the command line:

```
java -cp ".:./abacus.jar" org.hsqldb.util.DatabaseManagerSwing
```

This will produce the following window:

00	0		HS	QL Database	Manage	r		
File	View	Command	Recent	Options	Tools	Schemas	Help	
C	lear S	🔺 Execute SC	<u></u> Σ					
Cor	nnection	4						
		$\bigcirc \bigcirc \bigcirc \bigcirc$	_	Conne	ect	_	_	
		Recent Set Setting Na Type: Driver: URL: User: Password:	ting: me: jd SJ	Recent settin HSQL Databa g.hsqldb.jdl bc:hsqldb:m A	ngs ase Engin ocDriver nem:.	e In-Memory	/	
		Clear Na	mes	Ok	>	Cance		
	Initializi	ng						

Let's assume you ran through the tutorial above and checked the 'Keep DB' option. To access the database you created as part of the tutorial. Change the Connect menu window to look like this:

00	Connect	
Recent Setting: Setting Name:	Recent settings	
Type:	HSQL Database Engine Standalore	>
Driver:	org.hsqldb.jdbcDriver	
URL:	jdbc:hsqldb:file:ABACUSDB	D
User:	SA	
Password:		
Clear Names	Ok Cancel	

Then click on 'Ok'. This should bring you to the main query window that should look something like this:

The various sections of the HyperSQL interface are labeled above. You can obtain a description of each table in the database by clicking on its folder icon in the "Database Tables & Properties" window. If you wish to run your own queries on the database you would type them in SQL in the "SQL Query Window". The results of your query would appear in the "Results Window". For a complete description of the interface, refer to the HyperSQL Database manual available at: <u>http://hsqldb.org/doc/2.0/util-guide/index.html</u>.

The following is a brief description of each of the tables normally generated by Abacus and stored in the HyperSQL database. These tables are specific to the protein-centric output but the table properties are similar for the gene-centric algorithm.

Table Name	Description
COMBINED	Holds the data parsed out of the COMBINED file.
GENE2PROT	Holds the mappings between gene IDs and protein IDs.
PEPUSAGE_	Table reports which peptides are mapped to which proteins in each experimental
	file. It also contains information about the spectral count for each individual
	peptide, its alpha value.
PEPXML	Holds data parsed out of each pepXML file.
PEPXML PROTIDSUMMARY	Holds data parsed out of each pepXML file. This table is used to select the representative protein ID from the COMBINED file
PEPXML PROTIDSUMMARY	Holds data parsed out of each pepXML file. This table is used to select the representative protein ID from the COMBINED file protein groups.
PEPXML PROTIDSUMMARY PROTXML	Holds data parsed out of each pepXML file. This table is used to select the representative protein ID from the COMBINED file protein groups. Holds data parsed out of each experimental protXML file.
PEPXML PROTIDSUMMARY PROTXML RESULTS	Holds data parsed out of each pepXML file.This table is used to select the representative protein ID from the COMBINED file protein groups.Holds data parsed out of each experimental protXML file.The contents of this table are what Abacus finally outputs .

References

Drake, R. R., Elschenbroich, S., Lopez-Perez, O., Kim, Y., *et al.*, In-depth proteomic analyses of direct expressed prostatic secretions. *J Proteome Res* 2010, *9*, 2109-2116.
Choi, H., Fermin, D., Nesvizhskii, A. I., Significance analysis of spectral count data in label-free shotgun proteomics. *Mol Cell Proteomics* 2008, *7*, 2373-2385.
Zhang, Y., Wen, Z., Washburn, M. P., Florens, L., Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. *Anal Chem* 2010, *82*, 2272-2281.