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1. FROM LIKELIHOOD TO ESTIMATED LOG-LIKELIHOOD

In this section, we intend to derive estimated log-likelihood from the likelihood function. It can be shown

that the full likelihood based on all the observations undertwo-stage OADS design is proportional to

LF (β) =




K∏

k=0

∏

i∈Ṽk

f(Yi|Zi, Xi;β)g(Xi|Zi,Wi)






K∏

k=1

∏

i∈V̄k

∫

X
f(Yi|Zi, x;β)dG(x|Zi,Wi)


 . (A.1)

LetS denote the informative components of(Z,W ) in the sense thatG(X |Z,W ) = G(X |S) almost

surely. Without loss of generality, assumeS is continuous variable with dimensiond. Note that

G(x|s) =
K∑

k=1

πk(s)Gk(x|s),

whereπk(s) = Pr((Y,W ) ∈ ∆k|s) andGk(x|s) = G(x|s, (Y,W ) ∈ ∆k). Then we estimate theπk(s)

andGk(x|s) respectively by

π̂k(s) =

N∑
i=1

I((Yi,Wi) ∈ ∆k)φhN
(Si − s)

N∑
i=1

φhN
(Si − s)

and

Ĝk(x|s) =

∑
i∈Vk

I(Xi 6 x)φhN
(Si − s)

∑
i∈Vk

φhN
(Si − s)

,

whereI(·) is an indicator function andφhN
(·) = φ( ·

hN

) is ad-dimensional kernel function with the band-

width hN . For simplicity, we suppress the subscript ofhN hereafter. Hence,G(x|s) can be subsequently

estimated by

Ĝ(x|s) =
K∑

k=1

π̂k(s)Ĝk(x|s),

which is a consistent estimator as shown below.

Hence, we obtain an estimated likelihood function by substituting G(x|s) in (A.1) with Ĝ(x|s) and
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denote it by

L̂F (β) =




K∏

k=0

∏

i∈Ṽk

f(Yi|Zi, Xi;β)ĝ(Xi|Si)






K∏

k=1

∏

i∈V̄k

∫

X
f(Yi|Zi, x;β)dĜ(x|Si)


 . (A.2)

Then the estimated log-likelihood function is

l̂F (β) ≡ log L̂F (β)

=

K∑

k=0

∑

i∈Ṽk

logf(Yi|Zi, Xi;β) +

K∑

k=0

∑

i∈Ṽk

log ĝ(Xi|Si) +

K∑

k=1

∑

j∈V̄k

log f̂(Yj |Zj,Wj ;β)

=

K∑

k=1

∑

i∈Vk

logf(Yi|Zi, Xi;β) +

K∑

k=1

∑

i∈Vk

log ĝ(Xi|Si) +

K∑

k=1

∑

j∈V̄k

log f̂(Yj |Zj,Wj ;β)

=

K∑

k=1

∑

i∈Vk

logf(Yi|Zi, Xi;β) +

K∑

k=1

∑

j∈V̄k

log f̂(Yj |Zj,Wj ;β) + C,

where

f̂(Yj |Zj ,Wj ;β) =

∫

X

f(Yj |Zj, x;β)dĜ(x|Sj)

=
K∑

r=1

π̂r(Sj)

∑
l∈Vr

f(Yj |Zj , Xl;β)φh(Sl − Sj)

∑
l∈Vr

φh(Sl − Sj)
,

andC =
K∑

k=1

∑
i∈Vk

log ĝ(Xi|Si), which is not dependent onβ.

2. REGULARITY CONDITIONS

The following conditions are imposed to investigate the asymptotic properties of the estimator̂β.

C1. f(y|z, x;β) has the 2nd-order continuous derivatives with respect toβ, for everyβ ∈ B, whereB

is the parametric space, a compact subset in Euclidean spaceRq, containingβ0 as its interior point.

C2. WhenN goes to∞, |V |/N → ρV > 0 andnk/|V | → ρk > 0 for k = 0, . . . ,K. Let γk =

Pr{(Y,W ) ∈ ∆k}.
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C3. φ(·) is aαth-order bounded and symmetric kernel function with bounded support and
∫
φ2 < ∞.

Nh2α → 0 andNh4d → ∞ asN converges to∞.

C4. The following expected value matrices are all finite and positive definite atβ0:

E

[
∂2 log(f(Y |Z,X ;β0))

∂β∂βT

]
, Ek

[
∂2 log(f(Y |Z,X ;β0))

∂β∂βT

]
, Ek

[
∂2 log(f(Y |Z,W ;β0))

∂β∂βT

]
.

3. A USEFUL LEMMA

LEMMA 1. Let ξ(y, z, w, x;β) be a continuous function of β ∈ B for every (y, z, w, x), satisfying that:

(i). |ξ(y, z, w, x;β)| is bounded, uniformly in β, by some function of (y, z, w, x), denoted by ξ̃(y, z, w, x);

(ii). For k = 1, . . . ,K ,
∣∣∣
∫
X ξ̃(y, z, w, x)G(dx|s, (y, w) ∈ ∆k)

∣∣∣ < ∞, almost surely, given (Y =

y,W = w) ∈ ∆k and S = s.

Then

sup
β∈B

∣∣∣∣∣∣∣

∑
i∈Vk

ξ(y, z, w,Xi;β)φh(Si − s)

∑
i∈Vk

φh(Si − s)
−
∫

X
ξ(y, z, w, x;β)G(dx|s, (y, w) ∈ ∆k)

∣∣∣∣∣∣∣
= Op(ηN ),

where ηN = (Nh2α + (Nh2d)−1)1/2.

Proof. Denote

µk(O;β) =
1

(nk + n0k)hd

∑

i∈Vk

ξ(y, z, w,Xi;β)φh(Si − s)

and

νk(O) =
1

(nk + n0k)hd

∑

i∈Vk

φh(Si − s),

whereO denotes(y, z, w, s) or its some suitable components. Under conditions (i) and (ii), noting that

given(Y,W ) ∈ ∆k, (Xi, Si; i ∈ Vk) are i.i.d., and then using the uniform strong law of large numbers
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and Taylor expansion, we can show that

µk(O;β) →
∫

X
ξ(O, x;β)q(dx, s|(y, w) ∈ ∆k),

almost surely, uniformly for allβ ∈ B, where

q(x, s|(y, w) ∈ ∆k) =
d2Pr(X 6 x, S 6 s|(y, w) ∈ ∆k)

dxds

is the joint density function of(X,S) given(Y = y,W = w) ∈ ∆k.

Specially takingξ ≡ 1, we have

νk(O) →
∫

X
q(dx, s|(y, w) ∈ ∆k),

almost surely. Hence,

sup
β∈B

∣∣∣∣
µk(O;β)

νk(O)
−
∫

X
ξ(O, x;β)G(dx|s, (y, w) ∈ ∆k)

∣∣∣∣ → 0, a.s.

Using the Lemma 1 in Wang and Wang (2001) and standard kernel estimation theory, one can further

derive that

sup
β∈B

∣∣∣∣
µk(O;β)

νk(O)
−
∫

X
ξ(O, x;β)G(dx|s, (y, w) ∈ ∆k)

∣∣∣∣ = Op(ηN ).

Thus we complete the proof.

Furthermore, it is straightforward to conclude that

sup
β∈B

∣∣∣∣∣

K∑

k=1

π̂k(s)
µk(O;β)

νk(O)
−
∫

X
ξ(O, x;β)G(dx|s)

∣∣∣∣∣ = Op(ηN ).

4. USEFUL CONCLUSIONS

We introduce the following conclusions that are frequentlyused in the proving process and their deriva-

tions are based on Lemma 1.
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(i). For j ∈ V̄k andSj fixed,Ĝ(x|Sj) = G(x|Sj) +Op(ηN ).

(ii). Let ∂a

∂βa f(Yj |Zj ,Wj ;β) be thea-th derivative off(Yj |Zj ,Wj ;β) with respect toβ, then forj ∈ V̄k

∂a

∂βa
f̂(Yj |Zj ,Wj ;β) =

∂a

∂βa
f(Yj |Zj,Wj ;β) +Op(ηN ).

(iii). For j ∈ V̄k,

f(Yj |Zj,Wj ;β)

f̂(Yj |Zj,Wj ;β)
= 1 +Op(ηN ),

and

1√
N

K∑

k=1

∑

j∈V̄k

{
∂
∂β f̂(Yj |Zj ,Wj ;β)

f(Yj |Zj ,Wj ;β)
−

∂
∂β f(Yj |Zj,Wj ;β)

[f(Yj |Zj ,Wj ;β)]2
f̂(Yj |Zj ,Wj ;β)

}
×
{
f(Yj |Zj ,Wj ;β)

f̂(Yj |Zj ,Wj ;β)
− 1

}

= Op(ηN ).

Note that the first and second results are obvious from Lemma 1. The third result is followed from the

Lemmas 3.7 and 3.8 in Weaver (2001).

5. PROOF OF THEOREM1

Consistency

By selecting suitable functionξ in Lemma 1, it can be shown that

1

N

[
∂ÛF (β)

∂βT
− ∂UF (β)

∂βT

]
→p 0,

uniformly overβ ∈ B, asN → ∞, whereUF (β) =
∂ logLF (β)

∂β .

On the other hand, it follows from the convergence of− 1
N

∂UF (β)
∂βT to I(β) in probability, uniformly

for β ∈ B, that

− 1

N

∂ÛF (β)

∂βT
→p I(β), (A.3)
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uniformly for β ∈ B, asN → ∞.

It follows from Lemma 1 that

1

N
ÛF (β)−

1

N
UF (β) →p 0,

uniformly overβ ∈ B, asN → ∞. Furthermore, we can show that by strong law of large numbers

1

N
UF (β) = ρ0ρV E

[
∂ log(f(Y |Z,X ;β))

∂β

]
+

K∑

k=1

ρkρV Ek

[
∂ log(f(Y |Z,X ;β))

∂β

]

+

K∑

k=1

[γ0
k(1− ρ0ρV )− ρkρV ]Ek

[
∂ log(f(Y |Z,W ;β))

∂β

]
+ op(1),

and then1
NUF (β

0) →p 0 follows directly. Hence,

1

N
ÛF (β

0) →p 0. (A.4)

Therefore, combining conditions C1, C4, and (A.3) and (A.4), the consistency of̂β follows from Foutz

(1977) and Weaver and Zhou (2005).

Asymptotic Normality

Firstly, we want to evaluate the difference, induced by kernel smother, between the estimated score
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functionÛF (β) and score functionUF (β). Using arguments in Pepe and Fleming (1991), we have

1√
N

ÛF (β)

=
1√
N

K∑

k=1

∑

j∈V̄k

{
∂
∂β f̂(Yj |Zj,Wj ;β)

f̂(Yj |Zj,Wj ;β)
−

∂
∂β f(Yj |Zj ,Wj ;β)

f(Yj |Zj ,Wj ;β)

}
+

1√
N

UF (β)

=
1√
N

K∑

k=1

∑

j∈V̄k

{
∂
∂β f̂(Yj |Zj,Wj ;β)

f(Yj |Zj,Wj ;β)
−

∂
∂β f(Yj |Zj ,Wj ;β)

[f(Yj |Zj,Wj ;β)]2
f̂(Yj |Zj,Wj ;β)

}

×f(Yj|Zj ,Wj ;β)

f̂(Yj |Zj ,Wj ;β)
+

1√
N

UF (β)

=
1√
N

K∑

k=1

∑

j∈V̄k

{
∂
∂β f̂(Yj |Zj,Wj ;β)

f(Yj |Zj,Wj ;β)
−

∂
∂β f(Yj |Zj ,Wj ;β)

[f(Yj |Zj,Wj ;β)]2
f̂(Yj |Zj,Wj ;β)

}

+
1√
N

UF (β) +Op(ηN )

≡ 1√
N

DF (β) +
1√
N

UF (β) +Op(ηN )

Secondly, we will establish the weak convergence of1√
N
DF (β). We rewrite

1√
N

DF (β)

=
1√
N

K∑

k=1

∑

j∈V̄k

K∑

r=1

π̂r(Sj)

∑
i∈Vr

MXi,Si
(Yj , Zj ,Wj ;β)φh(Si − Sj)

∑
i∈Vr

φh(Si − Sj)

=
1√
N

K∑

r=1

∑

i∈Vr

K∑

k=1

∑

j∈V̄k

Nr(Sj)

nVr
(Sj)

nV̄k
(Sj)

N(Sj)

MXi,Si
(Yj , Zj ,Wj ;β)φh(Si − Sj)

nV̄k
(Sj)

=
1√
N

K∑

r=1

γ0
r

ρrρV + γ0
rρ0ρV

∑

i∈Vr

K∑

k=1

[γ0
k(1− ρ0ρV )− ρkρV ]πk(Si)Ek(MXi,Si

(Y, Z,W ;β)|Si)

+op(1).

Using Liapounov’s central limit theorem and theCramér-Wold theorem as Weaver and Zhou (2005), we

can show that

1√
N

DF (β
0) →d N (0,

K∑

k=1

(γ0
k)

2

ρkρV + γ0
kρ0ρV

Σk(β
0)). (A.5)
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Thirdly,

1√
N

UF (β) =
1√
N

K∑

k=0

∑

i∈Ṽk

∂
∂β f(Yi|Zi, Xi;β)

f(Yi|Zi, Xi;β)
+

1√
N

K∑

k=1

∑

j∈V̄k

∂
∂β f(Yj |Zj ,Wj ;β)

f(Yj |Zj ,Wj ;β)
, (A.6)

and from here, it is easy to show that1√
N
UF (β

0) converges weakly to a normal distribution with mean

zero and varianceI(β0). On the other hand, since1√
N
DF (β

0) can be regarded as a function of{Xi, Si; i ∈

V } for largeN , it is asymptotically independent of the second term atβ0 in (A.6), which are contribu-

tions from the nonvalidation data to the true score function. It can be also shown that1√
N
DF (β

0) and the

first term of (A.6) atβ0 are asymptotically uncorrelated and, since they are each asymptotically normal,

independent. Hence,1√
N
DF (β

0) and 1√
N
UF (β

0) are asymptotically independent, and then combining

(A.5), we have

1√
N

ÛF (β
0) →d N (0, I(β0) +

K∑

k=1

(γ0
k)

2

ρkρV + γ0
kρ0ρV

Σk(β
0)). (A.7)

Finally, using the first-order Taylor series expansion of the estimated score function around the true

parameterβ0, we have

√
N(β̂ − β0) =

[
− 1

N

∂ÛF (β
∗)

∂βT

]−1 [
1√
N

ÛF (β
0)

]
, (A.8)

whereβ∗ is on the line segment between̂β andβ0. Using conditions C1 and C4, (A.3), and consistency

of β̂, it is obvious to conclude that asN → ∞
[
− 1

N

∂ÛF (β
∗)

∂βT

]−1

→p I−1(β0). (A.9)

Combining (A.7), (A.8), and (A.9), we have

√
N(β̂ − β0) →d N

(
0,Σ(β0)

)
,

which is the desired result.
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Additionally, with respect to the proof for Theorem 2, sinceit is obvious to show the consistency of

− 1
N

∂ÛF (β̂)
∂βT for I(β0) from (A.9), it remains to show that̂Σk(β̂) is a consistent estimator forΣk(β

0) for

everyk, which can be proved by using (A.5) and Lemma 1.

6. EFFICIENCY COMPARISONS ALONG THE INFORMATIVE STRENGTH

In this section, we want to investigate the effect of informative strength ofW for X on the proposed

estimates. Table A.1 listed below summarizes the similarity and difference among these estimators with

special comments on each estimator. More specifically, the efficiency difference for methodsβY1
, βY2

,

βP1
, andβP2

should be attributed to the study design instead of estimating procedure. However,βP2
and

βW are different estimating procedures under the same two-stage OADS design.

Table A. 1. Summary for different methods compared in simulation study
Design Data structure Stage of data used

Method 1st/2nd 1st/2nd in inference Comment

βE SRS {Y,X, Z}/− 1st Least square estimate
βW SRS/OADS {Y,Z,W}/{X|(Y,W ) ∈ ∆k} 2nd only Inverse probabilty weight
βY1

SRS/ODS {Y }/{(X, Z)|Y ∈ Aj} 1st and 2nd Weaver and Zhou (2005)
βY2

SRS/ODS {Y,Z}/{X|Y ∈ Aj} 1st and 2nd Modified fromβY1

βP1
SRS/ODS {Y,Z,W}/{X|Y ∈ Aj} 1st and 2nd Proposed method reduced fromβP2

βP2
SRS/OADS {Y,Z,W}/{X|(Y,W ) ∈ ∆k} 1st and 2nd Proposed method

Figure A.1 demonstrates the effect of the strength ofW , represented byσ, on the efficiency of estima-

tor β̂1, under the methods considered. It displays the relative efficiency ofβ̂P11, β̂P21, β̂Y11, β̂Y21, β̂W1,

andβ̂R1 to β̂E1, under varyingσ from 0 to 1.5 with allocation(120, 60) and cutpoints(13 ,
2
3 ). The other

parametric settings remain to be as the same as Table 1. Note that among these estimators onlyβ̂P11 and

β̂P21 depend onσ. Clearly, the efficiency loss of botĥβP11 and β̂P21 increases whenσ increases, that

is, whenW is less informative forX . However, the asymptotic relative efficiencyARE(β̂P21|β̂E1), is
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Fig. A.1. Efficiency comparisons of estimatorβ̂1 along with the informative strength of auxiliaryW for covariateX.

Y -axis denotes the asymptotic relative efficiency ofβ̂P21
, β̂P11

, β̂Y21
, β̂Y11

, β̂W1, andβ̂R1 to β̂E1. ARE(β̂P21
|β̂E1)

is defined as the ratio ofvar(β̂E1) overvar(β̂P21
).X-axis denotes the informative strengthσ. The largerσ represents

weaker information strength ofW for X.

always higher than that of the other estimators, which indicates that the proposed two-stage OADS design

utilizesW better than the other designs, and that incorporating the auxiliary information into statistical

inference can substantially improve the efficiency, especially whenW is more informative aboutX .
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