Bertrand et al.

Supplemental material:

Supplemental Fig. S1. Comparison of early activation of retinoic acid signaling and anterior *Hox* gene expressions. (A-O) Lateral view of embryos at E7.25, E7.5, E7.75 and E8.5 stages. Embryos were analyzed by whole-mount RNA *in situ* hybridization (ISH) for *Raldh2* (A-C), *Hoxb1* (G-I), *Hoxa1* (J-L), *Hoxa3* (M-O) and by X-gal staining from *RARE-lacZ* transgenic embryos (D-F). (A-C) Whole-mount ISH with *Raldh2* probe showing expansion in the anterior lateral mesoderm. (D-F) β -galactosidase activity of *RARE-lacZ* transgenic embryo is detected in *Raldh2* domain at stage E7.5. (G-O) Whole-mount ISH showing expansion of the expression of *Hoxb1*, *Hoxa1*, *Hoxa3* at E7.25 (G,J,M), E7.5 (H,K,N) and E8.5 (I,L,O). em, extra-embryonic mesoderm; hf, head folds ; A, anterior ; P, posterior ; ps, primitive streak.

Supplemental Fig. S2. Hoxb1 and Hoxa1 are expressed in the second heart field. (A,B) Lateral view of double *in situ* hybridization of *Hoxb1* and *Hoxa1* mRNA with *Isl1*, which marks the second heart field (SHF), as shown in panel C. (A',B') Transverse sections of embryos depicted in A and B. Dotted lines indicate planes of sections. (A') Section showing co-expression of *Hoxb1* and *Isl1* in the splanchnic mesoderm and the anterior foregut endoderm (arrowheads). (B') Transverse section showing expression of *Hoxa1* in the *Isl1*+ splanchnic mesoderm (arrowheads). (C') Transverse section showing expression of *Isl1* in the splanchnic mesoderm showing expression of *Isl1* in the splanchnic mesoderm.

Supplemental Fig. S3. Hoxb1 co-localizes with Isl1 in the second heart field. (A-F) Expression of Hoxb1 was followed by an anti-Hoxb1 on wild-type (A), by an anti- β -galactosidase on *Hoxb1*^{*IRES-Cre*}; *R26R-lacZ* (D). (B,E) Expression of Isl1 protein is detected in the anterior foregut endoderm and the splanchnic mesoderm called the second heart field (SHF). (A,D) Immunostaining showing expression of Hoxb1, β -galactosidase in the splanchnic mesoderm (white arrowhead) and the anterior foregut endoderm. (C,F) Merges of Hoxb1, β -galactosidase and Isl1 immunofluorescence illustrating expression Hoxb1 in a sub-domain of the SHF. en, endoderm; ht, heart tube ; me, mesoderm; r4, rhombomere 4; VP, venous pole.

Supplemental Fig. S4. *Hoxb1* expression and genetic lineage analysis in early embryos. (A-E) Lateral view of X-gal stained embryos from *Hoxb1^{IRES-Cre}*; *R26R-lacZ* mice at E7.25, E7.5, E7.75 and E8.5. (F-J) Lateral view of wholemount *in situ* hybridization (ISH) with *Hoxb1* probe on embryos at E7.25, E7.5, E7.75 and E8.5. (A-C,F-H) X-gal staining showing early anterior expansion of β -galactosidase activity similar as those of Hoxb1 transcript. (D,E,I,J) At E8.5, X-gal-positive cells are detected in the venous pole of the heart, whereas Hoxb1 mRNA is not detected in the heart. Right side view showing X-gal labeled cells in the SHF of *Hoxb1^{IRES-Cre}*; *R26R-lacZ* embryo (arrowhead). Note that anterior expansion of *Hoxb1* in the SHF is discordant to those of X-gal staining. CC, cardiac crescent; ht, heart tube; ps, primitive streak; r4, rhombomere 4; vp, venous pole.

Supplemental Fig. S5. Genetic lineage analysis of *Hoxa1-enhIII-Cre* and *Hoxa3*^{*IRES-Cre*} embryos at early stages. (A-D) *Hoxa1*-lineage and *Hoxa3*-lineage visualized by X-gal staining of *Hoxa1-enhIII-Cre; R26R-lacZ* and *Hoxa3*^{*IRES-Cre}; R26R-lacZ* embryos at E8.5 and E9.5. (A,C) β -galactosidase activity visualized by X-gal staining shows the same anterior border as *Hoxa1* and *Hoxa3* expression at E8.5. (B,D) X-gal staining of later embryos highlights all regions of the embryo that are derived from the *Hoxa1* and *Hoxa3*-expression domains including the pharyngeal region (asterisk). Ba1, branchial arch 1; g, gut epithelium; ht, heart tube; oft, outflow tract; rv, right ventricle.</sup>

Supplemental Fig. S6. Expression of Hoxb1, Hoxa1 and Hoxa3 genes is sensitive to retinoic acid signaling. (A-I) Lateral view of whole-mount in situ hybridization with Hoxb1, Hoxa1 or Hoxa3 probes on wild-type (WT), Raldh2^{-/-} mutant and RA-treated embryos at E8.5. Insets present transverse sections of embryos in A-D,F,G,I. Dotted lines indicated the planes of sections. Treated embryos were subjected to a 70mg/kg dose of all-trans RA at E7.75 and then analyzed 18 hours later at E8.5. (A-C) Whole-mount ISH showing that expression of Hoxb1 in the splanchnic mesoderm situated posterior and adjacent to the cardiac tube is reduced in *Raldh2^{-/-}* mutant embryos, whereas it is shifted anteriorly in RA-treated embryos. Transverse section displayed in insets, indicates that expression of Hoxb1 is largely activated in the pharyngeal mesoderm under RA-treatment. (D-F) Whole-mount ISH showing reduction of Hoxa1 expression in Raldh2^{-/-} mutant, whereas it is increased in RA-treated embryos. Transverse section indicates that expression of Hoxa1 is largely activated in ectoderm, mesoderm and endoderm under RA-treatment (G-I) Whole-mount ISH showing posterior shifting of the anterior border of Hoxa3 expression in Raldh2^{-/-} mutant, whereas it is anteriorly expanded in RA-treated embryos. Inset shows transverse sections of embryos in G and I. Sections display that activation of Hoxa3 is mainly observed in the ectoderm in RAtreated embryo. ht, heart tube.

Supplemental Fig. S7. Retinoic acid signaling has restricted effect on Hox3-lineage. (A,B) Lateral view of X-gal stained (A) *Hoxa3^{IRES-Cre}*; *R26R-lacZ* wild-type (*WT*) and (B) RA-treated

embryos at E9.5. X-gal staining reveals β -galactosidase activity in the second heart field (the splanchnic mesoderm) contiguous to the outflow tract (arrow). (A',B') Sagittal sections (same embryo as in A and B) show a small number of X-gal positive cells in region anterior of the otic vesicle in embryo which received a single all-trans RA injection (85mg/Kg). oft, outflow tract; ov, otic vesicle; rv; right ventricle.

Hoxa1-lineage Hoxa3-lineage A С ht ht E8.5 В ba1 ba1 oft oft rv rv g g E9.5 E9.5

