Supporting information

Consensus 3D Model of µ-Opioid Receptor Ligand Efficacy based on a Quantitative Conformationally Sampled Pharmacophore

Jihyun Shim, Andrew Coop and Alexander D. MacKerell, Jr.

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201

Training set		Test set	
compounds	% stimulation ^{a)}	Compounds	% stimulation
Morphine	93 ± 2.8	Methadone	116 ±20
Dihydromorphine	109 ± 5	Etonitazene	119 ± 19
Normorphine	114 ± 11	Fentanyl	100 ± 12
Etorphine	117 ±24	(-)Ethylketozocine (EKC)	146 ± 85
Buprenorphine	66 ±36	Funaltrexamine	19 ± 0
Nalrexone	0	(-)Cyclazocine	33 ±18
Naloxone	0	(-)Pentazocine	35 ±4
Nalmefene	0	(-)Bremazocine	0
Nalorphine	0	DAMGO	100
Naltriben	0	PL017	109 ± 22
Naltrindole	0	DSLET	134 ± 65
Diprenorphine	0	DADLE	89 ± 15
		Leu-Enkephalin	11 ± 4

i.

Table 1. Experimental data used in model construction and evaluation

* Lower limit (mean – standard deviation) of efficacies were used during model development.

a) Relative % stimulation with respect to that of DAMGO (100%) using a [35 S]GTP γ S binding assay

Table 2. Overlap coefficient used in the ABNS and AB'NS models

ABNS

	AB	AN	AS	BN	BS	NS	ABN	ABS	ANB	ANS	ASB	ASN	BAN	BAS	BNS	BSN	NAS	NBS	efficacy
morphine	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90
dihydromorphine	0.20	0.82	0.87	0.32	0.32	0.99	0.23	0.27	0.52	0.96	0.57	0.97	0.26	0.31	0.30	0.33	0.95	0.31	1.04
etorphine	0.50	0.52	0.55	0.24	0.24	0.98	0.53	0.46	0.24	0.71	0.23	0.72	0.24	0.24	0.33	0.41	0.63	0.25	0.93
normorphine	0.97	0.86	0.22	0.97	0.00	0.00	0.93	0.77	0.95	0.37	0.48	0.20	0.93	0.41	0.62	0.33	0.03	0.36	1.03
buprenorphine	0.50	0.41	0.03	0.16	0.00	0.00	0.49	0.85	0.20	0.32	0.01	0.10	0.19	0.24	0.17	0.27	0.30	0.16	0.30
naloxone	0.25	0.85	0.05	0.21	0.05	0.00	0.22	0.55	0.73	0.23	0.30	0.10	0.31	0.28	0.29	0.30	0.41	0.34	0.00
naltrexone	0.25	0.88	0.01	0.21	0.02	0.00	0.23	0.65	0.74	0.23	0.17	0.05	0.31	0.28	0.28	0.32	0.35	0.32	0.00
nalmefene	0.50	0.91	0.01	0.44	0.09	0.00	0.55	0.63	0.83	0.22	0.16	0.06	0.57	0.45	0.30	0.32	0.36	0.33	0.00
nalorphine	0.98	0.96	0.05	0.92	0.26	0.00	0.96	0.55	0.97	0.22	0.18	0.11	0.95	0.54	0.32	0.27	0.43	0.41	0.00
naltrindole	0.00	0.21	0.43	0.00	0.00	0.00	0.00	0.00	0.76	0.35	0.48	0.11	0.00	0.00	0.26	0.24	0.16	0.54	0.00
naltriben	0.00	0.30	0.36	0.00	0.00	0.00	0.00	0.00	0.32	0.32	0.84	0.11	0.00	0.00	0.33	0.30	0.19	0.59	0.00
diprenorphine	0.52	0.41	0.02	0.16	0.00	0.00	0.48	0.83	0.20	0.28	0.01	0.08	0.20	0.24	0.19	0.28	0.35	0.20	0.00
cyclazocine	0.75	0.84	0.03	0.75	0.21	0.00	0.77	0.43	0.66	0.27	0.22	0.09	0.73	0.48	0.31	0.26	0.33	0.35	0.15
pentazocine	0.75	0.84	0.03	0.75	0.17	0.00	0.77	0.46	0.66	0.34	0.14	0.10	0.73	0.48	0.28	0.32	0.22	0.29	0.31
EKC	0.01	0.78	0.11	0.22	0.00	0.00	0.02	0.40	0.04	0.26	0.71	0.06	0.08	0.25	0.66	0.40	0.29	0.52	0.61
bremazocine	0.00	0.79	0.03	0.01	0.35	0.00	0.05	0.75	0.00	0.48	0.26	0.12	0.00	0.07	0.32	0.59	0.14	0.03	0.00
etonitazene	0.00	0.20	0.26	0.00	0.02	0.01	0.12	0.17	0.09	0.53	0.04	0.52	0.36	0.34	0.41	0.44	0.16	0.10	1.00
methadone	0.01	0.50	0.57	0.01	0.06	0.00	0.02	0.07	0.54	0.33	0.56	0.39	0.08	0.16	0.18	0.23	0.03	0.25	0.96
fentanyl	0.46	0.03	0.00	0.00	0.00	0.00	0.22	0.41	0.04	0.04	0.00	0.01	0.01	0.03	0.21	0.11	0.30	0.44	0.88
funaltrexamine	0.00	0.50	0.32	0.00	0.00	0.00	0.00	0.00	0.24	0.30	0.12	0.09	0.16	0.12	0.45	0.39	0.24	0.63	0.19
DAMGO	0.00	0.17	0.32	0.00	0.00	0.00	0.00	0.00	0.08	0.27	0.06	0.25	0.18	0.27	0.20	0.12	0.25	0.04	1.00
																			

DSLET	0.00	0.24	0.32	0.00	0.00	0.00	0.00	0.00	0.08	0.26	0.05	0.26	0.17	0.26	0.18	0.13	0.23	0.06	0.69
DADLE	0.00	0.23	0.32	0.00	0.00	0.00	0.00	0.00	0.11	0.29	0.07	0.28	0.16	0.26	0.20	0.12	0.25	0.04	0.74
PL107	0.00	0.42	0.38	0.00	0.01	0.00	0.00	0.00	0.04	0.27	0.02	0.29	0.26	0.31	0.21	0.16	0.12	0.06	0.87
Leu-Enkephalin	0.00	0.29	0.35	0.00	0.00	0.00	0.00	0.00	0.06	0.28	0.04	0.28	0.19	0.28	0.19	0.14	0.19	0.09	0.07

AB'NS

	AB	AN	AS	BN	BS	NS	ABN	ABS	ANB	ANS	ASB	ASN	BAN	BAS	BNS	BSN	NAS	NBS	efficacy
morphine	0.00	0.51	0.55	0.00	0.01	0.98	0.00	0.00	0.00	0.71	0.00	0.73	0.06	0.19	0.10	0.03	0.64	0.44	0.90
dihydromorphine	0.00	0.39	0.44	0.00	0.01	0.97	0.00	0.00	0.00	0.70	0.00	0.73	0.04	0.10	0.07	0.03	0.58	0.24	1.04
etorphine	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93
normorphine	0.00	0.39	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.10	0.06	0.35	0.28	0.22	0.04	0.78	1.03
buprenorphine	0.29	0.78	0.00	0.43	0.35	0.00	0.03	0.01	0.04	0.37	0.02	0.14	0.05	0.10	0.59	0.78	0.24	0.05	0.30
naloxone	0.00	0.39	0.08	0.00	0.41	0.00	0.00	0.00	0.00	0.28	0.00	0.13	0.03	0.07	0.38	0.12	0.33	0.34	0.00
naltrexone	0.00	0.41	0.02	0.00	0.54	0.00	0.00	0.00	0.00	0.29	0.00	0.08	0.03	0.07	0.45	0.10	0.28	0.30	0.00
nalmefene	0.00	0.51	0.02	0.00	0.47	0.00	0.00	0.00	0.00	0.27	0.00	0.09	0.04	0.25	0.45	0.14	0.29	0.30	0.00
nalorphine	0.00	0.53	0.07	0.00	0.21	0.00	0.00	0.00	0.00	0.27	0.00	0.13	0.05	0.32	0.38	0.16	0.36	0.35	0.00
naltrindole	0.00	0.12	0.45	0.01	0.00	0.00	0.10	0.67	0.00	0.38	0.00	0.15	0.00	0.00	0.46	0.43	0.11	0.32	0.00
naltriben	0.00	0.21	0.39	0.01	0.01	0.00	0.10	0.62	0.00	0.33	0.00	0.14	0.00	0.01	0.48	0.44	0.15	0.39	0.00
diprenorphine	0.00	0.80	0.00	0.04	0.52	0.00	0.00	0.00	0.03	0.33	0.01	0.13	0.31	0.40	0.54	0.77	0.28	0.01	0.00
cyclazocine	0.00	0.40	0.03	0.00	0.07	0.00	0.00	0.00	0.00	0.34	0.00	0.13	0.06	0.41	0.34	0.19	0.26	0.34	0.15
pentazocine	0.00	0.39	0.03	0.00	0.16	0.00	0.00	0.00	0.00	0.37	0.00	0.14	0.06	0.39	0.33	0.19	0.18	0.27	0.31
EKC	0.00	0.38	0.12	0.00	0.47	0.00	0.00	0.00	0.00	0.33	0.00	0.09	0.02	0.03	0.11	0.02	0.22	0.30	0.61

S4

bremazocine	0.00	0.35	0.05	0.00	0.01	0.00	0.00	0.00	0.02	0.59	0.00	0.19	0.09	0.64	0.53	0.09	0.11	0.02	0.00
etonitazene	0.00	0.16	0.20	0.43	0.59	0.01	0.04	0.33	0.02	0.48	0.03	0.43	0.08	0.24	0.21	0.22	0.18	0.10	1.00
methadone	0.00	0.35	0.34	0.62	0.64	0.00	0.02	0.07	0.00	0.35	0.01	0.38	0.04	0.11	0.07	0.07	0.04	0.21	0.96
fentanyl	0.08	0.02	0.32	0.37	0.11	0.00	0.07	0.03	0.04	0.08	0.00	0.06	0.03	0.00	0.12	0.09	0.01	0.55	0.88
funaltrexamine	0.03	0.40	0.33	0.10	0.03	0.00	0.51	0.28	0.01	0.34	0.00	0.12	0.02	0.02	0.49	0.36	0.19	0.48	0.19
DAMGO	0.11	0.16	0.25	0.03	0.07	0.00	0.19	0.07	0.28	0.23	0.23	0.21	0.23	0.30	0.29	0.26	0.28	0.04	1.00
DSLET	0.13	0.20	0.20	0.05	0.12	0.00	0.15	0.06	0.24	0.24	0.23	0.23	0.22	0.27	0.25	0.22	0.28	0.06	0.69
DADLE	0.11	0.22	0.25	0.03	0.07	0.00	0.20	0.05	0.22	0.26	0.23	0.24	0.18	0.24	0.30	0.27	0.28	0.04	0.74
PL107	0.15	0.28	0.21	0.08	0.14	0.00	0.28	0.10	0.39	0.27	0.25	0.28	0.28	0.39	0.25	0.23	0.19	0.06	0.87
Leu-Enkephalin	0.19	0.24	0.23	0.07	0.19	0.00	0.25	0.13	0.25	0.26	0.22	0.25	0.23	0.28	0.24	0.23	0.24	0.08	0.07
	I																		

no.	а	\mathbf{X}_1	b	X_2	с	X ₃	d	R^2	Q^2	P-value	$\begin{array}{c} \text{Cor} \\ (X_1, X_2) \end{array}$	$\begin{array}{c} \text{Cor} \\ (X_1, X_3) \end{array}$	$\begin{array}{c} \text{Cor} \\ (X_2, X_3) \end{array}$
1	1.10	AS	2.09	BNS	-2.43	NBS	0.23	0.9602	0.95	0.00001	0.61	0.62	0.81
2	-1.73	BS	2.48	ANS	0.89	BAN	-0.80	0.9342	0.89	0.00004	0.78	0.57	0.18
3	0.82	BN	-1.54	BS	2.24	ANS	-0.68	0.929	0.90	0.00006	0.60	0.28	0.78
4	0.80	AB	-1.46	BS	2.30	ANS	-0.78	0.9286	0.94	0.00006	0.50	0.17	0.78
5	0.42	ABS	2.22	ASN	-1.70	NAS	0.18	0.928	0.95	0.00006	0.09	0.21	0.88
6	-1.46	BS	0.81	ABN	2.26	ANS	-0.77	0.9253	0.93	0.00007	0.53	0.78	0.20
7	0.46	AN	2.22	ASN	-1.79	NAS	0.14	0.9123	0.72	0.00014	0.27	0.42	0.88
8	0.73	BN	-1.49	BS	1.75	ASN	-0.21	0.9101	0.58	0.00015	0.60	0.32	0.80
9	0.70	AB	-1.41	BS	1.78	ASN	-0.29	0.9075	0.73	0.00017	0.50	0.21	0.80
10	0.31	AB	2.00	ASN	-1.44	NAS	0.22	0.9068	0.91	0.00018	0.21	0.19	0.88

Table 3. Top 10 ABNS regression models for efficacy

Efficacy = $aX_1 + bX_2 + cX_3 + d$ where X_1 , X_2 and X_3 represent the OC of combinations of pharmacophoric points used in the models.

no	а	\mathbf{X}_1	b	X ₂	с	X ₃	d	R^2	Q^2	P value	$\begin{array}{c} \text{Cor} \\ (X_1, X_2) \end{array}$	$\begin{array}{c} \text{Cor} \\ (X_1, X_3) \end{array}$	$\begin{array}{c} \text{Cor} \\ (X_2, X_3) \end{array}$
1	1.86	BN	-2.51	BNS	0.62	NBS	0.97	0.8739	0.95	0.00059	0.81	0.51	0.32
2	3.34	AB	-3.39	BNS	-0.84	NAS	1.76	0.8728	0.59	0.00061	0.80	0.71	0.28
3	-1.97	BS	-1.37	ABS	3.38	ANB	0.89	0.8670	0.79	0.00073	0.27	0.72	0.71
4	-1.92	BS	3.93	ABN	-1.97	ABS	0.89	0.8634	0.90	0.00081	0.27	0.71	0.71
5	1.80	NS	1.01	BAS	-2.40	NAS	0.53	0.8617	0.85	0.00085	0.66	0.27	0.80
6	1.78	BN	0.72	BAS	-2.74	BNS	1.14	0.8604	0.92	0.00088	0.43	0.87	0.67
7	1.98	AB	-2.47	BNS	0.40	NBS	1.05	0.8505	0.77	0.00115	0.78	0.81	0.64
8	1.92	AB	0.53	BAS	-2.65	BNS	1.16	0.8445	0.84	0.00135	0.80	0.59	0.32
9	2.26	AB	-3.16	BNS	0.47	BSN	1.30	0.8434	0.74	0.00139	0.82	0.80	0.64
10	1.68	BN	0.83	BAN	-2.84	BNS	1.26	0.8330	0.87	0.00178	0.88	0.81	0.76

Table 4. Top 10 AB'NS regression models for efficacy based on the use of the C19 substituent (B') as the B pharmacophoric point for the oripavines.

Efficacy = $aX_1 + bX_2 + cX_3 + d$ where X_1 , X_2 and X_3 represent the OC of combinations of pharmacophoric points used in the models.

	1	2	3	4	5	6	7	8	9	10	avg
ABNS	0.09	0.12	0.12	0.12	0.12	0.12	0.13	0.14	0.14	0.14	0.08
AB'NS	0.16	0.16	0.16	0.17	0.17	0.17	0.18	0.18	0.18	0.18	0.14

Table 5. RMSD of the training set with the ABNS and AB'NS models

Table 6. Predicted efficacies of fentanyl and methadone in test set 1 using ABNS and AB'NS models. Pharmacophoric point definitions are illustrated in Figure S3.

fentanyl	definition		
	1	-0.3	1.3
	2	-0.1	1.2
	3	0.1	1.4
methadone	1	0.5	1.1
	2	0.6	-0.1

ABNS AB'NS

Table 7. Comparison between experimental and average calculated values by the ABNS and AB'NS models of the test molecules

comp.	expt.	ABNS		AB'NS		comp.	ez	xpt.	ABNS	5	AB'NS	
cyclazocine	0.15	0.13 (-0	0.02)	0.50 (0.35)		DAMGO		1	0.19 (-0.8	81)	0.85 (-0.15)	
pentazocine	0.31	0.30 (-0	0.01)	0.47 (0.16)		DSLET	0	.69	0.19 (-0.3	50)	0.87 (0.18)	
EKC	0.61	0.00 (-0).61)	0.58 (-0.04)		DADLE	0	.74	0.24 (-0.3	50)	0.81 (0.07)	
bremazocine	0.00	0.04 (0	0.04)	0.27 (0.27)		PL107	0	.87	0.31 (-0.3	56)	1.05 (0.18)	
etonitazene	1.00	0.78 (-0).23)	0.41 (-0.59)		Leu-Enkephalin	0	.07	0.25 (0.1	18)	0.95 (0.88)	
methadone	0.96	0.53 (-0	0.43)	1.07 (-0.11)								
fentanyl	0.88	-0.31 (-1	.19)	1.18 (0.30)								
funaltrexamine	0.19	-0.02 (-0).21)	0.36 (0.17)								
			Ro	ot mean squar	e deviati	on (RMSD) of top	10 mo	dels				
	1	2	3	4	5	6	7	8	9	10	avg	
ABNS	0.37	0.52	0.54	0.56	0.34	0.57	0.36	0.39	0.41	0.31	0.39	_
AB'NS	0.38	0.38	0.64	0.59	0.75	0.40	0.37	0.26	0.27	0.28	0.26	

(Figure 1). Numbers in parenthesis are differences from experimental values.

		tail-flicking assay	writhing assay	hot plate assay	relative % stimulation	AB'NS
	morphine	3.00 ^a / 1.25 ^b / 3.80 ^c / 5.80 ^d	$0.60^{e}/0.28^{f}/0.43^{a}/0.23^{d}$	0.80^{d}	0.93±0.03	1.0
training set	etorphine	0.0006 ^b	$0.0009^{\rm f}$		1.17 ± 0.24	0.9
	buprenorphine	2.40°	0.02^{f}		0.66 ± 0.36	0.3
	fentanyl	0.013 ^b			1.00 ± 0.12	1.2
test set 1	cyclazocine		0.10^{f}		0.33 ± 0.18	0.5
	pentazocine	inactive ^c	$1.20^{d} / 0.80^{f}$		$0.35 \pm 0.04 \ (0.04^{d})$	0.5
	1	3.86 ^d	0.39 ^d	2.42 ^d	0.52 ^d	1.8
	2	0.6383 ^a	0.1014 ^a			1.9
	3	0.0001 ^d	0.0002^{d}	0.0001 ^d	1.04 ^d	0.4
test set 2	4	0.0032^{d}	0.0062^{d}	0.0023 ^d		1.0
	5			1.18 ⁱ	$0.78{\pm}0.05^{\rm h}$	0.8
	6	0.11 ^g			$0.79{\pm}0.01^{h}$	2.1
	7		0.8028 ^e			0.4

Table 8. Antinociceptive potencies (ED₅₀ in mg/kg) in mouse

* Experimental values from different publications are indicted by slash separator. Units in original papers were converted to mg/kg.

* Values in parenthesis are those found from other literatures. .

* Relative % stimulation is based on DAMGO's efficacy 1.00 (100%)

a. reference 1, b. reference 2, c. reference 3 d. reference 4, e. reference 5, f. reference 6, g. reference 7, h.

reference 8, i. reference 9

Figure 1. Pharmacophoric points used in CSP model development, from which six distances (AB, AN, AS, BN, BS, NS) and twelve angles (ABN, ABS, ANB, ANS, ASB, ASN, BAN, BAS, BNS, BSN, NAS, NBS) were derived and considered in model development. For the pharmacophoric points A and B, the definitions were based on the atoms yielding the maximum distance between A and B, pharmacophoric point N was simply the geometric position of the basic nitrogen, and definition of S was based on the geometric center of the atoms comprising that group.

Figure 2. a) 1D probability distributions of AB' distance on etorphine, buprenorphine and diprenorphine using the alternate definition of the B group, designated B'. b) Pharmacophoric point definition for AB'NS models where the B' group is represented in orange.

Figure 3. A) Conventional pharmacophore definitions used in ABNS models where phenethyl group is S point (N-substituent), the aromatic ring attached to the amide is A, and the propionyl group is B. B) Pharmacophore definitions used in AB'NS model where phenethyl group is alternative B' point. C) Third pharmacophore definition where A is the phenethyl group and B is the aromatic ring attached to the amide. In all cases N is the piperdine ring nitrogen and if not noted, S is the associated basic nitrogen. D) Probability distribution of the distance between the two aromatic rings and the N descriptor.

Figure 4. Pharmacophoric point definitions for methadone showing the A (green), B (red), N (blue), and S (pink) groups.

Figure 5. Test set 2 compounds and their pharmacophoric point definitions for the A) ABNS and B) AB'NS models. Compounds in c) show both definitions B (red) and B' (orange) used for ABNS and AB'NS models respectively. D) Pharmacophoric point definition for herkinorin was used only in AB'NS models.

Figure 6. Probability distribution of AB' distance of etorphine, N-phenethylnormorphine, C7-β-phenylbutylmorphinans and C14-O-phenylpropylmorphinan.

Figure 7. Distance distribution between the aromatic A ring and N-CPM of the antagonist naltrexone showing it to be similar to that between the A ring and C19-methyl substituent of the antagonist diprenorphin. In contrast the A to C19 substituent distance distributions in etorphine and buprenophine are significantly longer, allowing for interactions with the B site. A similar distribution occurs with fentanyl. Distances are from the centroid of aromatic ring to the indicated groups.

Figure 8. Reorientation of cyclazocine. Cyclazocine's structures are represented in dashed lines and overlaid on naltrexone. In b), structure a) is rotated around the axis connecting nitrogen and aromatic ring while c) shows cyclazocine in b) shifted towards the dihydrofuran ring of naltrexone illustrating the relative orientation in which cyclazocine assumes the binding orientation in Figure 5F.

Figure 9. Convergence evaluation based on self OC values. a) Self OC values of the DAMGO AN probability distributions calculated between distributions at 1 and 2 ns (green line) and between 2 and 3 ns (blue line). In b) each point represents the self OC of a distance or angle parameter as a function of simulation time. Morphine's self OC values are shown in red, etonitazene in green, and

DAMGO in blue. Self OC values were calculated using equation S1 as a function of simulation time,

self OC
$$(i, i + 1) = \sum_{j} \min (P_{i,j}^{A}, P_{i+1,j}^{A})$$

self OC $= \sum \min(P_{i}^{A}, P_{i}^{A+\Delta t})$ Eq. S1

where P_i^A is the probability distribution of distance or angle between pharmacophoric points, at bin *i* out to *A* ns. The eighteen distances and angles described above (Figure S8) were subjected to this analysis and convergence was defined based on the magnitude of the self OC values as a function of simulation time. As an example, Figure S9a shows probability distributions for the distance between the aromatic ring (A) and protonated nitrogen (N) of DAMGO at 1, 2 and 3 ns. Figure S9b shows the change in all self OC values as a function of time for three compounds of varying flexibility. Self OCs of the flexible compounds etonitazene and DAMGO grow slowly (Figure S9b), whereas rigid morphine reaches 95 % similarities at 3ns. In all cases the convergence of conformational space was greater than 95 % following 10 ns of simulation time. This level of convergence was deemed satisfactory for CSP model development.

Figure 10. Potential energy as a function of time in the ground state replica. Results for four compounds, morphine, etorphine, fentanyl and DAMGO are shown. Notably, the use of temperature replica exchange MD in this study allowed for energy barriers of 30~40 kcal/mol to be overcome.

CGenFF parameters for nonpeptidic opioids: As internal parameters for many of the non-peptidic opioids were not explicitly treated in the CHARMM General Force Field (CGenFF) it was necessary to extend the force field to assure accurate modeling of these compounds. This was performed by analogy with the resulting parameters then validated based on calculations on morphine, cyclazocine, and etorphine. The resulting bond and angle parameters reproduced target geometries quite well, having root mean square differences (RMSD) within 0.02 Å and 2.3° with respect to QM data and 0.03 Å and 3.1° with respect to high resolution crystal structures for the bonds and angles, respectively (Table P1). In addition, CGenFF vibrational frequencies were compared with QM results for aminomethylcyclopropane and benzomorphan (see Tables P2 of the Supporting information). The overall agreement was considered acceptable and further optimization of the internal parameters was not undertaken. Further validation of the parameters was based on the crystal MD simulations. Results from the simulations showed that interactions in the condensed-phase crystal environments were well balanced, with similar changes occurring for the A, B and C lattice parameters. However, the force field appears to overpredict the unitcell volumes. A similar phenomenon has been observed with carbohydrate parameters¹⁰ and has been suggested to be associated with limitations in the additive potential energy function. Accordingly, additional optimization of the force field parameters was not undertaken.

Vibrational frequencies, including potential energy distributions, were obtained at the MP2/6-31G* level and examined using the CHARMM VIBRAN and MOLVIB modules¹¹. QM vibrational frequencies were scaled by 0.971 to account for limitations in

S23

the level of theory¹². Final validation of the force field was performed with crystal simulations using the CRYSTAL module in the CHARMM program. Atomic coordinates of morphine, etorphine, and naltrexone (CSD ID: MORPHC, SUNVOM, PABCEA, respectively) were relaxed by minimization with the lattice parameters fixed. Nonbond interactions were truncated at 26 Å with smoothing from 24 Å of the Lennard-Jones interactions by a switching function while long-range electrostatic interactions were included using the particle mesh Ewald method¹³. The Velocity-Verlet 2 algorithm¹⁴ was used to propagate the simulations with an integration timestep of 1 fs in conjunction with Nose-Hoover thermostat and Anderson-Hoover barostat. The crystal simulations were run for 7 ns with the last 5 ns used for analysis.

Table P1. Comparison of empirical and target bond and angles from the CGenFF minimized structures and from the crystal simulations.

	C	eometry	r (RMSI	D)	Crys	tal sim	ulatio	n (%error)
	Q	М	Х	tal		Unit	cell p	arameters
	Bond	Angle	Bond	Angle	А	В	С	Volume
Cyclazocine	0.02	2.01						
Morphine	0.02	2.33	0.02	1.83	0.6	0.6	0.6	1.7
Etorphine			0.03	2.62	5.5	5.5	5.5	17.5
Naltrexone			0.02	2.38	2.4	2.4	2.4	7.3

* units: Å and degrees for bonds and angles, respectively, RMSD= $\sqrt{\frac{\sum (x_{mm} - x_{qm \text{ or } xtal})^2}{N}}$,

 $\% \operatorname{error} = \frac{x_{mm} - x_{exp}}{x_{exp}} * 100$

Table P2. Vibrational spectra of Aminomethyl cyclopropane and 1,2,3,4,5,6-hexahydro-3-methyl-2,6-Methano-3-benzazocin-8-ol. Frequencies in cm⁻¹.

	MP2/6	-31G*	scaled by a fact	or 0.9	71					CGenFF			
Freq.	Assignment	%	Assignment	%	Assignment	%	Freq.	Assignment	%	Assignment	%	Assignment	%
123.4	torC1-C9	100					92.6	torC1-C9	99				
212.1	torC9-N1	58	rC1C9a	26			178.6	torC9-N1	94				
231.4	torC9-N1	32	rC1C9a	32	cC9X2	25	242.2	rC1C9a	59	cC9X2	34		
367.5	rC1C9	73					382.1	cC9X2	28	rC1C9a	24	rC1C9	15
453.9	cC9X2	40	rC1C9a	31			444.7	rC1C9	62	cC9X2	17		
785.6	STRETCH	29	tCrH2	23	sC1-C9	16	690.5	tCrH2	54	sC1-C9	24		
811.4	rCrH2	37	tCrH2	20	rC9H2	20	757.8	rC9H2	30	wCrH2	29	tCrH2	22
861.6	rCrH2	32	rC1Ha	22	SLIDE	16	785.1	tCrH2	45	rC1Ha	43		
865.4	rC9H2	23	rCrH2	22	sC9-N12	17	802.0	wCrH2	65	rC9H2	18		
910.0	sC9-N12	55	STRETCH	15			838.9	tCrH2	46	wCrH2	34		
941.9	SLIDE	62					864.6	rN12H3a	19	sC1-C9	17	tCrH2	16
994.3	STRETCH	31	sC1-C9	20	tCrH2	16	900.1	wCrH2	47	rC1Ha	38		
1034.3	rN12H3a	37					963.4	rN12H3	41	sC9-N12	32		
1096.4	wCrH2	95					984.6	rN12H3	31	rN12H3a	19	sC9-N12	17
1121.9	wCrH2	98					1006.0	rN12H3a	35	sC9-N12	31		
1124.8	rN12H3	24					1086.2	rCrH2	38	STRETCH	18		
1158.6	rC1Ha	59	tCrH2	18			1106.7	STRETCH	60	rCrH2	18		
1221.5	tCrH2	48	rCrH2	44			1111.7	SLIDE	54				
1247.0	tCrH2	25	rC9H2	15			1205.5	rCrH2	99				
1256.5	PULSE	44	rC1H	26			1253.3	PULSE	56				
1351.6	tC9H2	61					1291.5	tC9H2	72				
1392.0	wC9H2	62	rC1H	15			1348.0	wC9H2	56	rC1H	23		
1458.2	rC1H	35	wC9H2	23			1457.5	dsN12H3	80				

1503.3	cCrH2	98			1463.4	cCrH2	96				
1527.5	cC9H2	69	dsN12H3	26	1471.2	cCrH2	55	rC1H	27		
1533.6	dsN12H3	70	cC9H2	28	1486.6	cC9H2	56	dsN12H3	16		
1547.8	cCrH2	76			1513.9	rC1H	37	PULSE	21	cCrH2	19
1686.9	daN12H3	89			1620.3	daN12H3	74	daN12H3a	21		
1697.7	daN12H3a	89			1624.1	daN12H3a	74	daN12H3	21		
3104.8	ssC9H2	100			2773.4	ssC9H2	99				
3153.5	ssCrH2	95			2805.0	saC9H2	100				
3168.7	sC1-H1	48	saC9H2	47	3029.4	ssCrH2	96				
3175.5	ssCrH2	94			3039.4	ssCrH2	99				
3181.7	saC9H2	50	sC1-H1	49	3054.6	sC1-H1	94				
3253.3	saCrH2	95			3087.9	saCrH2	100				
3271.3	saCrH2	98			3102.0	saCrH2	98				
3360.8	ssN12H3	100			3153.5	ssN12H3	100				
3472.1	saN12H3	93			3256.6	saN12H3a	51	saN12H3	49		
3476.7	saN12H3a	93			3257.2	saN12H3	51	saN12H3a	49		

MP2/6-31G*

CGenFF

Freq.	Assignment	%	Assignment	%	Assignment	%	Freq.	Assignment	%	Assignment	%	Assignment	%
52.5	torR2	55	bfR1R2	20			52.2	torR2	51	bfR1R2	21		
100.6	torR2'	51	torR1	43			105.5	torR2'	59	torR1	23		
123.6	torR3a	50	bfR1R2	39			125.7	torR3a	47	bfR1R2	42		
208.6	torCH3	39					205.2	wR1CO	22				
228.8	torCH3	43					242.0	rR1CO	18				
258.3	torR3a'	38					295.0	torCH3	21	puckR2	17		
289.6	torR3a'	45	dR3XCZ	16			298.3	torR3a'	27	dR2a	20		
322.6	puckR2	26	puckR1	20	puckR3	20	324.0	dR3YCZ	47	dR3XCZ	15		
334.4	torR1'	30	torR2'	19			328.0	torR1'	26				
349.4	dR3YCZ	45					340.2	torCO	77				
361.8	torCO	48					357.4	torCH3	54				
363.0	torCO	57					369.0	torR3a'	52	dR3a'	17		
390.4	puckR2	22					406.9	puckR2	18				
426.4	rR1CO	29	torR1'	18			413.7	dR3XCZ	20				
444.6	torR1'	24					448.5	rR1CO	20				
470.2							453.9	torR1'	30	torR1	15		
490.6	dR2a'	19	dR3a	18			471.4	dR1a	18				
511.7	dR3a	16					512.4	torR1	25				
528.7	wR1CO	73	puckR1	26			534.3	dR3a	22	dR2	19		
558.1	dR2a'	17					550.1	puckR3	21	dR2a'	20	sR3CN	15
600.9	dR2a	25	puckR2	16			616.8	puckR1	15				

708.3 dR1 24 sR2CC 17 dR1a' 15 670.6 puck. 21 725.0 sR3CN 32 sR3CC 31 sR2CC 24 700.7 sR3CN 28 755.4 sR1CC 10 sR3CC 24 736.3 dR1a' 34 sR1CC 31 sR1CC 23 765.4 wR1CH 10	673.8	dR3a'	16					649.4	puckR1	61				
7250 \$\vert R3CC \$\vert 3 \$\vert R3CC \$\vert 4 700, \$\vert 83CC \$\vert 8 \$\vert 8	708.3	dR1	24	sR2CC	17	dR1a'	15	670.6	puckR1	21				
7554 \$RICC 31 \$R2CC 24 7653 \$dR1i' 34 \$RICC 23 7654 \$WRICI 90 10 7814 \$RICC 38 \$RICC 34 \$RICC 34<	725.0	sR3CN	52					700.7	sR3CN	28				
765.4 wR1CH 90 781.4 rR3CH2 38 rR3CH2 38 813.3 wR1CH 104 -	755.4	sR1CC	31	sR2CC	24			736.3	dR1a'	34	sR1CC	23		
8133 wR1CH 14	765.4	wR1CH	90					781.4	rR3CH2'	38				
8181 rR3CH2 24 843.3 sR3CC 27 rw2CH2 18 8524 wR1CH 107 849.2 wR1CH 60 849.2 wR1CH 60 8630 sR3CC 48 secc 48 seccc 18 secce 18 secce 10 1	813.3	wR1CH	104					826.6	wR1CH	38	rR2CH2	34		
8824 wR1CH 107 849.2 wR1CH 60 883.0 sR3CC 39 sR2CC 20 882.5 sR1CC 25 wR2CH2 23 9192 rR2CH2 40 916.7 wR1CH 102 102 937.7 twR2CH2 20 dR2 20 919.2 twR2CH2 22 rR3CH2 18 sR1C 940.0 sR2CC 29 sR1CC 17 944.7 sR2CC 18 sR3CN 18 sR1C 975.8 sR1CC 17 980.0 wR1CH 18 sR3CC 26 sR3CN 20 sR2CC 19 943.3 rR3CH2 28 sR3CC 25 sR3CN 20 sR3CC 19 sR3CC 28 sR3CC 21 sR3CC 10 sR3CC 1	821.8	rR3CH2'	24					843.3	sR3CC	27	twR2CH2'	18		
883.0 \$\$82.CC 39 \$\$82.CC 20 \$82.5 \$\$R1CC 25 \$\$N2C112 20 9192 \$\$R2C112 40 916.7 \$\$N1C11 102 18 \$\$R1C 947.7 \$\$N2C112 20 \$\$R1C 17 919.2 \$\$N2C112 20 \$\$R3C11 18 \$\$R1C 944.0 \$\$R2C12 20 \$\$R1C2 17 \$\$N2C112 22 \$\$R3C12 18 \$\$R1 953.6 \$\$R1C2 21 \$\$R3C2 20 \$\$R2C2 19 943.7 \$\$R3C12 28 \$\$R3C2 26 975.8 \$\$R1C2 21 \$\$R3C2 20 \$\$R2C2 19 943.3 \$\$R3C12 28 \$\$R3C2 26 10167 \$\$R3C11 23 \$\$R3C2 20 \$\$R2C2 19 \$\$R3C3 31	852.4	wR1CH	107					849.2	wR1CH	60				
889.6 sR2CC 48 989.5 sR2CC 39 919.2 rR2CH2 40 916.7 wR1CH 102 937.7 twR2CH2 20 dR2 20 rR3CH2 18 sR1 964.0 sR2CC 29 sR1CC 17 919.2 rR3CH2 18 sR1 967.8 sR1CC 17 944.7 sR2CC 18 sR3CN 18 sR1 975.8 sR1CC 17 944.7 sR2CC 18 sR3C 25 sR3CN 18 sR1 10167 rR3CH2 23 sR3CN 20 sR2CC 19 943.3 rR3CH3 28 sR3CN 21 sR3CC 20 sR3CN 10 sR3CN 21 sR3CC 20 sR3CN 10 sR3CN 30 sR3CN 21 sR3CC 16 1050.3 sR3CN 30 sR3CN 16 1112.1 sR3CN 16 1112.1 sR3CN 16 1112.1 sR1CC 16 1112.1 sR1CC 16 1112.1 sR1CH1	863.0	sR3CC	39	sR2CC	20			882.5	sR1CC	25	twR2CH2'	23		
9192 rR2CH2 40 916.7 wR1CH 102 937.7 twR2CH2 20 dR2 20 919.2 twR2CH2 22 rR3CH2 18 sR1C 964.0 sR2CC 29 sR1CC 17 944.7 sR2CC 18 sR3CN 18 sR1C 975.8 sR1CC 17 980.0 wR1CH 118 18 18 18 18 18 18 18 18 16 16 18 18 16 18 18 16 18 18 16 18 18 16 18 11014 18 1053 sR3CN 30 sR3CC 21 sR3CC 16 1063 sR3CN 24 sR3CC 16 1074.1 sR3CN 24 sR3CN 16 1102.1 sR1CC 16 1101.1 sR3CC 16 1112.1 sR1CC 16 1112.1 sR1CC 16 1114.1 sR1CC 16 1114.1 sR1CC 16 1114.1 sR1CC 16 1114.1 sR1CC 16 1	894.6	sR2CC	48					899.5	sR2CC	39				
937.7 twR2CH2 20 dR2 20 99.2 twR2CH2 22 rR3CH2 18 sR1 964.0 sR2CC 29 sR1CC 17 980.0 wR1CH 118 18 sR3CN 18 sR1 975.8 sR1CC 17 583CN 20 sR2CC 19 943.7 rR3CH2 28 sR3CN 20 sR3CN 18 sR3CN 28 sR3CN 20 sR3CN 10 sR3CC 28 sR3CN 20 sR3CN 10 sR3CC 28 sR3CN 30 sR3CN 20 sR3CN 10 sR3CC 21 sR3CN 20 sR3CN 10 sR3CN 30 sR3CN 20 sR3CN 10 sR3CN 10 sR3CN 10 sR3CN 10 sR3CN 16 sR3CN <td< td=""><td>919.2</td><td>rR2CH2</td><td>40</td><td></td><td></td><td></td><td></td><td>916.7</td><td>wR1CH</td><td>102</td><td></td><td></td><td></td><td></td></td<>	919.2	rR2CH2	40					916.7	wR1CH	102				
964.0 sR2CC 29 sR1CC 17 944.7 sR2CC 18 sR3CN 18 975.8 sR1CC 17 980.0 wR1CH 118 118 1101 <t< td=""><td>937.7</td><td>twR2CH2'</td><td>20</td><td>dR2</td><td>20</td><td></td><td></td><td>919.2</td><td>twR2CH2'</td><td>22</td><td>rR3CH2</td><td>18</td><td>sR1CC</td><td>17</td></t<>	937.7	twR2CH2'	20	dR2	20			919.2	twR2CH2'	22	rR3CH2	18	sR1CC	17
975.8 sR1CC 17 980.0 wR1CH 118 1016.7 rR3CH2 23 sR3CN 20 sR2CC 19 994.3 rR3CH2 28 sR3CC 25 1025.9 sR3CN 21 sR3CC 20 1030.2 sR3CN 31	964.0	sR2CC	29	sR1CC	17			944.7	sR2CC	18	sR3CN	18		
1016.7 rR3CH2 23 sR3CN 20 sR2CC 19 994.3 rR3CH2 28 sR3CC 25 1025.9 sR3CN 21 sR3CC 20 1030.2 sR3CN 31	975.8	sR1CC	17					980.0	wR1CH	118				
1025.9 sR3CN 21 sR3CC 20 1030.2 sR3CN 31 1053.6 dR1 18 1050.3 sR3CN 30 sR2CC 21 1074.9 sR3CC 24 sR2CC 16 1074.1 sR3CN 24 sR3CC 16 1085.8 sR3CN 27 1086.6 sR1CC 16 16 1120.2 sR3CC 19 sR2CC 18 1112.1 sR1CC 52 rR1CH 16 1142.0	016.7	rR3CH2	23	sR3CN	20	sR2CC	19	994.3	rR3CH2	28	sR3CC	25		
1053.6 dR1 18 1050.3 sR3CN 20 sR2CC 21 1074.9 sR3CC 24 sR2CC 16 1074.1 sR3CN 24 sR3CC 16 1085.8 sR3CN 27 1086.6 sR1CC 16 1120.2 sR3CC 19 sR2CC 18 1112.1 sR1CC 52 rR1CH 16 1142.0	025.9	sR3CN	21	sR3CC	20			1030.2	sR3CN	31				
1074.9 \$R3CC 24 \$R2CC 16 1074.1 \$R3CN 24 \$R3CC 16 1085.8 \$R3CN 27 1086.6 \$R1CC 16 1120.2 \$R3CC 19 \$R2CC 18 1112.1 \$R1CC 52 \$R1CH 16 1142.0 1112.2 \$R2CC 18 1112.2 \$R2CC 19 \$R3CN 15 1156.5 rCH3 34 1126.1 \$R1CC 33 \$R2CC 17 1171.9 rR1CH 27 1147.1 \$R2CC 25 1187.7 rR1CH 30 1173.4 \$twR3CH2' 41 1197.7 rR1CH 23 rR2CH2' 17 1184.7 rCH3 38 rCH3' 20 1216.5 dCOH 54 \$R1CC 19 1200.2 rR2CH2' 36 1218.4 rR1CH 27 1284.4 \$twR2CH2' 20	053.6	dR1	18					1050.3	sR3CN	30	sR2CC	21		
1085.8 \$R3CN 27 1086.6 \$R1CC 16 1120.2 \$R3CC 19 \$R2CC 18 1112.1 \$R1CC 52 \$R1CH 16 1142.0 1112.2 \$R2CC 19 \$R3CN 15 1142.0 112.1 \$R1CC 33 \$R2CC 17 1156.5 rCH3 34 1126.1 \$R1CC 33 \$R2CC 17 1171.9 rR1CH 27 1147.1 \$R2CC 25 1187.7 rR1CH 30 1173.4 twR3CH2' 41 1197.7 rR1CH 23 rR2CH2' 17 1184.7 rCH3' 38 rCH3' 20 1216.5 dCOH 54 \$R1CC 19 1200.2 rR2CH2' 36 1212.8 rR2CC 19 1238.4 twR2CH2 22 1223.4 rR1CH <td< td=""><td>074.9</td><td>sR3CC</td><td>24</td><td>sR2CC</td><td>16</td><td></td><td></td><td>1074.1</td><td>sR3CN</td><td>24</td><td>sR3CC</td><td>16</td><td></td><td></td></td<>	074.9	sR3CC	24	sR2CC	16			1074.1	sR3CN	24	sR3CC	16		
1120.2 sR3CC 19 sR2CC 18 1112.1 sR1CC 52 rR1CH 16 1142.0 1112.2 sR2CC 19 sR3CN 15 1156.5 rCH3 34 112.1 sR1CC 33 sR2CC 17 1171.9 rR1CH 27 1147.1 sR2CC 25 1 1117.1 1187.7 rR1CH 30 1173.4 twR3CH2' 41 40 40 1197.7 rR1CH 23 rR2CH2' 17 1184.7 rCH3 38 rCH3' 20 1216.5 dCOH 54 sR1CC 19 1200.2 rR2CH2' 36 20 1221.8 1227.5 sR1CC 22 1214.4 twR2CH2 22 1221.8 1238.4 twR2CH2 23 1250.9 rR1CH 31 sR1CC 29 1223.3 twR2CH2 34 1291.6 sR1CC 27 rR1CH	085.8	sR3CN	27					1086.6	sR1CC	16				
1142.0 1112.2 sR2CC 19 sR3CN 15 1156.5 rCH3 34 1126.1 sR1CC 33 sR2CC 17 1171.9 rR1CH 27 1147.1 sR2CC 25 14 1197.7 rR1CH 30 rCH3' 100 1173.4 twR3CH2' 41 1197.7 rR1CH 23 rR2CH2' 17 1184.7 rCH3' 38 rCH3' 20 1216.5 dCOH 54 sR1CC 19 1200.2 rR2CH2' 36 20 1221.8 rR1CH 27 1227.5 sR1CC 22 20 20 1231.2 sR2CC 19 1208.4 twR2CH2 22 20 20 1231.2 sR2CC 19 1238.4 twR2CH2 20 20 20 1278.0 rR1CH 27 rR1CH 28 rR1CH 29 128.9 rR3CH 28 1292.3 twR2CH2 34 1291.6 sR1CC 27 rR1CH 19 1303.3 sR1OH	120.2	sR3CC	19	sR2CC	18			1112.1	sR1CC	52	rR1CH	16		
1156.5 rCH3 34 1126.1 sR1CC 33 sR2CC 17 1171.9 rR1CH 27 1147.1 sR2CC 25 117 1187.7 rR1CH 30 1173.4 twR3CH2' 41 41 41 1197.7 rR1CH 23 rR2CH2' 17 1184.7 rCH3 38 rCH3' 20 1216.5 dCOH 54 sR1CC 19 1200.2 rR2CH2' 36 41 121.8 rR1CH 27 1238.4 twR2CH2 22 41 41 1221.8 rR1CH 27 1238.4 twR2CH2 22 41 41 1221.8 rR1CH 27 1238.4 twR2CH2 22 41	142.0							1112.2	sR2CC	19	sR3CN	15		
1171.9 rR1CH 27 1147.1 sR2CC 25 1187.7 rR1CH 30 1173.4 twR3CH2' 41 1197.7 rR1CH 23 rR2CH2' 17 1184.7 rCH3 38 rCH3' 20 1216.5 dCOH 54 sR1CC 19 1200.2 rR2CH2' 36 1221.8 1221.8 1227.5 sR1CC 22 1233.4 twR2CH2 22 1233.4 twR2CH2 22 1233.4 twR2CH2 22 1233.4 twR2CH2 21 1233.4 twR2CH2 31 sR1CC 29 1282.9 rR3CH 31 sR1CC 29 1292.3 twR2CH2 34 1291.6 sR1CC 27 rR1CH 19 1320.3 sR10H 24 1291.6 sR1CC 27 rR1CH 19 1321.8 rR2CHb' 26 1303.7 sR3CC 18 1303.7 sR3CC 18	156.5	rCH3	34					1126.1	sR1CC	33	sR2CC	17		
1187.7 rR1CH 30 1173.4 twR3CH2' 41 1197.7 rR1CH 23 rR2CH2' 17 1184.7 rCH3 38 rCH3' 20 1216.5 dCOH 54 sR1CC 19 1200.2 rR2CH2' 36 1221.8 1231.2 sR2CC 19 1207.5 sR1CC 22 121 1231.2 sR2CC 19 1238.4 twR2CH2 22 121 128.4 rR1CH 31 sR1CC 29 1278.0 1282.9 rR3CH 28 1282.9 rR3CH 28 129 1282.9 rR3CH 28 1292.3 twR2CH2 34 1291.6 sR1CC 27 rR1CH 19 1320.3 sR1OH 24 1291.6 sR1CC 27 rR1CH 19 1321.8 rR2CHb' 26 1303.7 sR3CC 18 14	171.9	rR1CH	27					1147.1	sR2CC	25				
1197.7 rR1CH 23 rR2CH2' 17 1184.7 rCH3 38 rCH3' 20 1216.5 dCOH 54 sR1CC 19 1200.2 rR2CH2' 36 121.2 1221.8	187.7	rR1CH	30					1173.4	twR3CH2'	41				
1216.5 dCOH 54 sR1CC 19 1200.2 rR2CH2' 36 1221.8 1227.5 sR1CC 22 1231.2 sR2CC 19 1238.4 twR2CH2 22 1268.4 rR1CH 27 1250.9 rR1CH 31 sR1CC 29 1278.0 1282.9 rR3CH 28 1291.6 sR1CC 27 rR1CH 19 1320.3 sR1OH 24 1291.4 twR2CH2 31 121.8 1303.7 sR3CC 18	197.7	rR1CH	23	rR2CH2'	17			1184.7	rCH3	38	rCH3'	20		
1221.8 1227.5 sR1CC 22 1231.2 sR2CC 19 1238.4 twR2CH2 22 1268.4 rR1CH 27 1250.9 rR1CH 31 sR1CC 29 1278.0 1282.9 rR3CH 28 1291.6 sR1CC 27 rR1CH 19 1320.3 sR1OH 24 1291.6 sR1CC 27 rR1CH 19 1321.8 rR2CHb' 26 1303.7 sR3CC 18	216.5	dCOH	54	sR1CC	19			1200.2	rR2CH2'	36				
1231.2 sR2CC 19 1238.4 twR2CH2 22 1268.4 rR1CH 27 1250.9 rR1CH 31 sR1CC 29 1278.0 1282.9 rR3CH 28 1291.6 sR1CC 27 rR1CH 19 1320.3 sR1OH 24 1291.6 sR3CC 31 19 1321.8 rR2CHb' 26 1303.7 sR3CC 18	221.8							1227.5	sR1CC	22				
1268.4 rR1CH 27 1250.9 rR1CH 31 sR1CC 29 1278.0 1282.9 rR3CH 28 1291.6 sR1CC 27 rR1CH 19 1320.3 sR1OH 24 1294.4 twR2CH2 31 11 1321.8 rR2CHb' 26 1303.7 sR3CC 18	231.2	sR2CC	19					1238.4	twR2CH2	22				
1278.0 1282.9 rR3CH 28 1292.3 twR2CH2 34 1291.6 sR1CC 27 rR1CH 19 1320.3 sR1OH 24 1294.4 twR2CH2 31 1321.8 rR2CHb' 26 1303.7 sR3CC 18	268.4	rR1CH	27					1250.9	rR1CH	31	sR1CC	29		
1292.3 twR2CH2 34 1291.6 sR1CC 27 rR1CH 19 1320.3 sR1OH 24 1294.4 twR2CH2 31 1321.8 rR2CHb' 26 1303.7 sR3CC 18	278.0							1282.9	rR3CH	28				
1320.3 sR1OH 24 1294.4 twR2CH2 31 1321.8 rR2CHb' 26 1303.7 sR3CC 18	292.3	twR2CH2	34					1291.6	sR1CC	27	rR1CH	19		
1321.8 rR2CHb' 26 1303.7 sR3CC 18	320.3	sR1OH	24					1294.4	twR2CH2	31				
	321.8	rR2CHb'	26					1303.7	sR3CC	18				

1355.1							1326.9	wR3CH2'	47				
1370.8	rR2CH'	20	wR3CH2'	18			1337.6	twR3CH2	55				
1378.6	wR2CH2'	17	twR3CH2	15			1360.1	wR2CH2'	62	sR2CC	15		
1387.3	rR2CH	19	wR2CH2	17			1374.2	sR2CC	20				
1403.3	wR3CH2	20	wR2CH2	18	wR2CH2'	16	1393.8	rR1CH	26				
1405.6	rR2CH'	31					1406.8	wR3CH2	45				
1414.9	wR3CH2'	22					1415.5	scR2CXY	30	rR1CH	19		
1443.7	rR3CH	51	wR3CH2	19			1424.7	dCH3	52				
1457.1	rR3CH'	40					1429.1	sR1CC	42				
1470.0	sR1CC	72					1444.5	scR3CXY'	58				
1482.6	dCH3	74					1445.8	dCH3	17				
1497.9	sR1CC	45	rR1CH	19			1447.6	scR3CXY'	27	rR1CH	15		
1509.6	scR2CXY	51	scR2CXY'	21			1458.9	scR2CXY'	79				
1515.3	scR3CXY'	58					1470.8	rR1CH	28	scR2CXY	26	sR1CC	18
1524.4	dCH3a'	50	scR3CXY	26			1479.3	rR2CH'	23	dCH3a	22	rR3CH'	17
1528.0	scR3CXY	41	scR2CXY'	21	dCH3a'	19	1492.1	dCH3a'	50				
1529.8	scR2CXY'	41	scR3CXY'	21	dCH3a'	15	1493.0	sR1CC	17	scR3CXY	16		
1542.4	dCH3a	48	scR3CXY	19			1503.8	scR3CXY	52				
1545.0	sR1CC	37	rR1CH	34			1517.9	sR1CC	22	dCH3a	19		
1633.6	sR1CC	72					1531.1	dCH3a	23				
1672.1	sR1CC	65	rR1CH	15			1552.7	sR1CC	31	rR1CH	26		
3042.7	sR2CH2'	67	sR3CH2'	19			2819.7	sR3CH2	99				
3044.6	sR2CH2	90					2848.0	sR3CH2a	100				
3046.1	sR3CH2'	67	sR2CH2'	18			2855.9	sR2CH2	98				
3078.4	sR2CH'	94					2889.9	sR2CH2a	98				
3079.1	sR2CH	92					2903.7	sR3CH2'	94				
3091.1	sR2CH2a	74	sCH3	17			2905.5	sR2CH2'	93				
3094.4	sR3CH2	89					2908.3	sR2CH'	98				
3099.8	sCH3	79					2916.7	sCH3	99				
3115.2	sR2CH2a'	86					2932.3	sR3CH2a'	89				
3118.3	sR3CH2a'	86					2935.4	sR2CH2a'	89				
3162.9	sR1CH	100					2970.0	sR2CH	100				
3164.8	sR3CH2a	96					2987.3	sCH3a	87				

3180.4	sR1CH	61	sR1CO	38	2990.0	sCH3a'	87		
3180.7	sR1CO	61	sR1CH	38	3054.8	sR1CH	79	sR1CO	21
3203.1	sCH3a	82	sCH3a'	18	3055.7	sR1CH	88		
3223.5	sCH3a'	81	sCH3a	18	3058.9	sR1CO	67	sR1CH	33
3365.2	sR3NH	100			3317.3	sR3NH	100		
3691.5	sR1CH	100			3683.3	sR1CH	100		

References

- 1. Small, L.; Eddy, N.; Ager, J.; May, E. J. Org. Chem. **1958**, 23, 1387-1388.
- 2. Duttaroy, A.; Yoburn, B. C. *Anesthesiology* **1995**, *82*, 1226-1236.
- 3. Cowan, A.; Lewis, J. W.; Macfarlane, I. R. *Br. J. Pharmacol.* **1977**, *60*, 537-545.
- 4. McLamore, S.; Ullrich, T.; Rothman, R. B.; Xu, H.; Dersch, C.; Coop, A.; Davis, P.;

Porreca, F.; Jacobson, A. E.; Rice, K. C. J. Med. Chem. 2001, 44, 1471-1474.

5. Loew, G. H.; Toll, L.; Uyeno, E.; Cheng, A.; Judd, A.; Lawson, J.; Keys, C.;

Amsterdam, P.; Polgar, W. NIDA Res. Mono. **1986**, 69, 231-265.

6. Rance, M. J. *Br. J. Clin. Pharmacol.* **1979**, *7*, 281S-286S.

- 7. Eddy, N. B. J. Chronic. Dis. **1956**, *4*, 59-71.
- 8. Wentland, M. P.; Lou, R.; Lu, Q.; Bu, Y.; VanAlstine, M. A.; Cohen, D. J.; Bidlack,

J. M. Bioorg. Med. Chem. Lett. **2009,** 19, 203-208.

- 9. Uwaydah, I. M.; Waddle, M. K.; Rogers, M. E. *J. Med. Chem.* **1979**, *22*, 889-890.
- 10. Guvench, O.; Greene, S. N.; Kamath, G.; Brady, J. W.; Venable, R. M.; Pastor, R.
- W.; MacKerell Jr., A. D. J. Comput. Chem. 2008, 29, 2543-2564.
- 11. Kuczera, K. W., J. K.; Karplus, M. *MOLVIB: Program for the Analysis of Molecular Vibrations; CHARMM;*. Harvard University: Boston, MA, 1993.
- 12. Scott, A. P.; Radom, L. J. Phys. Chem. **1996**, 100, 16502-16513.
- 13. Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. **1993**, 98, 10089-10092.
- 14. Lamoureux, G.; Roux, B. J. Chem. Phys. **2003**, *119*, 3025-3039.