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Supplementary Notes  

1. Measuring RNA transcription rate by 4-thiouridine (4sU) metabolic labeling of 

newly-transcribed RNA in mouse DCs 

We isolated newly-transcribed as well as total cellular RNA from mouse DCs that were 

metabolically labeled with 4sU, and quantified it using both qPCR and nCounter. We 

added 4sU to DCs at specific time-points following stimulation with LPS, for a pre-

defined labeling time (Supplementary Fig. 1a); RNA molecules that were actively 

transcribed during that time are labeled by 4sU (Supplementary Fig. 1b). We isolated 

the entire cellular RNA population (RNA-Total), used an in vitro reducing chemical 

reaction to specifically and covalently link biotin to 4sU residues, and separated the 4sU 

labeled RNA (RNA-4sU) using biotin capture with streptavidin magnetic beads 

(Supplementary Fig. 1c). Finally, we quantified the RNA levels in both populations 

using either standard qRT-PCR for 5 genes or direct capture and count of individual 

transcripts by the nCounter system for a signature of 254 genes (Supplementary Table 

1; Methods) that are key representatives of the LPS response based on our previous 

study (Amit et. al., Science, 2009). 

Both the biotinylation and 4sU incorporation have an efficiency of less than 100%. Since 

in our computational models we base our estimates on relative RNA measurements and 

absolute RNA concentrations, our transcription rates may possibly be under-estimates. 

 



 
 

 

1.1. 4sU metabolic labeling is specific, reproducible, consistently measured by qRT-

PCR and nCounter, and has no significant effect on cellular function or 

transcriptional response of primary DCs.  

We assessed the performance of 4sU labeling by several measures. First, without 4sU 

labeling, only minimal background RNA levels are evident following 4sU purification, 

whereas after 1 hour labeling, LPS-induced genes are on average 6.8-fold enriched in 

labeled vs. total RNA, while un-induced but constantly expressed controls are only 2.5-

fold enriched on average, as expected for stable genes. Longer labeling time (4h labeling) 

increased the average fold enrichment of LPS-induced genes to 10.8-fold 

(Supplementary Fig. 2a,b). Thus, our method specifically labels newly transcribed 

RNA. Furthermore, after a sufficiently long time, all the RNA in the cell will be labeled, 

and labeled RNA will be equal to total RNA (ratio of ~1). Although 24h labeling is not 

enough to reach that point, we see that after such long labeling the differences between 

induced and control genes decrease, since a higher fraction of the RNA population 

reaches its turnover time. The nCounter measurements are consistent with qRT-PCR 

across LPS-induced genes (Supplementary Fig. 2c,d). Fold enrichment versus the flow-

through fraction is even higher than versus total RNA, indicating robust and specific 

capture (Supplementary Fig. 3). Second, measurements from replicate experiments are 

highly correlated, demonstrating reproducibility of the labeling and purification protocols 

(Supplementary Fig. 4). Third, total RNA levels do not significantly change following 

labeling of up to 24 hours, suggesting minimal effect of 4sU on transcriptional responses 

in DCs, as reported for other cell types (Dolken et. al. RNA, 2008) (Supplementary Fig. 

5).  



 
 

 

 

1.2. After 10 min labeling RNA-4sU is predominantly nuclear.  

We extracted RNA-4sU separately from nuclear and cytoplasmic fractions, and 

quantified each fraction. On average, more than 70% of mRNA-4sU is present in the 

nuclear fraction at short labeling times (10 min) and only ~50% in longer labeling times 

(45 min) (Supplementary Fig. 6a).  

 

1.3. Promoter binding by RNA polymerase II (Pol-II) peaks at or before RNA-4sU 

measurements following short labeling.  

We used Pol-II ChIP to measure binding of Pol-II to promoters of 12 selected genes. 

Although the binding of Pol-II at promoters does not directly estimate transcription rates, 

changes in binding may still indirectly reflect transcriptional activity. We find that 

promoter binding by RNA polymerase II (Pol-II) peaks at or before RNA-4sU 

measurements following short labeling (Fig. 1b, Supplementary Fig. 6b), supporting the 

short-4sU metabolic labeling as a direct measurement of RNA transcription rates. 

 



 
 

 

2. Testing the fit of the ‘constant degradation’ and ‘varying degradation’ models to 

the nCounter data 

We use the ‘goodness of fit’ test (Methods) to measure how well the data fits the 

predictions of a given model. Rejecting the model in this case means that one of the 

modeling assumptions does not hold in the data, but we cannot determine which 

assumption that is. The ‘constant degradation’ model fits the majority of genes well, and 

we reject the ‘constant degradation’ model (P < 0.01) in 16% of the cases (42/254) 

(Supplementary Fig. 8a). The ‘varying degradation’ model improves the fit to the data 

compared with the ‘constant degradation’ model, and it is rejected (P < 0.01) in only 8% 

of the cases (21/254) (Supplementary Fig. 8b). 

However, the ‘varying degradation’ is more complex than the ‘constant degradation’ 

model. Therefore, when fitting the ‘varying degradation’ model to the data we search 

through a much wider range of possible degradation functions, but this range includes 

within it also the constant functions. Consequently, if indeed a (relatively) constant 

function provides a good fit for the data, the ‘varying degradation’ model can still predict 

that. Indeed, for most genes that accept the ‘constant degradation’ model, the ‘varying 

degradation’ model fits them with a largely constant function, such that the results of 

both models are very similar on this set of genes, with a somewhat better fit by the 

‘varying degradation’ model.  

Although the varying degradation model fits the data slightly better (more genes are 

rejected by the ‘constant degradation’ model than the ‘varying degradation’ model), this 

marginal improvement must be weighted versus the preference for a simpler model. The 



 
 

 

‘varying degradation’ model allows for many degrees of freedom (12 parameters in two 

‘impulse model’ functions are fit from 26 data points), which may lead to over-fitting and 

may be highly sensitive to noise. Conversely, the ‘constant degradation’ model only fits 7 

free parameters. 

To better compare the models, we therefore used the ‘likelihood ratio test’ (Methods) to 

decide when the improvement is big enough to justify the increase in complexity of the 

model (measured as the number of parameters). In most cases, the simpler model 

(‘constant degradation’) is favored, but we find 44 genes, which significantly (p<0.01) 

reject the ‘constant degradation’ model in favor of the ‘varying degradation’ model. 

Notably, the varying degradation rate profiles calculated for these genes are smooth and 

involve a few (one or two) prominent changes in degradation rates (Fig. 2d,e), suggesting 

that they indeed reflect reliable estimates. 

Finally, we note that the distribution of p-values from the likelihood ratio test is highly 

bi-modal, and our results are very robust to the specific p-value threshold chosen. For 

example, taking p < 0.05 rather than p < 0.01 has a minimal effect on the result, 

increasing the number of genes that reject the ‘constant degradation’ model only by 19 

genes (an additional 8%), and resulting in 63 (rather than 44) of the ‘signature set’ genes 

rejecting the model.  



 
 

 

3. The degradation rates predicted by the model are supported by using 

Actinomycin D 

Using transcriptional arrest by Actinomycin D (actD) is the prevalent method in the 

literature to measure RNA degradation rates. Although actD experiments have inherent 

limitations, in particular for measuring degradation rates in a dynamic setting, such as 

during LPS response, we used this standard protocol to compare our results to the 

accepted gold-standard method used today. 

We treated cells with actD either before (0h) or at 2.5 hours after LPS stimulation 

(Methods; Supplementary Fig. 11-12) and measured mRNA levels at 6 or 4 time points 

following the treatment (respectively). We confirmed actD activity and transcriptional 

arrest with a mock experiment that measured RNA levels at the same time points, in cells 

which were not treated with actD (data not shown). 

Although the actD method is commonly used to measure RNA degradation rates, several 

lines of evidence show that this method is significantly biased and unreliable, particularly 

in dynamic settings. First, the transcriptional arrest induced by actD is an enormous stress 

on living cells, and therefore RNA levels following such treatment are significantly 

biased by it (Pelechano and Perez-Ortin., Yeast, 2008). Second, two basic assumptions of 

the standard analysis (see Methods) are problematic: (1) studies show that actD blocks 

only about 95% of the transcriptional activity (Shutt and Krueger, J Immunol, 1972), and 

(2) it is also unclear whether or not the degradation rate remains constant following actD 

addition. 



 
 

 

Our approach, combining metabolic labeling and modeling, avoids many of the biases of 

using actD. It does not stress the cell and does not interfere with the cellular machinery or 

with the normal dynamics of the response, however it infers the RNA degradation rates 

indirectly. 

We compared our approach to the standard actD experiments in two different ways. 

First, we compared actD measurements to the mRNA levels predicted by either the 

‘constant’ or ‘varying’ degradation models under the same conditions (i.e. when 

assuming no new transcription from the respective time point onward, and using the 

degradation rates estimated by each model from our analysis). At 0h, for the 83% of 

genes that accept the ‘constant degradation’ hypothesis, the predictions of both models fit 

the actD measurements to the same extent, but for the remaining 17%, the ‘varying 

degradation’ model fits the actD data substantially better, supporting our conclusions 

(Supplementary Fig. 11). At 2.5h, the differences between the models are minimal for 

all genes, since the predicted constant rates are dominated by the (later) higher rates and 

therefore both models predict very similar rates at this time point.  

Second, we used the actD measurements to predict the degradation rates at 0h and at 2.5h 

(separately, see Methods), and compared these to the rates predicted by the models. This 

analysis leads to similar conclusions, showing that the genes that reject the ‘constant 

degradation’ hypothesis correlate better with the ‘varying degradation’ model predictions, 

while for the accepting genes the correlation with the ‘constant degradation’ model is 

higher (Supplementary Fig. 12a,b). Furthermore, the genes that reject the ‘constant 

degradation’ model also showed bigger differences in degradation rates estimated based 



 
 

 

on each of the two actD experiments (Methods; Supplementary Fig. 12c), typically 

increasing at 2.5h.  

Thus, the actD experiments, despite all their biases, support our findings. 



 
 

 

4. Comparing library composition between 4sU-Seq and standard RNA-Seq 

(polyA+, RNA-Total)  

In the absence of a preliminary polyA selection step, the 4sU-Seq libraries measure a 

significantly higher level of rRNA. Most of these reads are not uniquely mapped to the 

genome (since rRNA genes are repetitive), and therefore we mapped them independently 

directly to rRNA sequences (Methods). Of the 4sU-Seq library reads, ~30% map to 

rRNA sequences (vs. 0.4% in RNA-A+-Seq) and only ~60% uniquely map to the genome 

(vs. ~82% in RNA-A+-Seq) (Supplementary Tables 3-4). Although without polyA 

selection rRNA levels rise as expected, they still remain significantly lower than their 

estimated proportion of the overall cellular RNA (~90%). 

More generally, the 4sU-Seq libraries measure a substantially different RNA population 

than standard (polyA+, RNA-Total) RNA-Seq libraries (Fig. 3b; Supplementary Fig. 

15). Mappable reads are distributed differently across the genome. While the RNA-A+-

Seq libraries are mainly enriched for mRNA exons (80% vs. 18%), the 4sU-Seq libraries 

are enriched with other RNA populations, including rRNA (14.2% vs. 0.2%), introns of 

pre-mRNAs (47% vs. 8.1%) and pre-miRNAs (0.1% vs. 0.02%). Among the genomic 

features with the most substantial bias in favor of RNA-A+-Seq (Supplementary Fig. 

16), are annotated exons (77%) and other non-annotated regions (14.5%), which generate 

polyadenylated transcripts (either protein coding or non-coding RNAs). Conversely, bias 

in favor of 4sU-Seq is very common in introns (87%), rRNA (~1%) and non-annotated 

regions (10.5%). This latter population may reflect transient, unannotated, non-

polyadenylated transcripts, such as antisense or non-coding RNAs.  



 
 

 

Differences between the libraries arise both since 4sU-Seq measures newly-transcribed 

RNA, and since it avoids polyA selection biases (such as increased 3’ read coverage, and 

elimination of RNA species without polyA signals). For example, the replication-

dependent Histone genes, which are the only eukaryotic mRNAs that lack a polyA tail 

(Marzluff, Curr Opin Cell Biol, 2005) are not detectable in the RNA-A+-Seq samples but 

are clearly and differentially expressed in 4sU-Seq (Supplementary Fig. 17a). 

Additionally, several primary microRNA transcripts (pri-miRNAs) are substantially more 

abundant in 4sU-Seq than in RNA-A+-Seq (Supplementary Fig. 17b). Although pri-

miRNA are poly-adenylated (Cai et. al. RNA, 2004), efficient pri-miRNA processing 

occurs co-transcriptionally, before poly-adenylation (Pawlicki and Steitz, Trends Cell 

Biol, 2010). Thus, some pri-miRNA transcripts may be short-lived, consistent with their 

enrichment in 4sU-Seq. 



 
 

 

5. Comparing different RNA degradation rate estimates 

We use several comparisons to verify the consistency of the degradation rates we 

estimated, both within our own data and with other methods or other works in different 

systems. 

First, for the 254 ‘signature set’ genes, we compared the two independent data sources we 

obtained: the nCounter high-resolution data and the genome-wide 4sU-Seq and RNA-A+-

Seq measurements. We find that the constant degradation rates predicted by our model in 

each of the two data sets (Figure 3c and Supplementary Figure 10a) are highly similar 

(data not shown). Moreover, of the 44 genes with predicted varying degradation based on 

the signature-set data, 28 (64%) also reject the ‘constant degradation’ model based on the 

genome-wide data (although the statistical tests we use are different), while remaining 16 

genes peaks are not detectable at the 1h time resolution of the genomic experiment.  

Second, for the 254 ‘signature set’ genes, we compared the degradation rates estimated 

by the constant and varying degradation models with the rates we predict based on the 

Actinomycin D data (Methods; Supplementary Figure 12a-b). We find that the two 

measurements are highly correlated, but that our models predict shorter RNA half-lives 

on average (i.e., higher degradation rate) than half-lives measured by Actinomycin D 

(e.g., median half-life at 0 hours is 26 min. with the ‘varying degradation’ model, and 80 

min. with Actinomycin D). The inherited biases in standard Actinomycin D techniques 

may contribute to the observed discrepancies. Our measurements indicate that 

Actinomycin D treatment does not block transcription completely (data not shown), and 



 
 

 

that can leads to under-estimated degradation rates (i.e., predicts the RNA is more stable), 

as indeed we find when comparing to our model predictions. 

Finally, we compared our model’s genome-wide predictions to RNA degradation rates 

measured previously in fibroblasts by 1 hour of metabolic labeling (Dolken et. al. RNA, 

2008). We again find that the ranking of estimated half-lives in our experiments 

positively correlates (Spearman !=0.56) with fibroblasts degradation rates 

(Supplementary Fig. 20), but our half-life estimates are shorter on average. Some of the 

discrepancies here could be accounted for by the improved RNA quantification assays we 

use compared with Dolken et. al., and by differences in cell type. Indeed, there are 

evidence in the literature (Leclerc et. al., Cancer Cell Int., 2002) for twice as long RNA 

half-life in one cell type versus another.  

Notably, these discrepancy in absolute degradation rates may be due to inherent 

limitations in all techniques (ours, which estimates degradation rates indirectly, as well as 

others, which are significantly biased), and highlight the need for direct and reliable 

methods to measure degradation rates. Yet, despite the possible discrepancy in the 

absolute degradation rates, the correlation with other rate estimates remains high, 

suggesting that the ranking of the RNAs stability and most importantly, the ratio between 

RNA transcription and degradation rates, on which we base our conclusions, are reliable 

and accurate.  



 
 

 

6. Alternative isoforms and overlapping transcripts 

Our model and analysis are conducted entirely at the level of a gene locus. Thus, if 

multiple splice isoforms are expressed simultaneously, our computed transcription, 

processing and degradation rates represent an ‘average’ over all the transcripts from that 

locus.  

To assess whether the signature genes and other transcripts in our system express more 

than one major RNA species during the response to LPS, we applied Scripture, an ab-

initio transcript reconstruction algorithm developed in our lab (Guttman et. al. Nature 

Biotechnology. 2010) to our strand-specific polyA+ RNA-Seq libraries. We considered 

all splicing isoforms with minimal expression (based on RPKM) and a significant 

difference (more than 300 bases) between them.  

In the signature set, we find that 24% (60/254) of our signature set genes express only 

one major RNA species throughout the response. Furthermore, examining the probes 

designed for genes with more than one splice variant, we find that for 70% of genes 

(178/254), the probe would detect over 90% (i.e., missing at most 1 variant) of RNA 

species produced from that gene (including both pre-mRNA and mRNA). This is 

consistent with the intended design of the code set, and indicates that it can capture the 

needed RNA species for the vast majority (94%, 238/254) of the genes. 

In the genome-wide data, approximately 27% (2,737/10,106) of the Refseq genes 

express only one major transcript, and over 75% express less than 5 (between 1-4) 

transcripts. We also find evidence for antisense transcription in 3% (268/10,106) of the 

RefSeq genes. 



 
 

 

Although many of the genes in our system express alternative isoforms, our model does 

not distinguish overlapping transcripts, as noted above. Thus, if several alternative RNA 

species are produced from a single gene, each with a different degradation rate and a 

different temporal expression pattern (i.e., different RNA variants dominate the RNA 

population at different times), then the predicted variable degradation rates might actually 

reflect that change. However, other factors can also lead to variation between specific 

sub-populations of RNAs, including cellular localization (e.g. nuclear vs. cytoplasmic, 

specific locations in the cytoplasm, or RNA sequestration in p-bodies) and time of 

production (e.g. very ‘old’ RNAs are marked by proteins and stabilized). Since 

distinguishing sub-populations within a specific gene’s RNA population is beyond the 

scope of our current model, we consider the degradation rate that we predict as an 

‘average’ degradation rates for the entire population. If the relative frequency of stable 

splice variants will change over time, so will the ‘average’ degradation rate of the 

population, which is exactly what our model predicts. 

Alternative isoforms can also lead to biases in estimating pre-mRNA levels. Since we 

base our estimates on distinguishing exonic from intronic reads, if an exon in one isoform 

is excised with an intron in another, in a manner not reflected in the canonical (Refseq) 

definition of the gene’s exons and introns, then our estimates can be inaccurate. 

Moreover, since our libraries are not strand-specific, transcription from the other strand 

(most likely antisense-transcription) can also lead to similar biases. We therefore 

performed several tests and introduced several filters to address these potential issues. 

1. We included in this analysis only transcripts with a single splice variant in Refseq. 

However, Refseq likely underestimates the number of isoforms (see e.g. Trapnell et 



 
 

 

al, Nature Biotechnology 2010), and our RNA-Seq data likely reflects additional 

splice variants and transcripts.  

2. Alternative isoforms do not have a major impact on our RPKM estimates. We 

examined each exon defined by our ab-initio predicted transcripts. An ‘exon’ is 

defined as any transcript that is expressed in the polyA+ libraries (our transcript 

assembler ensures these are flanked by appropriate splice donor and acceptor sites, 

and supported by ‘spliced’ reads). We then asked how many introns in the Refseq 

annotations overlap such an exon (over at least 50% of the intron’s length) in either 

the sense or antisense strand. We expect that biases caused by overlapping 

transcription will lead to different RPKM estimates between introns of the same 

transcript. We therefore compared the RPKM (from 4sU-Seq) of adjacent introns in 

the same transcript that either (1) do not intersect any exons (either sense or 

antisense), (2) only one of which intersects an exon, or (3) both intersect an exon. A 

one-sided test suggests that the values in group (2) or (3) are not significantly higher 

than in group (1) (p < 0.98 and p<0.62 respectively), thus supporting our estimated 

pre-mRNA RPKM values. 

3. Extreme alternative isoforms biases are limited. Although alternative isoforms 

biases do not seem to have a global effect, they might still have a major impact in 

specific cases. We therefore looked for expressed transcripts that overlap a sense or 

antisense strand exon in 10% or more of their introns. We find that out of the 

expressed transcripts, 16% (1469/10,106) overlap a sense exon, and 1% (84/10,106) 

overlap an antisense exon, suggesting that such extreme cases are limited to a small 

fraction of the transcripts. 



 
 

 

In light of these findings, we excluded from our analysis transcripts with significant 

alternative isoforms biases. When fitting the ‘constant degradation’ model, we removed 

from the set of 10,106 expressed RefSeq genes all genes for which we find evidence for 

antisense transcription (268 genes; 3%). When fitting the ‘constant degradation and 

processing’ model, we excluded from the set of 3,011 expressed genes (with sufficient 

intron and exon expression) all genes with antisense transcription (125 genes; 4%) and all 

genes that overlap a sense or an antisense exon (764 genes; 25%). We conservatively 

analyzed only the remaining 2,122 genes, for which our predictions should be relatively 

accurate. Notably, genes with multiple isoforms are enriched with ribosomal proteins, 

and genes with anti-sense transcription are enriched with immune response genes 

(chemokines), including many TFs (Supplementary Figure 24c). 



 
 

 

Supplementary Methods  

nCounter code sets design 

Code sets were designed and constructed to detect the 254 ‘signature’ genes. In designing 

the gene specific probes, NanoString utilizes the RefSeq database as the source for 

transcript sequences. The target sequence of interest is scanned from 5' to 3' for all 

possible 100nt target regions. Each region is screened and scored for the following 

properties: sequence composition (%GC, polyC, repeat sequences, non-ATGC bases), 

homology with other targets in the transcriptome, thermodynamic properties (Tm), and 

isoform coverage (if applicable). The selection algorithm selects a single probe for the 

target. The location of the probe is not biased by position along the transcript, but rather 

is directed by the most optimal sequence from a homology and thermodynamic 

perspective, and if possible – to constitutive exons, capturing multiple splice isoforms. 

Each probe matches a 100 bases long exonic sequence of the target genes, and therefore 

detects both pre-mRNA and mature mRNA. The location of these 100 bases within the 

exonic sequence of the gene varies uniformly across the 254 genes in our signature set, 

ranging from probes located at the very beginning (5’ end) of the gene, and some located 

at the 3’ end of the gene. 

 

nCounter data normalization 

We normalized the nCounter data (Supplementary Table 2) in two steps. First, we 

controlled for small variations in the efficiency of the automated sample processing by 

normalizing all samples analyzed on a given run to the levels of the sum of positive 

spiked-in controls provided by the nCounter system. Second, we relied on 8 control 



 
 

 

genes (Ppp2r1a, Ndufs5, Psma7, Tomm7, Psmb4, Ndufa7, Eif4h, Capza1), which are 

highly expressed and were identified from previous work1 as unperturbed upon LPS 

stimulation. For every sample, we computed the weighted average mi of the RNA counts 

of the seven transcripts, and normalized the sample’s values by multiplying by 1/mi. 

 

Estimating the ‘fraction of explained variance’  

To estimate the percent of variance in a set of measurements that is explained by 

a model predictions , we use the following formulation. 

First, define the following quantities (where y = 1
n

yi
i=1

n

! is the mean of the 

measurements): 

SSTotal = (yi ! y )2

i=1

n

" =  the total sum of squares

SSRegression = (xi ! y )2

i=1

n

" =  the explained sum of squares

SSError = (yi ! xi )
2

i=1

n

" = the residual sum of squares

 

If for our regression model (e.g. linear regression), than the 

unexplained variance is: 

fraction of explained variance =
SSRegression

SSTotal
=
SSTotal ! SSError

SSTotal
= 1! SSError

SSTotal
= r2  

where r2 is the ‘coefficient of determination’ of the regression model. 

However, this is not true in our case. Therefore, we define the difference by 

SSU = SSTotal ! (SSError + SSRegression ) , and now we get that SSTotal = SSError + SSRegression + SSU , 

and so: 



 
 

 

 

Our estimator is therefore an upper bound on the fraction of explained variance. 

 

Dynamic model of RNA transcription and degradation in the signature set 

Modeling. We use a first-degree dynamic model that directly connects RNA expression 

with transcription and degradation rates. Formally, let ! be the transcription rate 

(RNA/min*cell) and " the degradation rate (1/min) and let X be the expression level of a 

gene x (RNA/cell), the time evolution of X in time is directly determined by the rates: 

dX
dt

= !(t) " #(t)X
 

When we measure RNA-total we globally integrate the rates over the entire lifetime of 

the cell. Therefore: 

 

However, when we measure , the RNA-4sU level of gene x after labeling for tL 

minutes, we locally integrate the rates: 

 

!X(T ! tL ) = 0

!X(T ) = !X0 + "(t) ! #(t) !X dt
0

T

$ = "(t) ! #(t) !X dt
T ! tL

T

$
 

To estimate !, we make two assumptions: (1) ! and " are approximately constant during 

the (short) labeling period, and (2) with short enough labeling time ( ), RNA-4sU 

is mostly nuclear, and hence we assume it is subjected to little if any degradation ("=0). 



 
 

 

With the first assumption we have an analytic solution for the differential equation 

(where #T and "T are the constant values for # and " at labeling time T): 

 

and when " approaches 0 (the second assumption) we get that: 

 

!X(T ) = !T

"T
1# e#"T $tL( ) %

"T %0

tL!T

&!T =
!X(T )
tL

 

Therefore,  directly measures the average transcription rate during the labeling period. 

We use a modeling scheme that compares two parametric descriptions of the rate 

functions. Since both the transcription rate (#, RNA-4sU) and the expression levels (X, 

RNA-total) are measured experimentally, we expect both to include a certain level of 

noise. We assume an additive Gaussian noise model, which we estimated from 

experimental repeats. Fitting smooth functions (like a constant or a sigmoid function) to 

the data, should remove much of this noise, and yield more accurate results. 

We describe temporally varying rates with the ‘impulse’ model, a 6-parameter double-

sigmoid function2,3: 

rate(t) = 1
h1

h0 + h1 ! h0( ) 1
1+ e!" t! t1( )

#
$%

&
'(
h2 + h1 ! h2( ) 1

1+ e!" t! t2( )
#
$%

&
'(

 

The first model (‘constant degradation’) uses an impulse model for the transcription 

rate !(t) and a simple one-parameter constant function for the degradation rate.
 
The 

second model (‘varying degradation’) uses a different parameterization and estimates a 

temporally varying "(t), which is modeled using a second impulse model. 



 
 

 

Fitting the model to the data. The likelihood of the data , given the model 

predictions {x1...xn}  is: 

  
log L(D; M ) = log L({y1...yn};{x1...xn},! Exp ,!Tx ) = log p( yi | xi ,! )

i=1

n

"  = log p( yi | xi ,! )
i=1

n

#
  

With each model, we optimize this target function using the Nelder-Mead simplex 

algorithm, a popular direct search method for multidimensional unconstrained 

minimization that does not use analytic gradients4.  

Our optimization procedure includes several steps: 

(1) We fit an impulse model to #(t) (optimized by multiple random initializations): 

   
!(t) =

!X (t)
tL

=
!X (t)
10

 

(2) We fit a second impulse model directly to RNA-total data (X(t)).  

(3) We use the functions fitted to #(t) and X(t) to find an initial estimate of "(t). We 

use the analytic solution and relating X(t) and #(t) to "(t) 

 

and estimate "(t) at measured time points. We treat these estimated values as 

traning data, and find the parameters (either for constant function or impulse 

model) that optimize the fit to these values. 

(4) Using the initial parameters of !(t) and "(t) as initialization points, and jointly 

optimize the parameters to maximize the likelihood of the model given the entire 

data (including both #(t) and X(t)).  



 
 

 

Statistical tests. We use two complementary statistical tests. The first is a goodness of fit 

test that measures how well the data fits each model (separately). Rejecting the model in 

this case means that one of the modeling assumptions does not hold in the data, but we 

cannot determine which assumption that is. We estimate the variance from data points 

measured in replicates, and use the standard least square error and associated chi-square 

distribution with n degrees of freedom5 to calculate a p-value: 

Var(y x) =
xi ! yi( )2

" 2
i=1

n

#  $

pvalue = P y ' Var(y ' | x) >Var(y | x)( ) ~ % 2 (n)

 

The second test is a likelihood ratio test, which compares the two alternative models, 

and identifies in which cases the simpler model (‘constant degradation’) should be 

rejected in favor of the more complex model (‘varying degradation’). We use a standard 

nested likelihood ratio test6.   

 

Read mapping  

All reads were aligned to the mouse reference genome (NCBI 37, MM9) using the 

TopHat aligner7 with default parameters. Briefly, TopHat uses a two-step mapping 

process, first using Bowtie8 to align all reads that map directly to the genome (with no 

gaps), and then mapping all reads that were not aligned in the first step using gapped 

alignment. TopHat initially splits each read into 25 bases long segments, and align each 

segment independently (with up to 2 mismatches), and in the next step merge these 

segments together into the complete read alignment. To identify split reads (splice 

junctions) it requires an ‘anchor region’ of 8 bases mapped with no mismatches on each 



 
 

 

side of the gap. We used only reads that were mapped uniquely to the genome for further 

analysis. 

 

Quantification of transcript abundance from RNA-Seq data  

We estimate the expression of a transcript X in both RNA-A+-Seq and RNA-4sU-Seq by 

standard ‘Reads Per Kilobase exon model per Million mapped reads’ (RPKM), as 

previously described in9, but we define it over exons alone: 

 

where r(XExon) is the number of reads mapped to exons of X, RExon is the sum of reads 

mapped to all exons (of all transcripts) in the experiment, and s(XExon) is the total length 

(in kilobases) of exons in X.  

Since the RNA-A+-Seq and 4sU-Seq libraries measure markedly different RNA 

populations (Fig. 3b), by concentrating on exonic reads alone we are able to compare the 

expression of genes in both types of libraries. 

We normalized RPKM estimates in two steps. First, we select a set of control genes 

(NM_010885, NM_018753, NM_013477, NM_011116, NM_011873, NM_008138, 

NM_007505, NM_010684) as previously described10. For every sample, we computed 

the weighted average mi of the RPKM of the controls, and normalized the sample’s 

values by multiplying by 1/mi. Second, the mean and standard deviation of each sample’s 

log(RPKM) values is adjusted to the overall mean and standard deviation across all 

samples. We used measurement of the ratio between quantity of RNA in each sample 

before and after labeled RNA purification (0.046 ± 0.019 SD), to normalize RNA-total 

and RNA-4sU samples relative to each other. 



 
 

 

We identify expressed genes by taking genes with log2(RPKM) >= 2 for at least a single 

time point. Of the 25,000 mRNAs in the Refseq11 database, ~40% (10,106) are expressed 

above threshold for at least one time point in both RNA-4sU and RNA-A+-Total. From 

this set of genes, we excluded transcripts with significant antisense expression (to avoid 

biases arising from strand-specificity; see Supplementary Note 6), leaving us with 9,838 

genes. 

 

Dynamic modeling of RNA transcription and degradation in genome-wide data 

Compared to our signature-set measurements, in our genome-wide data we expanded the 

temporal scope and reduced the temporal resolution, generating a 6h time course, with 1h 

intervals between measurement points. To extract labeled RNA in sufficient quantities for 

sequencing, we had to extend the labeling time (to 45 min). As labeling time increases 

RNA-4sU is increasingly subjected to degradation, and thus no longer directly 

approximates transcription rates, but a ‘local integration’ of the average transcription and 

degradation rates over 45 minutes. All these changes affect our modeling scheme, and we 

adjust it accordingly. 

First, the lower temporal resolution, and the fewer time points do not allow fitting a 

model with too many parameters. Therefore, we cannot fit the ‘varying degradation’ 

model in this setting, and only fit the ‘constant degradation’ model (that has 7 

parameters). As a result, we can only use the ‘goodness of fit’ test (above), and find 

genes that reject the ‘constant degradation’ model, but we cannot determine which of the 

model’s assumptions lead to the rejection. 



 
 

 

Second, we use our signature-set predictions to guide the search for optimal parameters 

for the genomic data, by directing the search towards parameters used in the signature set. 

To this end, we build a Gaussian mixture model prior on the model parameters using the 

optimal signature-set parameters. We estimate one Gaussian from each of the clusters I-

VIII, resulting with a mixture of 8 Gaussian models for each parameter. We adapt the 

likelihood function to include the prior: 

 

Where the second term is estimated as before, and the first term is the prior: 

P(M ) = p({! j}) =
1
8

P({! j} | µi ," i )
i=1

8

#

P({! j} | µi ," i ) = N(! j | µij ," ij )
j=1

m

$
 

We optimize the likelihood function as before. 

Finally, since we no longer have replicated measurements, we estimate the variance of 

the data based on the background distribution of expression values in the genome, and 

use this estimate in the ‘goodness of fit’ test. 

 

Quantification of mRNA and pre-mRNA abundance from 4sU-Seq data 

We estimate the expression of the pre-mRNA of X by intron-RPKM, and the overall (pre-

mRNA+mRNA) expression of X by exon-RPKM: 

intronRPKM (X) = 109 ! r(XIntron )
RExon + RIntron( ) ! s(XIntron )

exonRPKM (X) = 109 ! r(XExon )
RExon + RIntron( ) ! s(XExon )

 



 
 

 

where r(X) is the number of reads mapped to exon or intron sequences of X, R is the sum 

of reads mapped to all exon or intron sequences of all transcripts in the experiment, and 

s(X) is the total length (in kilobases) of exon or intron sequences in X.  

We implicitly assume that intronic reads are predominantly derived from pre-mRNAs, 

rather than from excised introns. In theory, some of these reads (those that overlap only 

introns, rather than intron-exon junctions) can arise from sequencing of the excised 

introns and lead to over-estimated pre-mRNA expression levels and under-estimated 

processing rates. However, equivalent reads coverage of introns and intron-exon 

junctions in our 4sU-Seq data suggest that this is unlikely. Furthermore, previous studies 

also suggest that introns degrade very fast (e.g. 3.5 and 6 min for two example introns12). 

Finally, deletion of the de-branching enzyme (Dbr1 in yeast or its mouse ortholog) lead 

to fast accumulation of high levels of circular introns13-15, suggesting that during normal 

growth de-branching and intron degradation occur very fast. 

Although a high fraction of the reads (47%) map to introns, since introns are very long, 

their coverage is relatively low (Supplementary Fig. 12b, the intron annotation 

normalized both by library size and by length in kb). Therefore, we focus on the 30% of 

the expressed genes (3,011/10,106) in which both introns and exons are expressed above 

a threshold (RPKM >= 2) for at least one time point. From this set of genes, we excluded 

transcripts with antisense transcription or significant alternative isoforms biases (see 

Supplementary Note 6), leaving us with 2,122 genes. 

 

 

 



 
 

 

Dynamic modeling of processing rates 

We estimated the expression of recently transcribed pre-mRNAs and mature mRNAs 

separately, by distinguishing exonic from intronic reads (see above). Intronic reads are 

produced only from pre-mRNA transcripts, and therefore their expression estimates the 

pre-mRNA-4sU level (P). Conversely, exonic reads are produced from both mature 

mRNA and pre-mRNA, and therefore their expression measures mRNA-4sU, the entire 

recently transcribed RNA population (X), which is the sum of pre-mRNA (P) and mature 

mRNA (M). 

Modeling. Let ! be the transcription, " the degradation and " the processing rate. We 

extend our previous dynamic model to include the processing rate as following: 

(1) 
dP
dt

= ! " # P  

(2) 
dM
dt

= ! P " #M  

(3) X = M + P     ! dX
dt

= " # $M  

In this model we assume that (1) mRNA is produced in two steps: first pre-mRNA is 

transcribed, and then it is processed into mature mRNA, and (2) that only the mature 

mRNA is exported to the cytoplasm, where it is degraded. Therefore, we describe 

processing rates in terms of pre-mRNA half-life (while mRNA half-life refers to 

degradation rate). We use a modeling scheme with an ‘impulse’ model2,3 for transcription 

rate, and with constant degradation and processing rates. 

Since we use 4sU-Seq data, we locally integrate the rates: 



 
 

 

 

To estimate !, we make two assumptions: (1) pre-mRNA is at steady state during the 

(short) labeling period, and (2) all rates (!, " and ") are approximately constant during the 

(short) labeling period.   

From the first assumption, we can simplify equation (2) of the model: 

 

And, from the second assumption, we have an analytic solution for this equation: 

 

To estimate #, we use here the temporally constant " values that we estimated with the 

previous model.

 

 

Fitting the model to the data. We optimize the likelihood of the data as described before. 

We fit the parametric description to the estimated !(t) and P(t) values using equation (1) 

of the model. Our optimization procedure includes several steps: 

(1) We fit an impulse model to !(t) (optimized by multiple random initializations). 



 
 

 

(2) We fit a constant to initial values for $(t). To predict initial $(t) values, we assume 

that during the (short) labeling period "=0 and all other rates (!, ") are constant. 

Therefore:  

 

(3) We use these parametric descriptions of !(t) and $ as initialization points, and 

optimize equation (1) of the model globally over both P(t) and !(t).  

Testing the fit. We use a goodness-of-fit test as before (with the standard least square 

error). When rejecting the model, the goodness-of-fit test cannot indicate which of the 

modeling assumption led to rejection. Specifically here, we cannot say if it is the constant 

degradation or the constant processing rate assumptions (or both) that lead to the 

rejection. 
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Supplementary Figure 1: Metabolic labeling of newly transcribed RNA by 4-

thiouridine (4sU). 

(a) Metabolic labeling using 4-thiouridine (4sU). After stimulation, we add 4sU (red 

squares) to growing cells for a pre-defined time, collect the cells and extract total RNA 

(blue). Using biotin capture with streptavidin magnetic beads, we purify labeled RNA 

(red) from the total RNA extract. (b) Transcription with and without 4sU. When 4sU is 

present, it is incorporated into the growing RNA chain in place of uridine. (c) Purification 

using streptavidin magnetic beads. Total RNA extract is biotinylated by covalently 

linking biotin (2, orange) to 4sU, followed by binding to Streptavidin coated magnetic 

beads (3, light blue). Biotylinated (4sU labeled) RNA is magnetically isolated, whereas 

unlabeled RNA is washed out. Finally, cleaving the biotin-4sU disulfide bond releases 

the labeled RNA from the beads (4).  
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Supplementary Figure 2: Newly transcribed (4sU labeled) RNA is enriched in 

responsive genes in DCs at 4h after LPS stimulation. 

Shown is the fold enrichment in 4sU labeled vs. total RNA in DCs, at 4h post-LPS 

stimulation, after different metabolic labeling times (0h: no labeling; 10 min and 1, 4 or 

24 hours of metabolic labeling). (a) Newly transcribed (4sU labeled) RNA is enriched in 

responsive genes in DCs at 4h after LPS stimulation. Shown are the mean fold 

enrichments in 4sU labeled vs. total RNA (Y axis) based on nCounter quantification. 

Black: 19 control genes whose expression does not change during the response to LPS; 

gray: 235 genes whose expression changes in the response (either induced or repressed). 

Error bars represent the standard error. (b) nCounter quantification of 19 control genes 

(black), whose expression does not change during the response to LPS and of 235 genes 

(gray), whose expression changes in the response (either induced or repressed). Shown is 

the distribution of fold enrichment in 4sU labeled vs. total RNA. The mean and standard 

deviation of the fold change for control and induced genes is indicated to the right. (c) 

Four illustrative examples of fold enrichment in 4sU labeled vs. total RNA (Y-axis, 

measured by nCounter) after different labeling times (X-axis). Gene names shown on top 

(Three induced genes: Cxcl10, Il12b, Cxcl1, and one control gene: Tomm7). (d) Four 

illustrative examples of fold enrichment in 4sU labeled vs. total RNA (Y-axis, measured 

by qRT-PCR) after different labeling times (colored bars, ordered from no labeling to 

24h). Gene names shown on bottom (two induced genes: Il12b, Cxcl10, one control gene: 

Gapdh and two rRNA controls: 18S, 28S).  
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Supplementary Figure 3: 4sU labeled RNA is enriched relative to flow through 

RNA. 

(a) Experiment overview. We add 4sU to growing cells for a pre-defined labeling time, 

collect the cells and extract total RNA (T, blue). Using biotin capture with streptavidin 

magnetic beads, we purify labeled RNA (L, red) from the total RNA extract. Labeled 

RNA (L) binds to the magnetic beads, while the rest of the RNA is washed, and collected 

separately (flow-through RNA, F, yellow). All data collected at 4 hours after LPS 

stimulation and 4 hours 4sU labeling.  (b) Expression level of four example genes (3 

induced genes: Cxcl10, Il12b, Cxcl1, and one control gene: Tomm7) as measured by 

nCounter from total RNA (T, blue), 4sU labeled RNA (L, red) and flow-through RNA (F, 

yellow). (c) 4sU purified RNA is enriched relative to flow-through RNA. Shown is the 

mean fold enrichment (Y axis) of 4sU-purified RNA vs. total RNA (left) or vs. flow-

through RNA (right). Black: 19 control genes, whose expression does not change during 

the response to LPS; Grey: 236 genes, whose expression changes in the response (either 

induced or repressed). Error bars represent the standard error. (d) Distribution of fold 

enrichment of RNA-4sU over RNA-Total (top) or flow-through RNA (bottom), based on 

nCounter quantification. The mean and standard deviation fold change for all control and 

induced genes is indicated to the right. 
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Supplementary Figure 4: nCounter measurements of RNA-4sU and RNA-Total are 

reproducible. 

Shown are scatter plots of nCounter measured expression values (X and Y axes, log 

scale) for 254 signature genes from replicate experiments, for either RNA-4sU (top row) 

or RNA-Total (bottom row), along with the Pearson correlation coefficient (!, top).  

Replicates represent two samples per time point for which all the purification steps were 

conducted independently per sample. (a) RNA-4sU labeled and RNA-Total collected in 

DCs at different times post-LPS stimulation (0h: no stimulation; 1, 2, 4, 6 or 9 hours after 

stimulation) after 30 min metabolic labeling. (b) RNA-4sU and RNA-Total collected in 

DCs at different times post-LPS stimulation (30, 45, 60 or 75 minutes after stimulation), 

after 10 min metabolic labeling.  
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Supplementary Figure 5: Minimal effect of growth in 4sU medium on expression 

levels in response to LPS stimulation. 

Shown are scatter plots of RNA-Total expression values (X and Y axes, log scale) 

measured by nCounter for 254 signature genes, at 4h post-LPS stimulation, after different 

metabolic labeling times (0h: no labeling; 1, 4 or 24 hours of metabolic labeling, axis 

labels). The Pearson correlation coefficient (!) is shown on top.   
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Supplementary Figure 6: 4sU-labeled RNA following 10 min of labeling measures 

transcription rates in unperturbed cells.  

(a) After 10 minutes labeling, most 4sU purified RNA is nuclear. Shown is the fraction of 

nuclear 4sU-RNA (out of nuclear and cytoplasmic 4sU-RNA) from DCs collected at 3h 

post-LPS stimulation, after different metabolic labeling times (10 and 45 minutes, light 

and dark blue, respectively). Expression levels in each fraction were quantified using 

qRT-PCR for 3 induced genes (ifit2, irf1 and stat1) and two controls (28S, 18S). The 28S 

measurement is used for normalization, and thus not shown. The low nuclear levels of 

18S might be due to contamination with unlabeled rRNA, which is more significant for 

rRNA because of its high abundance in the cell (~98% of cellular RNA). (b) RNA-

polymerase II occupancy at promoters of LPS-induced genes agrees with RNA-4sU 

measurements following 10 min labeling. Shown are relative pol-II ChIP enrichment 

values (Y axis, blue curve), normalized relative to control genes (Crytalin, b-globin), at 6 

time points post LPS stimulation (X axis, 0h, 15, 30 min, 1 and 3 hours) for two 

representative genes from each of the clusters II-VIII from Fig. 2 (denoted on left). The 

relative RNA-4sU (red) and RNA-total (green) levels of each gene are also shown for 

reference. 
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Supplementary Figure 7: Peaks in transcription precede peaks in expression by 15-

30 minutes. 

(a) Shown is the average time-shifted correlation coefficient (!) between RNA-4sU and 

RNA-total profiles for each of the 11 possible time shifts (1=no shift, 2= one time point 

(15 min) shift, etc.) across all 254 signature genes. (b) Top: same as (a), but for genes in 

each cluster I-VIII separately (clusters numbered as in Fig. 2, brackets: number of genes 

in cluster). Pearson correlation coefficient (!) of the best time-lag correlation between the 

two profiles is indicated on top, with the optimal time lag in brackets. Bottom: the 

cluster-averaged profile for RNA-4sU (red) and RNA-Total (blue) at each time point.  
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Supplementary Figure 8: ‘Goodness-of-fit’ tests for the constant and varying 

degradation models  

(a) The ‘constant degradation’ model fits the majority of genes well. Shown is the 

distribution of the least-square error of the ‘constant degradation’ model. Dashed line: the 

threshold for rejecting constant degradation (p<0.01): 16% (42/254) of the cases are 

rejected. (b) The ‘varying degradation’ model improves the fit of the data. Shown is the 

distribution of the least-square error of the ‘varying degradation’ model across all 254 

genes in the ‘signature set’. Dashed line: the threshold for rejecting varying degradation 

(p<0.01): only 8% (21/254) of the cases are rejected. 
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Supplementary Figure 9: The ‘varying degradation’ model does not dramatically 

improve the fraction of explained variation in the data compared to the ‘constant 

degradation’ model. 

Shown is the distribution of the difference in the fraction of variance explained for each 

gene by the ‘constant degradation’ and the ‘varying degradation’ model. Positive values 

are the extra fraction explained by varying degradation. 
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Supplementary Figure 10: Distribution of RNA half-lives predicted by the 

‘constant’ and ‘varying’ degradation models. 

(a) The distribution of RNA half-lives (minutes) estimated by the ‘constant degradation’ 

model. (b) The distribution of RNA half-lives (minutes) estimated by the ‘varying 

degradation’ model at each of the 13 time points in which RNA time-course 

measurements were taken (between 0 to 3 hours, in 15 minutes intervals).
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Supplementary Figure 11: Comparing the Actinomycin D data with the model 

predictions. 

Comparison of the fit of predictions by the ‘constant degradation’ and ‘varying 

degradation’ models to RNA levels measured following Actinomycin D treatment. 

Shown are distributions of least-square-error (LSQ, X-axis; normalized by expression) 

between RNA levels measured at several time points after the addition of Actinomycin D 

and predicted levels based on either the constant (left) or varying (right) models, for the 

210 genes that accept the ‘constant degradation’ hypothesis (upper row) and the 44 genes 

that reject it (bottom row). Actinomycin D was added either before LPS treatment (actD 

at 0h; two left panels) or at 2.5 hours after LPS treatment (actD at 2.5h; two right panels).  

The model predictions of RNA levels are based on the RNA levels at the time of 

Actinomycin D addition, on the model (either ‘varying’ or ‘constant’) degradation rate at 

the time of Actinomycin D addition and assuming transcription arrest after Actinomycin 

D addition. The mean and standard-deviation of LSQ scores is indicated at the top of 

each histogram. Compared to RNA levels measured following Actinomycin D treatment 

before LPS stimulation (0h, two left panels), the ‘varying degradation’ model improves 

the fit of the 44 genes that reject the ‘constant degradation’ model (bottom), and has 

comparable fit as the ‘constant degradation’ model for the remaining genes (top). The 

two models have comparably good fit for all genes to RNA levels measured following 

Actinomycin D treatment at 2.5h post-LPS (two right panels).  
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Supplementary Figure 12: Comparing RNA degradation rates estimated by the 

Actinomycin D data and the ‘varying’ and ‘constant’ degradation models. 

(a-b) The genes that reject the ‘constant degradation’ hypothesis correlate better with the 

‘varying degradation’ model predictions, while for the accepting genes the correlation 

with the ‘constant degradation’ model is higher. Shown is the correlation coefficient 

(spearman !; top of each plot) between the estimated degradation rates using standard 

Actinomycin D protocols (X axis; Methods) and the predicted degradation rate based on 

the models (Y axis; varying degradation model – top row, constant degradation model – 

lower row), for genes that reject the ‘constant degradation’ model predictions (left 

column) compared with genes that do not (right column). Only genes for which 

Actinomycin D rate is estimated with r-squared of 0.6 or higher are included in the 

analysis (149/254). Shown in (a) are the results when adding Actinomycin D at 0 hours, 

and in (b) the results when adding Actinomycin D at 2.5 hours after LPS stimulation. (c) 

Genes that reject the ‘constant degradation’ model (red) show a bigger shift between rates 

predicted based on Actinomycin D data before LPS treatment (Y-axis) and at 2.5 hours 

after LPS stimulation (X-axis) compared with genes that retain the ‘constant degradation’ 

model (blue). Most commonly, degradation rates for these genes increase at 2.5 hours. 

Only genes with r2 of 0.8 or higher for predicted degradation rate are considered (100/254 

genes). 
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Supplementary Figure 13: The ‘constant degradation’ model fails most significantly 

at peaks in expression. 

Shown is the correspondence between the least squared error in the ‘constant 

degradation’ model (Y axis, log scale) and the height of the maximal peak in the 

expression profile (X axis, log scale). The Pearson correlation coefficient (!) is indicated 

on top, along with the statistical significance of the correlation.  
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Supplementary Figure 14: Constant degradation rates explain most of the 

expression dynamics observed, while changes in degradation rates help shape peaks. 

(a) The ‘constant degradation’ model explains most of the expression dynamic observed 

in the data. Shown are illustrative examples of eight genes (one per cluster I-VIII; Left: 

name and cluster assignment) that accept the ‘constant degradation’ model. Gray, black 

and green lines: model predictions (expression, transcription rate, and degradation rate, 

respectively); dashed blue and dashed red lines: data (RNA-total and RNA-4sU, 

respectively); Left: expression level; middle: transcription rate; right: degradation rate 

(estimate only). (b) Genes with peaked responses reject the ‘constant degradation’ model. 

Shown are examples of three genes and their fit to the ‘constant degradation’ model 

(Upper row) and to the ‘varying degradation’ model (lower row). Panels formatted as in 

(a). For ‘varying degradation’ predictions, the degradation cluster (A, B or C) is indicated 

at the top of the degradation profile. 
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 Supplementary Figure 15: 4sU-Seq captures a broader range of transcripts 

compared to polyA+ RNA-Seq. 

Shown is the fraction of reads in RNA-4sU-Seq libraries (x-axis, log scale) and polyA+ 

RNA-Seq libraries (y-axis, log scale), for several annotation categories. Only reads that 

were mapped to a unique location in the genome or to rRNA are considered. (a) Reads in 

each of the libraries are normalized for library size only. (b) Reads in each of the libraries 

are normalized for both library size, and the overall size of the annotation category (in 

Kb). 
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Supplementary Figure 16: Introns are enriched in 4sU-Seq reads, while exons are 

enriched in RNA-Seq reads. 

We tiled the entire mouse genome with 50bp tiles (not overlapping) and counted the 

number of reads that mapped to each fragment in RNA-Seq vs. 4sU-Seq libraries. (a) 

Distribution of the ratio of reads in 4sU-Seq vs. RNA-Seq per genomic tile. Bold dashed 

line: 4sU-Seq reads are equal to RNA-Seq reads. Right and left light dashed line: tiles 

with at least 4 times more reads in 4sU-Seq (4sU-Seq enriched) or in RNA-Seq, (RNA-

Seq enriched) respectively. (b) RNA-Seq enriched tiles are exonic, 4sU-Seq enriched 

tiles are intronic. The percentage of RNA-Seq enriched tiles (middle column) or 4sU-Seq 

enriched tiles (right column) in several annotation categories (rows). Bold (red): the most 

common annotation: 77% of RNA-Seq enriched tiles are exonic; 87% of 4sU-Seq 

enriched tiles are intronic. (c,d) Distributions of reads in RNA-Seq enriched tiles (c) or 

4sU-Seq enriched tiles (d) in 4sU-Seq libraries (x-axis) vs. RNA-Seq libraries (y-axis). 

Differently annotated tiles are color-coded as indicated on the graph. 
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Supplementary Figure 17: Histones and pre-miRNA transcripts are captured by 

4sU-Seq but not by RNA-Seq. 

Shown is the read coverage (height) at each gene at each time point (row) in each library 

(top:  4sU-Seq, red; bottom: RNA-Seq, blue) for two neighboring histone genes (a) and 

for a miRNA gene (b). 

 



!

"

!"

#
$
%&
'(
)
*+,
-,
.(
/01
,2

!" 3" 4"

5-
67
81,
2+
/19

7+
:+
3!
+9
1,

3" 4"

!" 3" 4"

#
$
%&
'(
)
*+,
-,
.(
/01
,2

5-
67
81,
2+
/19

7+
:+
';
+9
1,

!" 3" 4"
5-6781,2+/197+:+';+91,
#$%&'()*+<7=>7,?1,2

!" 3" @" 4"
5-6781,2+/197+:+3!+91,
#$%&'()*+$-,.(/01,2

#
$
%&
'(
)
*+,
-,
.(
/01
,2

!" 3" @" 4"

5-
67
81,
2+
/19

7+
:+
';
+9
1,#

!" 3" @"
5-6781,2+/197+:+';+91,
#$%&/./-8*+<7=>7,?1,2

!" 3" @"

#
$
%&
/.
/-
8*+
,-
,.
(/
01,
2

!" 3" @"

5-
67
81,
2+
/19

7+
:+
3!
+9
1,

!" 3" @"

#
$
%&
/.
/-
8*+
,-
,.
(/
01,
2

5-
67
81,
2+
/19

7+
:+
';
+9
1,

!" 3" @" 4"
5-6781,2+/197+:+3!+91,
#$%&/./-8*+$-,.(/01,2

#
$
%&
/.
/-
8*+
,-
,.
(/
01,
2

!" 3" @" 4"

5-
67
81,
2+
/19

7+
:+
';
+9
1,$

!"##$%&%'()*+,-./"*%,01

!



 
 

 

Supplementary Figure 18: RNA level estimates based on RNA-Sequencing and 

nCounter are highly correlated. 

Shown is the correspondence between RNA levels estimated based on nCounter data and 

RNA sequencing data for the 254 signature set genes. (a) Correlation of 4sU labeled 

RNA measurements, at several times post-LPS stimulation (0, 1, 2 and 3 hours). 

Sequenced samples (X axis, log scale): 45 min. metabolic labeling times. nCounter 

samples (Y axis, log scale): 10 min labeling (top) or 45 min labeling (bottom). Pearson 

correlation coefficient (!) is indicated on top. (b) As in (a) but comparing nCounter 

RNA-4sU samples at 10 min labeling (X-axis, log scale) to nCounter RNA-4sU at 45 min 

labeling (Y-axis, log scale). (c) As in (a) but comparing RNA-Total sequenced samples 

(X-axis, log scale) to nCounter RNA-Total samples (Y-axis, log scale). (d) As in (a) but 

comparing nCounter RNA-Total samples at 10 min labeling (X-axis, log scale) to 

nCounter RNA-Total at 45 min labeling (Y-axis, log scale). 

 





 
 

 

Supplementary Figure 19: Temporal profiles of genome-wide data match and refine 

the 8 patterns from the signature set.  

 (a) Assignment of the genome-wide sequencing data to the 8 distinct temporal clusters of 

newly-transcribed and total RNA identified based on the signature set data. Shown are 

expression profiles (RPKM) for the 10,106 expressed genes (rows) based on RNA-Total 

(left) and RNA-4sU (right) measurements across 11 time points (columns). Clusters are 

numbered on right and separated by solid horizontal black lines. Horizontal dashed lines: 

further sub-clustering of the data. Purple: high relative expression; white: mean 

expression; pink: low relative expression. (b,c) Average profiles for RNA-4sU (red) and 

RNA-Total (blue) for each cluster based on the sequencing data (b, 0-6h) and the 

nCounter data (c, 0-3h). The size of each cluster is indicated in brackets. (d) Cluster 

refinement in the extended time-course data shows distinct behaviors at later time points. 

Shown is the average cluster profile for RNA-4sU (red) and RNA-Total (blue) in each 

sub-cluster for every one of the 8 main clusters. Original cluster number is indicated to 

the left; sub cluster size is indicated in brackets. 
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Supplementary Figure 20: Genome wide estimates of (fixed) degradation rates. 

Shown are comparisons between RNA degradation rates predicted by the ‘constant 

degradation’ model and previously determined rates (Dolken et. al., RNA, 2008) for 

fibroblasts induced for 1h with interferon, with 1h 4sU labeling and microarray 

quantification. (a-d) Distribution of predicted RNA half-lives using the ‘constant 

degradation’ model for 305 genes that appear in both studies (a) and for the complete set 

of predictions (b), or the published study for 305 genes that appear in both studies (c) and 

for the complete set of predictions (d). (e) Correlation between RNA degradation rates 

estimates based on the ‘constant degradation’ model (Y axis, log scale) and RNA 

degradation rates estimates in the published study (X axis, log scale). Number of genes 

(n) and Spearman correlation coefficient (!) are indicated on top. 
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Supplementary Figure 21: Examples of processing rates dynamics. 

(a) RNA-4sU-Seq reads map to introns, exons, intron-exon, and exon-exon junctions. 

Shown is a subset of the reads mapped to the fourth exon of the Il12b gene. Blue track 

(top): exon boundaries (bold); gray rectangles (bottom tracks): individual reads mapped 

at the specific position; and colored lines: mismatches in the alignment (blue=C, red=T, 

yellow=G, green=A). Short rectangles connected to a light blue line indicate that the 

other end of the read is mapped to an adjacent exon (gapped alignment). (b-c) Intronic 

transcripts are captured by 4sU-Seq but not by RNA-Seq. Shown is the read coverage 

(height) at each of two example genes (Il12b, b; Ifih1, c) at each time point (track) in 

each library (bottom: 4sU-Seq, red; top: RNA-Seq, blue). Blue bar: gene locus; light blue 

boxes: exons. 

 





 
 

 

Supplementary Figure 22: Temporal patterns of intronic expression match that of 

exonic expression across all 8 clusters 

(a) Shown are expression profiles (RPKM) of both exons (representing both mature (M) 

and un-processed (U) transcripts; left) and introns (representing only un-processed (U) 

transcripts; right) for the 2,122 expressed genes (rows) across 6 time points (columns). 

Genes are partitioned to 8 expression clusters (I-VIII, right, assigned as in 

Supplementary Fig. 16). Purple: high relative expression; white: mean expression; pink: 

low relative expression. (b) Average profiles for exonic RNA-4sU (red) and intronic 

RNA-4sU (purple) for each cluster at each time point (0-6h) based on the sequencing 

data. The size of each cluster is indicated in brackets. (c) A high correlation between 

exon and intron RPKM values. Shown is the correlation between exonic (X axis, log 

scale) and intronic (Y axis, log scale) RPKM across all 2,122 genes and 6 time points. 

The Pearson correlation coefficient (!) is indicated on top. 
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Supplementary Figure 23: The ‘constant degradation and processing’ model 

predictions. 

Rejection of the ‘constant processing and degradation’ model might be a result of 

temporally regulated processing rates. Top: predicted pre-mRNA expression levels 

(dashed, purple) and measured (solid, gray); middle: predicted transcription rate (dashed, 

red) and measured exonic RNA-4sU levels (solid, black); bottom: predicted processing 

rate (solid, orange; value also indicated on top of the line). Gene symbol is indicated on 

the right. (a) Examples of 2 genes that reject the ‘constant degradation and processing’ 

model, but show similar expression patterns of pre-mRNA and overall RNA-4sU levels. 

(b) Examples of 6 genes that reject the ‘constant processing and degradation’ model. 

Each line shows two examples with a similar behavior, in which pre-mRNA and RNA-

4sU (pre-mRNA and mRNA) profiles are different over time. 





 
 

 

Supplementary Figure 24: Estimated (constant) processing rates using the ‘constant 

processing and degradation’ model. 

(a) pre-mRNA half-life is shorter than mRNA half-life. Shown is the distribution of the 

ratio between pre-mRNA half-life (estimated by the ‘constant processing and 

degradation’ model) and the mRNA half-life (estimated by the ‘constant degradation’ 

model). (b) Significant correlation between mRNA half-life (degradation rate) and pre-

mRNA half-life (processing rate). Shown is a scatter plot comparing the RNA processing 

rates predicted based on the ‘constant processing and degradation’ model (X axis, log 

scale) and the RNA degradation rates predicted based on the ‘constant degradation’ 

model (Y axis, log scale). The Pearson correlation coefficient is indicated on top. (c) 

Transcripts with multiple isoforms, and transcripts with predicted low or high pre-mRNA 

half-lives are enriched in functional categories, clusters, exon structures or transcript 

lengths. Shown are the enrichments (P-value, hypergeometric test, grey), of the overlap 

between the genes with predicted multiple isoforms and anti-sense transcripts (see 

Supplementary Notes, section 6; columns); the genes which reject the ‘constant 

processing and degradation’ or the ‘constant degradation’ or both models (columns); and 

the genes in each of the half-life bins in (Fig. 4c) (A-E, columns) and each tested 

category (rows). Only functional categories with at least one significant enrichment are 

shown. 


