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2 H. ZHOU AND OTHERS

1. FROM LIKELIHOOD TO ESTIMATED LOG-LIKELIHOOD

In this section, we intend to derive estimated log-liketiddrom the likelihood function. It can be shown

that the full likelihood based on all the observations urtderstage OADS design is proportional to

K
Le8) = |1 TI £(%i12:. Xi: 8)9(X:|Zi, W)

k=0 jcv,

K
[H H[yf(YﬂZi,:c;ﬂ)dG(ﬂZi,Wi) (A1)

k=1ieVj
Let S denote the informative components(df, W) in the sense that (X |Z, W) = G(X|S) almost

surely. Without loss of generality, assurfieés continuous variable with dimensiah Note that

=

G(zls) = Y mi(s)Gu(x]s),

k=1
wherern(s) = Pr((Y, W) € Agls) andGy(z|s) = G(x|s, (Y, W) € Ay). Then we estimate they,(s)

andGy(z|s) respectively by

S IV W) € A bnn (S:— 5)

Fu(s) = = ~
géhN(Sz —s)
and
2‘; I(Xs < )by (Si —s)
= 1€Vy
e SN (A R
i€Vy

where!(-) is an indicator function and,, () = ¢(;=) is ad-dimensional kernel function with the band-
width k. For simplicity, we suppress the subscriptof hereafter. Hence?(z|s) can be subsequently
estimated by

K
G(zls) =D 7u(s)Gr(xls),
k=1

which is a consistent estimator as shown below.

Hence, we obtain an estimated likelihood function by suilititig G (z|s) in (A.1) with G(x|s) and
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denote it by

Lp H I rvilzi, xi: )3 (Xil50) (A-2)

k=0 LEVk

5!21

/ (YilZi, z; B)dC(z]Sy)

fin

Then the estimated log-likelihood function is

)

#(8) =log Lr(B)

K
Z > " logf(Yi|Zi, Xi; B) +Z > " logg(X;[S;) +Z > log F(Y;12;,W;; B)

o~

GVA k=0 ZEVA k= 1j€Vk
=57 3" logf(Yil Zi, Xi: 8) + Z 3 logg(XilSi) + Z Y log f(¥;12;, ;3 8)
1€V k=11€eV} k:ljer

>
>

K
> logf(YilZi, XiB) + Y Y log F(Y512;, W;i 8) + €,
i€V

k=1 jeV,

where

7,125, Wy 8) = /f 5 8)dC(x]S;)
K Z F(Y5|Z5, X15 B)én (St — S5)
Z leV
= r > On(Si—55) ’
eV,

K
andC = > > logg(X;|S;), which is not dependent oh
k=1ieVy

2. REGULARITY CONDITIONS

The following conditions are imposed to investigate thengsiptic properties of the estimatar

C1. f(y|z, z; 8) has the 2nd-order continuous derivatives with respegt for everys € B, whereBB

is the parametric space, a compact subset in Euclidean &facentaining3® as its interior point.

C2. WhenN goes tooo, |V|/N — py > 0andny/|V| — pr > 0fork = 0,...,K. Lety, =

Pr{(Y, W) € Ay).
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C3. ¢(-) is aath-order bounded and symmetric kernel function with bouhslepport and ¢? < oc.

Nh2?* — 0andNhr*® — oo asN converges teo.

C4. The following expected value matrices are all finite aositive definite a3°:

o [Plos(f(Y|Z,X:8°)] , [0*log(f(V]Z,X:8)] , [ log(f(Y]Z, W)
0BOBT ] ’“[ dBOBT } ’“[ dB0BT

3. A USEFUL LEMMA

LEMMA 1.Let{(y, z, w, z; 3) be a continuousfunction of 5 € B for every (y, z, w, x), satisfying that:

(). 1€(y, z,w, z; B)| isbounded, uniformlyin 3, by somefunctionof (y, z, w, z), denoted by ¢ (y, z, w, z);

(ii). For k = 1,..., K, ‘fxg(g,g,g,:c)G(dﬂg, (y,w) € Ag)| < oo, almost surely, given (Y =

y, W =w) € Ayand S = s.

Then

Z‘; §(y, z,w, Xis B)on(Si — s)
Elél; il S (55 —/Xé(g,z,w,fc;ﬁ)G(deQ (y, w) € Ar)| = Op(nn),

i€V

whereny = (Nh2® + (Nh24)=1)1/2,

Proof. Denote

i(05) = T 3 €2 Xt B)an (S = )
i€ Vi

(ng + nok

and

1
v (0) = (i T o)Al Z;;k on(Si — s),

whereQ denotegy, z, w, s) or its some suitable components. Under conditions (i) aiidn@ting that

given(Y, W) € Ay, (X;,S;;i € Vi) are i.i.d., and then using the uniform strong law of large hams
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and Taylor expansion, we can show that

M@w%»LaQaMWMQWMeAm

almost surely, uniformly for alB € B, where

d*Pr(X <z, S < s|(y,w) € Ag)

q(ZﬂSKva) E Ak) = dl‘dS

is the joint density function of X, S) given(Y = y, W = w) € Ay.

Specially taking = 1, we have

%@wféwmamweAm

almost surely. Hence,

ik (Q
:(O)

sup — 0, a.s.

peB

/meﬁ(wbw )€ Ay

Using the Lemma 1 in Wang and Wang (2001) and standard kestielaion theory, one can further

derive that
(O3 8)
sup Lo [ 0. p)Gldsls, (r.w) € 80| = Oyluv).
ses| ve(Q)
Thus we complete the proof.
Furthermore, it is straightforward to conclude that
i ;8
sup |57 D — [ (0.510)Gtdels) = 0yn).
BEB =1 ©)

4. USEFUL CONCLUSIONS

We introduce the following conclusions that are frequentigd in the proving process and their deriva-

tions are based on Lemma 1.
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(i). Forj € Vi andS; fixed, G(z|S;) = G(z|S;) + Op(ny).

(ii). Let a%af(YﬂZj, W;; B) be thea-th derivative off (Y;| Z;, W;; 3) with respect tg3, then forj € V,
o Y2, W, o Y12, W O
8611 ( | 2 J’ﬂ) 6 ( | VRl ]aﬂ)+ (UN)
(iii). For j € V4,
(Y512, W53 8) 1 +0, ()
f(YJ|ZJ7WJ'6) prIND
and
1L [ BT 0012, W5 8) g F(YG125 Wi B) F(Y,12, W3 )
B Y Z 7W7 . —1
N;J%;{ Y125 Wy8) - [F(Y5125, W55 8))? F3123, W33 0 F(Yi12;, Wy B)

=

= Op(nn)-

Note that the first and second results are obvious from Lemmbée.third result is followed from the

Lemmas 3.7 and 3.8 in Weaver (2001).

5. PROOF OF THEOREM1

Consistency

By selecting suitable functiofiin Lemma 1, it can be shown that

1 (90p(B) _OUr(B)| , |
N|TogT " Tapr | 77
uniformly over € B, asN — oo, WhereUy () = m(’gaiLBF(ﬂ).

On the other hand, it follows from the convergence-of 2524 to I(/3) in probability, uniformly

for 5 € B, that

1 9Up(B)
N 9p87T
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uniformly for 8 € B, asN — oc.

It follows from Lemma 1 that

0R(8) = S UR(8) =3, 0,

uniformly overs € B, asN — oo. Furthermore, we can show that by strong law of large numbers

. K . .
%UF(B) = popv E [mog(f(Y'Z’X’ﬂ))} + > orpv B {81 g(f(Y|ZaX,B))}

B 2 B
+ XK: (Y2 (1 = popv) — prpv]Ex [alog(f(YaLZ, L 6))} +0p(1),
k=1
and thens; Ur (%) —,, 0 follows directly. Hence,
~Oe(8) =, 0. (A.4)
N

Therefore, combining conditions C1, C4, and (A.3) and (Atl4@ consistency cﬁfollows from Foutz
(1977) and Weaver and Zhou (2005).
Asymptotic Nor mality

Firstly, we want to evaluate the difference, induced by késmother, between the estimated score
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functionﬁp(ﬁ) and score functiot/r(3). Using arguments in Pepe and Fleming (1991), we have

1 ~
—=Ur ()
—iiz 55 (G125, Wi B) 5 (Y125, Wi ) e o)
- Nz G TGz wg8) f(Y;1Z5,W;; B) VN
1 2112, Wi B) & (Y12, Wy B)
=— — Y;|Zj, W;;
\/N;J;{ f(Y5125,W5s8)  [F (Y5125, W53 8)) FO3l2 Wi )
fY;12,W:8) 1
Xf(Yj|Zj7Wj;ﬁ)+ NUF(ﬁ)
1 & 5 (V12 W58) agf(YlZmW],ﬁ)
mkz_:ljevk{ FYG1Z;, W5 8)  Tf(Y125, Wy B2 FO3125, W55 9)
+UR(8) +0,(ny)
1 1
:—ND (6)+\/—NUF(6)+O( )

Secondly, we will establish the weak convergenc%]%JD r(B). We rewrite

1
\/—NDF(B)
| K K EZ‘:/ M, 5,(Y;, Zj, Wjs B)on(Si — Sj)
- 7.(5,)
\/N; Z ;W (%) 2 on(Si = 55)
JEVE i€V,
1 ¢ E Ny (85) nv, (S5) Mx, s,(Y, Zj, Wy B)¢n(Si — S;)
B \/N;g‘; kzljg:k nv, (S;) N(S;) 1y, (55)
1 K K
=75 z:l e +’yrp()pv g‘; 1; Yo (L= popv) = prpv]Ti(Si) Ex(Mx, s, (Y, Z,W; B)|S:)

+o,(1).

Using Liapounov’s central limit theorem and theamér-Wold theorem as Weaver and Zhou (2005), we

can show that

2

RIS 3 o
\/N () 2N O,X:IPkPVJr'YkP()PVZk(B )- (A5)
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Thirdly,

L ang|Zz;Xuﬂ 1 3_85 Y|Z]7W]7B)
VN Url \/_ZZ (Y| Zi, X3 B) FZZ f(Y;1Z;, Wy 8)

k=0 ;c 7, k=1jcV

(A.6)

and from here, it is easy to show th@%UF(BO) converges weakly to a normal distribution with mean
zero and variancg(3°). On the other hand, sin%DF(BO) can be regarded as a function{of;, S;; i €

V'} for large N, it is asymptotically independent of the second terng%tn (A.6), which are contribu-
tions from the nonvalidation data to the true score functiocan be also shown the\\)%DF(ﬁo) and the
first term of (A.6) at3° are asymptotically uncorrelated and, since they are eaghgstically normal,
independent. Hence\yl—NDF(ﬂO) and \/LWUF(BO) are asymptotically independent, and then combining

(A.5), we have
K 0 2

1 -
——Up(B°) —a N(0,I(BY) + Y ———F 5, (5%). A7
VN F(B) =a N0 I( Pt PkPV+’7kPOPV £(B0) (A1)

Finally, using the first-order Taylor series expansion &f éistimated score function around the true

parametep,, we have

W(ﬁﬂ“)[ L) >] [Law)] . ”8)

whereS5* is on the line segment betweérandﬁo. Using conditions C1 and C4, (A.3), and consistency

of 3 it is obvious to conclude that &6 — oo

l 1 90 (8* )1 1), (A.9)

N 95T

Combining (A.7), (A.8), and (A.9), we have
VN(B =) =a N (0,2(8%),

which is the desired result.
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Additionally, with respect to the proof for Theorem 2, sirités obvious to show the consistency of

-1 BZZ(TE) for 1(3°) from (A.9), it remains to show that,(3) is a consistent estimator fat;, (3°) for

everyk, which can be proved by using (A.5) and Lemma 1.

6. EFFICIENCY COMPARISONS ALONG THE INFORMATIVE STRENGTH

In this section, we want to investigate the effect of infotiveastrength ofit” for X on the proposed
estimates. Table A.1 listed below summarizes the simflanitd difference among these estimators with
special comments on each estimator. More specifically, ffiemcy difference for methodsy,, Sy,,
Bp,, andBp, should be attributed to the study design instead of estigatiocedure. Howevef,p, and

By are different estimating procedures under the same twgeI&DS design.

Table A. 1. Summary for different methods compared in sitoestudy

Design Data structure Stage of data used
Method 1st/2nd 1st/2nd in inference Comment
BE SRS {v,X,Z}/— 1st Least square estimate
Bw SRS/OADS {Y, Z, W}/{X|(Y,W) € Ar} 2ndonly Inverse probabilty weight
By, SRS/ODS {Y}/{(X,2)|Y € A;} 1stand 2nd Weaver and Zhou (2005)
By, SRS/ODS {Y,Z}/{X|Y € A;} 1stand 2nd Modified fronsy,
Bp, SRS/ODS {Y,Z,W}/{X|Y € A;} 1stand 2nd Proposed method reduced fram
Bpr, SRS/OADS {Y, Z,W}/{X|(Y,W) € A} 1stand 2nd Proposed method

Figure A.1 demonstrates the effect of the strengti/gfrepresented by, on the efficiency of estima-
tor 3;, under the methods considered. It displays the relativei@fity of 3p,1, Bp,1, Byi1, Byat, B,
and@m to §E1, under varyings from 0 to 1.5 with allocation(120,60) and cutpoints{%, %). The other
parametric settings remain to be as the same as Table 1. INdtarhong these estimators O@yll and
szl depend orv. Clearly, the efficiency loss of botﬁpll andﬁpﬂ increases when increases, that

is, whenW is less informative forX. However, the asymptotic relative efficienA)RE(ﬁp21|ﬁE1), is
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1.0

0.8
!

Asymptotic relative efficiency to i?;El
0.6

0.4

Fig. A.1. Efficiency comparisons of estimatér along with the informative strength of auxiliaby’ for covariateX .
Y -axis denotes the asymptotic relative efficiency3ef1, Br,1, By, 1, Byyi1, Bw1, andBr1 t0 Bz1. ARE(Bpy1 |§E1)
is defined as the ratio (Mzr(EEl) overvar(§p21). X -axis denotes the informative strengthThe largew represents

weaker information strength &1 for X.

always higher than that of the other estimators, which isgie that the proposed two-stage OADS design
utilizes W better than the other designs, and that incorporating thifiay information into statistical

inference can substantially improve the efficiency, esdlyoivhenW is more informative abouX'.
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