
Supplementary Information: Fast Approximations of the Rotational

Diffusion Tensor and their Application to Structural Assembly of

Molecular Complexes

Konstantin Berlin, Dianne P. O’Leary, David Fushman

January 4, 2011

S1 Covariance Matrix of an Ellipsoid

In this section we derive a formula for the covariance matrix of an ellipsoid and show the relationship
between the ellipsoid and its principal semi-axes.

An ellipsoid E in R
3 is defined as

E(A, c) =
{

x | (x− c)TA(x− c) = 1
}

,

where A is an 3× 3 symmetric positive definite matrix that defines the shape of the ellipsoid, and
c ∈ R

3 is its center.
The ellipsoid’s principal semi-axes can be derived by an eigendecomposition of A, such that

A = VΛVT =
[

V1V2V3

]





λ1 0 0
0 λ2 0
0 0 λ3





[

V1V2V3

]T
, (S1.1)

where lengths of the principal semi-axes are

ℓ1 = 1/
√

λ1, ℓ2 = 1/
√

λ2, ℓ3 =
√

λ3, (S1.2)

and V1, V2, V3 are their associated directions.
Since the covariance matrix is independent of the position of the ellipsoid we let c = 0. Changing

into the coordinate space of A, the ellipsoid can be rewritten using the Cartesian axes x, y, z:

λ1x
2 + λ2y

2 + λ3z
2 = 1. (S1.3)

Due to the symmetry of the ellipsoid along the coordinate space axes, Cov(Ei, Ej) = 0 when
i 6= j. Therefore the covariance matrix of E is





Var(Ex) 0 0
0 Var(Ey) 0
0 0 Var(Ez)



 , (S1.4)

where Var(Ex) is the variance along the x axis, Var(Ey) is the variance along the y axis, and Var(Ez)
is the variance along the z axis.

S1

The variance along the z axis is

Var(Ez) =
∫

E
z2 dx dy dz

∫

E
dx dy dz

. (S1.5)

Performing the change of variables into

x =
1√
λ1

sinφ cos θ,

y =
1√
λ2

sinφ sin θ,

z =
1√
λ3

cosφ,

(S1.6)

where θ is the azimuthal angle, φ is the polar angle, and the Jacobian determinant is

|J| = (λ1λ2λ3)
−1/2 sinφ, (S1.7)

we get

Var(Ez) =
∫

2π
0

∫ π
0
(λ

−1/2
3

cosφ)2 |J| dφ dθ
∫

2π
0

∫ π
0
|J | dφ dθ

=
4/3λ−1

3
π(λ1λ2λ3)

−1/2

4π(λ1λ2λ3)−1/2

=
1

3λ3

.

(S1.8)

Similarly, Var(Ex) = 1/(3λ1), and V ar(Ey) = 1/(3λ2).
Changing back to the original coordinate system, the covariance matrix of E is:

CE = V





1/(3λ1) 0 0
0 1/(3λ2) 0
0 0 1/(3λ3)



VT . (S1.9)

S2 Perrin’s Equations

For completeness, here we reproduce Perrin’s equations for computing the diffusion tensor from an
equivalent ellipsoid, as shown in Perrin [1, 2].

Given the lengths of the equivalent ellipsoid’s principal semi-axes, ℓ1, ℓ2, and ℓ3, and the ellip-
soid’s orientation matrix V, the predicted diffusion tensor of the ellipsoid is:

Dpred = V





D1 0 0
0 D2 0
0 0 D3



VT , (S2.1)

where

D1(ℓ1, ℓ2, ℓ3) =
kbT

I1
,

D2(ℓ1, ℓ2, ℓ3) =
kbT

I2
,

D3(ℓ1, ℓ2, ℓ3) =
kbT

I3
,

(S2.2)

S2

T is the temperature (◦ Kelvin), kb is the Boltzmann constant, the principal components of the
inertia tensor are

I1 =
16πη(ℓ22 + ℓ23)

ℓ2
2
Q2 + ℓ2

3
Q3

,

I2 =
16πη(ℓ21 + ℓ23)

ℓ2
1
Q1 + ℓ2

3
Q3

,

I3 =
16πη(ℓ21 + ℓ22)

ℓ2
1
Q1 + ℓ2

2
Q2

,

(S2.3)

η is the solvent viscosity, and

Q1 =

∫

∞

0

ds
√

(ℓ2
1
+ s)3(ℓ2

2
+ s)(ℓ2

3
+ s)

,

Q2 =

∫

∞

0

ds
√

(ℓ2
2
+ s)3(ℓ2

1
+ s)(ℓ2

3
+ s)

,

Q3 =

∫

∞

0

ds
√

(ℓ2
3
+ s)3(ℓ2

1
+ s)(ℓ2

2
+ s)

.

(S2.4)

Thus, given a molecule the steps to predicting its diffusion tensor are: Compute the molecule’s
PCAE; compute the eigendecomposition of the PCAE; find the lengths of PCAE’s axes using
equation (S1.2); and finally, predict the diffusion tensor using Perrin’s equations.

S3 Inverting the Perrin’s Equations

In order to accurately invert Perrin’s equations we need an estimate of how many ellipsoids we
expect to map into the same diffusion tensor. To do this, we mapped the lengths of ellipsoid’s
principal semi-axes [ℓ1, ℓ2, ℓ3], where 0 < ℓ1 ≤ ℓ2 ≤ ℓ3, sampled at 2Å intervals, into the diffusion
tensor space using Perrin’s equations. To better spread out the points we adjusted each eigenvalue
of the diffusion tensor using the function ξ, where

ξ(Di) = log(log(log(log(log(Di + 1) + 1) + 1) + 1) + 1), (S3.1)

for i = x, y, z.
We split the cube of the diffusion tensor space (from 0 to max(T)) into 20 × 20 × 20 cubes,

and for each cube observed which triples of [ℓ1, ℓ2, ℓ3] are mapped into that cube. To quantify
the number of distinct regions that map into each cube we performed hierarchical clustering on
the triples based on their Euclidean distances and recorded the number of clusters. The distance
between two clusters was measured as the Euclidean distance between the two closest points of the
clusters and the clustering cutoff at 3.7Å, a value that is smaller than 4Å, the shortest possible
distance between two non-adjacent sample points. The maximum number of clusters in any cube
was two, and the majority of the occupied cubes contain only one cluster. Therefore, we expect
at most two distinct triplets of [ℓ1, ℓ2, ℓ3] to have the same diffusion tensor. Since there are only
two solutions, we can try to find both of the solutions by simply trying eight different starting
points, [a, a, a], [a, a, b], [a, b, a], [a, b, b], [b, a, a], [b, a, b], [b, b, a], and [b, b, b] in the nonlinear least
squares algorithm, where [a, b] is the expected range of the axes’ lengths. In practice, we are able
to eliminate all but one of the solutions by simply picking the solution with the lowest residual.

S3

S4 Quadratic Approximation of a Molecule’s Covariance Matrix

In this section we derive the quadratic approximation Q of the function G around a point x. The
approximation will allow us to quickly approximate the descent step for our minimization of χ2

G.
Let a1, . . . ,ana be the surface points for M(x) that come from domain A and let b1, . . . ,bnb

be the surface points for M(x) that come from domain B. We do not expect the set of surface
points to change significantly as the position of B is perturbed by p. The majority of the change
in the covariance matrix will come from the fact that bi points are shifted and not from the actual
change in the surface points. The larger ‖p‖ is, the more we expect the set of the surface points to
change, but at the same time the translation of points that remain on the surface also contributes
a greater weight. Thus, we expect that we can estimate the covariance matrix well at x + p by
simply adjusting the points b by p and recomputing the covariance matrix.

We now write out the equation for approximating Gij(x+p) by simply computing the covariance
matrix of set a and the adjusted set b:

Gij(x+ p) ≈
∑na

v=1
avi a

v
j +

∑nb

v=1
(bvi + pi)(b

v
j + pj)

na + nb

−
[
∑na

v=1
avi +

∑nb

v=1
(bvi + pi)]

[

∑na

v=1
avj +

∑nb

v=1
(bvj + pj)

]

(na + nb)2

=

∑na

v=1
avi a

v
j +

∑nb

v=1
bvi b

v
j

na + nb

−
[
∑na

v=1
avi +

∑nb

v=1
bvi]

[

∑na

v=1
avj +

∑nb

v=1
bvj

]

(na + nb)2

+

∑nb

v=1
(bvi pj + bvjpi + pipj)(na + nb)

(na + nb)2

−
(
∑na

v=1
avi +

∑nb

v=1
bvi)nbpj +

(

∑na

v=1
avj +

∑nb

v=1
bvj

)

nbpi + n2
bpipj

(na + nb)2

= Gij(x) +
(na + nb)

∑nb

v=1
bvi pj + (na + nb)

∑nb

v=1
bvjpi + (na + nb)nbpipj

(na + nb)2

−
nbpj

∑na

v=1
avi + nbpj

∑nb

v=1
bvi + nbpi

∑na

v=1
avj + nbpi

∑nb

v=1
bvj + n2

bpipj

(na + nb)2

= Gij(x) +Qij(p),

(S4.1)

where
Qij(p) = κpipj +Kijpi +Kjipj, (S4.2)

and

κ =
nanb

(na + nb)2
, (S4.3)

Kij =
(na + nb)

∑nb

v=1
bvj − nb(

∑na

k=1
avj +

∑nb

v=1
bvj)

(na + nb)2
, (S4.4)

for i, j = 1, 2, 3.

S4

Observe that if the two sets of points do not change during the translation p (i.e. the two
domains never collide, either before or after) our approximation yields an exact value, and that the
analytical formula for the Jacobian of Q is trivially computed.

S5 Docking Algorithm ELMDOCK

Here we present a detailed description of our Newton-like minimization algorithm for computation
of the optimal domain positioning based on the rotational diffusion tensor.

Algorithm S5.1 Docking Algorithm ELMDOCK

Input: Three-dimensional structure of domain A and B, ρexp – experimental relaxation-rates ra-
tios, G(x) – a function that computes the covariance matrix of M(x).

Output: x∗ – the translation of B that yields the best docking solution as measured by our energy
function.

1: Orient the A and B domains using ρexp {See section “Orienting Domains using Relaxation
Data” in the main text}

2: Compute Dexp using ρexp from both of the domains using ROTDIF
3: Compute the covariance matrix C∗ from Dexp {See section “Step 1: From Diffusion Tensor to

Covariance Matrix” in the main text}
4: x∗ ←∞
5: for every initial guess x0 {See section “Step 2: From Equivalent Ellipsoid to Domain Position”

in the main text} do
6: k ← 0
7: xk ← x0

8: while stopping condition not reached {See Section S5.2} do
9: Compute a descent direction p ∈ R

3 for χ2
G(xk) {See Section S5.1}

10: Set xk+1 ← xk + p

11: Set k ← k + 1
12: end while

13: if χ2
G(xk) < χ2

G(x
∗) then

14: x∗ ← xk

15: end if

16: end for

17: return x∗

The following subsections expend upon steps described in the algorithm.

S5.1 Approximating the Descent Step

Recall that the most important step in a convex minimization is finding a descent step.
At each step k, we would like to find the value for p such that xk + p minimizes χ2

G:

xk+1 = xk + argmin
p

χ2
G(xk + p). (S5.1)

However, finding the true minimizer of χ2
G directly is computationally expensive. We therefore

S5

approximate χ2
G(xk + p) by using our quadratic function approximation derived in Section S4:

χ2
G(xk + p) ≈ χ̃2

G(p) =
3

∑

i=1

3
∑

j=1

(Gij(xk) +Qij(p)− C∗
ij)

2. (S5.2)

The Jacobian of Q can be trivially computed, and we can very quickly solve for the value of p that
minimizes χ̃G.

Therefore, the equation for our next step in each iteration becomes

xk+1 = xk + argmin
p

χ̃2
G(p). (S5.3)

We now iteratively converge to the true minimizer of χ2
G.

To evaluate equation (S5.3) we need to evaluate G(xk). We speedup the minimization by using
Gfast(xk) (see equation (17) in the main text) instead of G(xk) for all our iterations.

S5.2 Stopping Conditions

There are three conditions which terminate our algorithm. The first case is when we are close
enough to the solution:

‖Gfast(xk)−C∗‖2F < ǫ1. (S5.4)

The second case is when we are not making enough progress:

‖Gfast(xk)−Gfast(xk−1)‖2F < ǫ2. (S5.5)

And the last case is when the step size is small enough:

‖xk − xk−1‖2F < ǫ3. (S5.6)

S6 Largest Outlier 1I4D

Figure S6.1 shows an illustration of the approximate solvent-accessible surface for the main outlier
of our docking method, complex 1I4D, as approximated by Gfast method. Note the relatively large
surface area of the big domain relative to the small domain. The overall molecular weight of the
complex is 73 kDa.

References

[1] Perrin, F. (1934) Mouvement Brownien d’un ellipsoide (I). Dispersion dielectrique pour des
molecules ellipsoidales. Le Journal de Physique 5, 497–511.

[2] Perrin, F. (1936) Mouvement Brownien d’un ellipsoide (II). Rotation libre et depolarisation
des fluorescences. Translation et diffusion de molecules ellipsoidales. Le Journal de Physique 7,
1–11.

S6

Figure S6.1: Illustration of the solvent-accessible surface of complex 42, 1I4D, as approximated by
the Gfast method. The interface surface (colored red) does not contribute to the computation of
the covariance matrix.

S7

