Towards a Pharmacophore for Amyloid

Meytal Landau, Michael R. Sawaya, Kym F. Faull, Arthur Laganowsky, Lin Jiang, Stuart A. Sievers, Jie Liu, Jorge R. Barrio and David Eisenberg

Supporting Table S2

	KLVFFA/orange-G	VQIVYK/orange-G	
PDB accession code	30VJ	30VL	
Data Collection			
Beamline	APS 24-ID-E	APS 24-ID-E	
Date	2008/11/15 and 2009/11/13	2008/11/17	
Space group	P 1	C 2	
Cell dimensions:			
a, b, c (Å)	9.54, 26.01, 25.80	55.06, 4.83, 22.13	
α, β, γ (°)	62.3, 88.6, 88.5	90.0, 103.0, 90.0	
Resolution range (Å) ^(*)	26.01 - 1.8 (1.9 - 1.8)	55.06 - 1.8 (1.9 - 1.8)	
$\mathbf{R}_{\mathbf{merge}\ (\mathbf{square})}\ (\mathbf{\%})^{(*)(a)}$	18.9 (42.3)	17.9 (48.9)	
Ι/σΙ ^(*)	4.38 (1.87)	3.55 (1.20)	
Completeness (%) (*) (b)	91.5 (71.7)	87.6 (71.0)	
Redundancy ^(*)	3.8 (1.7)	2.4 (1.4)	
Unique Reflections	1870	587	
Refinement			
Resolution range (Å) ^(*)	23.0 - 1.8 (2.0 - 1.8)	26.8 - 1.8 (2.0 - 1.8)	
Unique Reflections	1692	525	
$\mathbf{R_{work}(\%)}^{(*)(c)} / \mathbf{R_{free}} (\%)^{(*)(d) (e)}$	20.5 (28.9) / 22.0 (36.6)	25.9 (37.7) / 26.0 (44.8)	
Completeness (%) ^{(*)(b)}	92.9 (79.9)	88.0 (76.4)	
Observations/parameters ratio	1.6	1.5	
Test set size [%], selection	9.2, random	10.4, random	

Number of atoms in asymm. unit	273	88	
Protein	208	53	
Ligand	54	33	
Water	11	2	
Average B-factor (Å ²):			
Average B factor for main- chain atoms	12.0	12.4	
Average B factor for side-chain atoms	16.1	14.7	
Average B factor for ligands	23.3	27.1	
Average B factor for water	25.4	28.4	
R.m.s. deviations:			
r.m.s.d. bond length (Å)	0.01	0.01	
r.m.s.d. bond angles (°)	1.69	1.22	
R.m.s. B:			
R.m.s. B for main chain atoms	1.0	0.9	
R.m.s. B for side-chain atoms	2.7	2.9	
R.m.s. B for ligands	7.0	2.0	

Table S2. Data collection and refinement statistics (molecular replacement).

^(*) Values in brackets are for the highest resolution shells.

^(a) *Rmerge*(*square*) = $\sum (I - I(mean))^2 / \sum I^2$, where *I* is the observed intensity of the reflection HKL and the sum is taken over all reflections HKL.

^(b) The incompleteness (<80%) of the highest resolution shell is likely due to the rapid decay of the peptide crystals that are naturally susceptible to radiation decay due to their small size.

^(c) *Rwork* =
$$\sum ||F_o| - |F_c|| / \sum |F_o|.$$

 $^{(d)}R_{\text{free}}$ as defined by [1].

^(e) The statistical significance of R_{free} is limited in the case of peptide structures, where the small size of the unit cell leads to a paucity of reflections. In these cases, the R_{free} statistic has proven to be a useful, but less sensitive tool compared with R_{free} statistics reported from macromolecular structure.

Reference

1. Brunger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355: 472-475.