Highly Stereoselective Brønsted Acid-Catalyzed Synthesis of Spirooxindole Pyrans

Jingqi Wang, Erika Crane and Karl A. Scheidt*

Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Northwestern University 2145 Sheridan Road, Evanston, IL 60208

Supporting Information

Table of Contents

Table of Contents	S1
General Information	S2
General Procedure for the Synthesis of Spiro-oxindoles	S2
Selected NMR Spectra	S12
HPLC Traces of Racemic and Enantioenriched Compounds	S31
Determination of Absolute Stereochemistry of 4h and 10b	S33

General Information

All reactions were carried out under a nitrogen atmosphere in oven-dried glassware with magnetic stirring. THF, toluene, and DMF were purified by passage through a bed of activated alumina.¹ Reagents were purified prior to use unless otherwise stated following the guidelines of Perrin and Armarego.² Purification of reaction products was carried out by flash chromatography using EM Reagent silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light and ceric ammonium nitrate stain or potassium permangenate stain followed by heating. Infrared spectra were recorded on a Brucker Tensor 37 FT-IR spectrometer. ¹H-NMR spectra were recorded on a Bruker Avance 500 (500 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 7.26 ppm). Data are reported as (ap = apparent, s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, b = broad; coupling constant(s) in Hz; integration. Proton-decoupled ¹³C-NMR spectra were recorded on a Brucker Avance 500 (125 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 77.1 ppm). Mass spectra data were obtained on a Varian 1200 Quadrupole Mass Spectrometer and Micromass Quadro II Spectrometer. The microwave reaction was carried with a single mode microwave reactor from Biotage.

All β -hydroxy-dioxinones were prepared in the same manner as described in former paper published from our group.³ All isatin dimethyl acetals were prepared by the method reported by Butenschön.⁴

General Procedure for the Synthesis of Spiro-oxindoles

A 10 mL round bottom flask was charged with powdered 5 Å molecular sieves (250 mg) and flame-dried prior to use. A solution of is the isatin dimethyl acetal (0.12 mmol, 1 equiv.) and hydroxy dioxinone (0.18 mmol, 1.5 equiv.) in CH₂Cl₂ (2.5 mL) was added to the flask and cooled to 0 °C, then trifluorosulfonic acid (0.024 mmol, 0.2 equiv.) in CH₂Cl₂ was added dropwise. The resulted reaction mixture was stirred for 30 min at 0 °C before warming up to 20 °C (room temperature) over 2 hours and then quenched by the addition of saturated sodium bicarbonate (3 mL). The layers were separated and aqueous layer was extracted with CH₂Cl₂ (3 x 2 mL). The combined organic layers were dried over Na₂SO₄, filtered, concentrated in vacuo. The crude product was purified by flash chromatography with EtOAc/hexanes to afford the corresponding spiro-oxindole products.

^[1] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* 1996, 15, 1518.

^[2] D. D. Perrin, W. L. Armarego, *Purification of Laboratory Chemicals;* 3rd Ed., Pergamon Press, Oxford. 1988.

^[3] W. J. Morris, D. W. Custar, K. A. Scheidt, Org. Lett. 2005, 7, 1113.

^[4] B. Muschalek, I. Weidner, H. Butenschön, J. Organomet. Chem. 2007, 692, 2415.

Spiro-oxindole 4a: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 35 mg (93% yield) of **4a** (20:1 dr) as a light yellowish solid. $R_f = 0.24$ (33% ethyl acetate/hexanes; Analytical data for **4a**: FTIR (film) $\tilde{v} = 2938$, 1722, 1650, 1614, 1416, 1203, 1091, 733 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.44 (td, J = 7.7, 1.1 Hz, 1H), 7.37 (t, J = 7.5 Hz, 2H), 7.29-7.25 (m, 4H), 7.15 (t, J = 7.2 Hz, 1H), 6.96 (d, J = 7.8 Hz, 1H), 5.02 (tt, J = 8.4, 4.2 Hz, 1H), 3.35 (s, 3H), 2.88 (ddd, J = 14.3, 10.0, 4.8 Hz, 1H), 2.76-2.70 (m, 1H), 2.51-2.49 (m, 2H), 2.06-2.04 (m, 1H), 1.95-1.92 (m, 1H), 1.81 (d, J = 12.7 Hz, 6H); ¹³C NMR (125 MHz; CDCl₃): δ 174.7, 165.6, 157.8, 144.6, 141.3, 130.2, 128.9, 128.2, 128.2, 125.8, 123.2, 122.7, 108.5, 106.4, 102.1, 75.5, 68.6, 36.7, 32.8, 31.2, 27.0, 26.2, 22.7. LRMS (ESI): Mass calcd for C₂₅H₂₅NO₅ [M+H]⁺: 420; found 420.

Spiro-oxindole 4b: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 48 mg (89% yield) of **4b** (20:1 dr) as a light reddish solid. $R_f = 0.21$ (33% ethyl acetate/hexanes); Analytical data for **4b**: FTIR (film) $\tilde{v} = 2940$, 1719, 1649, 1495, 1416, 1287, 1037, 702 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.38-7.35 (m, 2H), 7.26 (dd, J = 10.2, 3.4 Hz, 3H), 6.95 (dd, J = 8.5, 2.6 Hz, 1H), 6.88-6.86 (m, 2H), 5.02 (tt, J = 7.9, 5.1 Hz, 1H), 3.87 (s, 3H), 3.33 (s, 3H), 2.87 (ddd, J = 14.0, 10.5, 5.3 Hz, 1H), 2.75-2.69 (m, 1H), 2.50-2.49 (m, 2H), 2.07-2.01 (m, 1H), 1.96-1.90 (m, 1H), 1.81 (d, J = 13.4 Hz, 6H); ¹³C NMR (125 MHz; CDCl₃): δ 174.7, 165.9, 158.0, 156.2, 141.6, 138.3, 130.4, 128.5, 128.5, 126.0, 124.8, 113.9, 111.6, 109.0, 106.7, 76.1, 69.0, 55.9, 37.0, 33.1, 31.4, 27.3, 26.6, 23.0.; LRMS (ESI): Mass calcd for C₂₆H₂₇NO₆ [M+H]⁺: 450, found [M+H]⁺: 450.

Spiro-oxindole 4c: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 48 mg (80% yield) of **4c** (20:1 dr) as a yellowish solid. $R_f = 0.55$ (33% ethyl

acetate/hexanes); Analytical data for **4c**: FTIR (film) $\tilde{v} = 2940$, 1726, 1649, 1607, 1416, 1367, 1096, 708 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.39-7.36 (m, 2H), 7.30-7.25 (m, 4H), 7.12-7.11 (m, 2H), 5.00-4.95 (m, 1H), 3.34 (s, 3H), 2.86 (ddd, J = 14.0, 10.3, 5.2 Hz, 1H), 2.75-2.69 (m, 1H), 2.50-2.49 (m, 2H), 2.03 (dddd, J = 13.6, 10.4, 8.2, 5.4 Hz, 1H), 1.93 (dddd, J = 13.8, 10.5, 6.1, 4.7 Hz, 1H), 1.81 (d, J = 3.5 Hz, 6H); ¹³C NMR (125 MHz; CDCl₃): δ 174.8, 166.1, 158.0, 146.2, 141.5, 128.5, 128.5, 128.1, 126.1, 125.7, 124.8, 124.1, 112.4, 106.8, 101.8, 75.4, 67.0, 38.0, 33.0, 31.4, 27.3, 26.6, 23.0; LRMS (ESI): Mass calcd for C₂₅H₂₄BrNO₅ [M+H]⁺: 498; found 498.

Spiro-oxindole 4d: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 42 mg (71% yield) of **4d** (20:1 dr) as a light yellowish solid. $R_f = 0.22$ (33% ethyl acetate/hexanes); Analytical data for **4d**: FTIR (film) $\tilde{v} = 2941$, 1725, 1649, 1608, 1418, 1202, 921, 702 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.41 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28-7.25 (m, 4H), 7.20-7.14 (m, 4H), 7.02 (d, J = 7.8 Hz, 1H), 6.80 (d, J = 1.7 Hz, 1H), 5.01 (d, J = 16.1 Hz, 1H), 4.92-4.86 (m, 2H), 2.79 (ddd, J = 14.2, 9.9, 4.8 Hz, 1H), 2.63 (ddd, J = 13.8, 10.1, 6.4 Hz, 1H), 2.42-2.40 (m, 2H), 1.97-1.89 (m, 1H), 1.84 (dddd, J = 14.0, 10.2, 6.3, 4.0 Hz, 1H), 1.73 (d, J = 4.5 Hz, 6H); ¹³C NMR (125 MHz; CDCl₃): δ 174.9, 166.4, 158.2, 145.3, 141.5, 135.0, 129.0, 128.6, 128.5, 128.2, 127.8, 127.1, 126.1, 125.9, 124.9, 124.1, 113.3, 106.9, 101.6, 75.5, 69.0, 44.0, 37.1, 33.1, 31.5, 27.3, 23.0; LRMS (ESI): Mass calcd for C₃₁H₂₉NO₅ [M+H]⁺: 496, found [M+H]⁺: 496.

Spiro-oxindole 4e: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 58 mg (94% yield) of **4e** (20:1 dr) as a light yellowish solid. $R_f = 0.40$ (33% ethyl acetate/hexanes); Analytical data for **4e**: FTIR (film) $\tilde{v} = 2939$, 1718, 1648, 1495, 1417, 1272, 1179, 1018, 700 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.42 (d, J = 7.6 Hz, 2H), 7.33-7.30 (m, 2H), 7.28-7.24 (m, 3H), 7.18-7.15 (m, 3H), 6.77 (d, J = 2.6 Hz, 1H), 6.71-6.69 (m, 1H), 6.54 (d, J = 8.5 Hz, 1H), 5.05 (d, J = 16.0 Hz, 1H), 4.96 (tt, J = 8.6, 4.3 Hz, 1H), 4.87 (d, J = 16.0 Hz, 1H), 3.72 (s, 3H), 2.81 (ddd, J = 14.0, 10.3, 5.1 Hz, 1H), 2.65 (ddd, J = 13.9, 10.2, 6.2 Hz, 1H), 2.43-2.41 (m, 2H), 1.96 (dddd, J = 13.7, 10.3, 8.4, 5.3 Hz, 1H), 1.88-1.81 (m, 1H), 1.73 (d, J = 14.4 Hz, 6H); ¹³C NMR (125 MHz; CDCl₃): δ

174.8, 166.2, 158.2, 156.2, 141.6, 137.2, 135.7, 130.4, 128.8, 128.5, 128.5, 127.5, 127.2, 126.0, 113.9, 111.5, 110.3, 106.8, 102.1, 76.2, 68.9, 55.8, 44.0, 37.1, 33.2, 31.5, 27.3, 23.0; LRMS (ESI): Mass calcd for $C_{32}H_{31}NO_6$ [M+H]⁺: 526, found [M+H]⁺: 526.

Spiro-oxindole 4f: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 56 mg (81% yield) of **4f** (20:1 dr) as a yellowish solid. $R_f = 0.35$ (33% ethyl acetate/hexanes); Analytical data for **4f**: FTIR (film) $\tilde{v} = 2940$, 1724, 1649, 1613, 1468, 1351, 1170, 752, 698 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.44 (d, J = 7.5 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.26 (qd, J = 7.4, 6.2 Hz, 3H), 7.22-7.16 (m, 4H), 7.02 (t, J = 7.5 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 5.07 (d, J = 16.1 Hz, 1H), 4.96 (dt, J = 8.6, 4.3 Hz, 1H), 4.91 (d, J = 16.1 Hz, 1H), 2.82 (ddd, J = 14.3, 10.0, 4.8 Hz, 1H), 2.68-2.62 (m, 1H), 2.44-2.42 (m, 2H), 2.00-1.93 (m, 1H), 1.89-1.82 (m, 1H), 1.74 (d, J = 14.0 Hz, 6H). ¹³C NMR (125 MHz; CDCl₃): δ 175.1, 166.1, 158.2, 143.9, 141.6, 135.6, 130.3, 129.2, 128.8, 128.5, 128.5, 127.5, 127.2, 126.0, 123.5, 123.0, 110.0, 106.8, 102.1, 75.9, 68.9, 43.9, 37.1, 33.2, 31.5, 27.4, 22.9; LRMS (ESI): Mass calcd for C₃₁H₂₈BrNO₅ [M+H]⁺: 574, found [M+H]⁺: 574.

Spiro-oxindole 4g: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 35 mg (72% yield) of **4g** (20:1 dr) as a light yellowish solid. $R_f = 0.18$ (33% ethyl acetate/hexanes); Analytical data for **4g**: IR (film) $\tilde{v} = 3272$, 2940, 1727, 1647, 1620, 1418, 1204, 752 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.88 (s, 1H), 7.28-7.24 (m, 3H), 7.17-7.13 (m, 4H), 7.02 (td, J = 7.5, 0.9 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 4.85 (tt, J = 8.6, 4.3 Hz, 1H), 2.78 (ddd, J = 14.3, 9.6, 5.1 Hz, 1H), 2.64 (ddd, J = 13.9, 9.8, 6.5 Hz, 1H), 2.41-2.38 (m, 2H), 1.98-1.91 (m, 1H), 1.87-1.81 (m, 1H), 1.72 (d, J = 16.2 Hz, 6H); ¹³C NMR (125 MHz; CDCl₃): δ 176.5, 166.2, 158.4, 141.9, 141.5, 130.4, 129.6, 128.5, 128.5, 126.0, 124.0, 123.0, 110.7, 106.8, 102.1, 76.0, 68.8, 37.0, 33.1, 31.4, 27.4, 22.9; LRMS (ESI): Mass calcd for C₂₄H₂₃NO₅ [M+H]⁺: 406, found [M+H]⁺: 406.

Spiro-oxindole 4h: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 38 mg (81% yield) of **4h** (20:1 d.r.) as a yellowish solid. $R_f = 0.21$ (33% ethyl acetate/hexanes); Analytical data for **4h**: mp = 120-150 °C (decomp.); FTIR (film) $\tilde{v} = 2939$, 1720, 1650, 1613, 1416, 1274, 1091, 736 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.37 (d, J = 7.2 Hz, 2H), 7.34-7.28 (m, 4H), 7.21 (d, J = 6.9 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 5.92 (dd, J = 10.5, 3.1 Hz, 1H), 3.21 (s, 3H), 2.75 (dd, J = 18.0, 10.5 Hz, 1H), 2.64 (dd, J = 18.0, 3.2 Hz, 1H), 1.73 (d, J = 16.1 Hz, 6H); ¹³C NMR (125 MHz; CDCl₃): δ 174.9, 165.7, 158.0, 145.0, 139.7, 130.5, 128.9, 128.7, 128.5, 123.6, 123.0, 108.9, 106.9, 102.3, 77.4, 77.2, 76.9, 34.7, 27.4, 26.5, 23.0; LRMS (ESI): Mass calcd for C₂₃H₂₁NO₅ [M+H]⁺: 392; found 392.

Spiro-oxindole 4i: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 34 mg (63% yield) of **4i** (20:1 dr) as a light yellowish solid. $R_f = 0.25$ (33% ethyl acetate/hexanes); Analytical data for **4i**: FTIR (film) $\tilde{v} = 2940$, 1720, 1650, 1612, 1471, 1405, 1276, 1204, 1156, 923, 730 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.32 (td, J = 7.8, 1.2 Hz, 1H), 7.20 (dd, J = 7.3, 0.9 Hz, 1H), 7.04 (td, J = 7.5, 0.7 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 6.51 (d, J = 2.3 Hz, 2H), 6.37 (t, J = 2.3 Hz, 1H), 5.84 (dd, J = 10.4, 3.2 Hz, 1H), 3.75 (s, 6H), 3.21 (s, 3H), 2.72 (dd, J = 18.0, 10.5 Hz, 1H), 2.61 (dd, J = 18.0, 3.3 Hz, 1H), 1.74 (d, J = 13.8 Hz, 6H). ¹³C NMR (125 MHz; CDCl₃): δ 174.8, 165.6, 161.0, 158.0, 145.0, 142.1, 130.5, 128.8, 123.6, 123.0, 108.8, 106.9, 104.5, 102.2, 100.1, 76.2, 70.8, 55.5, 34.7, 27.3, 26.5, 23.0; LRMS (ESI): Mass calcd for C₂₅H₂₅NO₇ [M+H]⁺: 452, found [M+H]⁺: 452.

Spiro-oxindole 4j: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 42 mg (88% yield) of **4j** (20:1 dr) as a light yellowish oil. $R_f = 0.50$ (33% ethyl acetate/hexanes); Analytical data for **4j**: FTIR (film) $\tilde{v} = 2927$, 2853, 1722, 1651, 1614, 1471, 1405, 1275, 1092, 732 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.31 (td, J = 7.7, 1.3 Hz, 1H), 7.10 (dt, J = 7.3, 0.6 Hz, 1H), 7.01 (td, J = 7.5, 0.8 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 4.61 (ddd, J = 9.4, 7.2, 4.0 Hz, 1H), 3.22 (s, 3H), 2.42-2.33 (m, 2H), 1.85 (bd, J = 13.0 Hz, 1H), 1.73-1.62 (m, 10H), 1.46 (tdt, J = 11.3, 7.5, 3.7 Hz, 1H), 1.22-1.10 (m, 3H), 1.06-0.93 (m, 2H); ¹³C NMR (125 MHz; CDCl₃): δ 175.2, 166.5, 158.1, 144.8, 130.3, 129.3, 123.4, 122.9, 108.7, 106.6, 102.4, 75.7, 73.1, 41.8, 30.4, 28.9, 27.9, 27.3, 26.5, 26.4, 26.0, 25.8, 23.0. LRMS (ESI): Mass calcd for C₂₃H₂₇NO₅ [M+H]⁺: 398, found [M+H]⁺: 398.

Spiro-oxindole 4k: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 28 mg (66% yield) of **4k** (20:1 dr) as a light yellowish oil. $R_f = 0.45$ (33% ethyl acetate/hexanes); Analytical data for **4k**: FTIR (film) $\tilde{v} = 3001$, 2940, 1719, 1651, 1614, 1417, 1276, 1091, 753 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.30 (td, J = 7.7, 1.3 Hz, 1H), 7.15-7.14 (m, 1H), 7.02 (td, J = 7.7, 1.3 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 4.11 (ddd, J = 10.1, 9.0, 3.1 Hz, 1H), 3.21 (s, 3H), 2.57 (dd, J = 18.0, 10.2 Hz, 1H), 2.48 (dd, J = 18.0, 3.2 Hz, 2H), 1.70 (d, J = 14.3 Hz, 6H), 0.96-0.91 (m, 1H), 0.57-0.54 (m, 2H), 0.43-0.40 (m, 1H), 0.27 (m, 1H). ¹³C NMR (125 MHz; CDCl₃): δ 175.0, 166.0, 158.1, 144.9, 130.4, 129.0, 123.5, 123.0, 108.8, 106.7, 102.2, 76.0, 74.3, 33.0, 27.3, 26.5, 23.0, 15.2, 4.0, 2.3. LRMS (ESI): Mass calcd for C₂₀H₂₁NO₅ [M+H]⁺: 356, found [M+H]⁺: 356.

Spiro-oxindole 41: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 32 mg (69% yield) of **41** (20:1 dr) as a light yellowish oil. $R_f = 0.15$ (33% ethyl acetate/hexanes); Analytical data for **41**: FTIR (film) $\tilde{v} = 2950$, 1722, 1650, 1614, 1411, 1276, 1204, 1091, 755 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.32 (td, J = 7.7, 1.3 Hz, 1H), 7.11 (dt, J = 7.4, 0.6 Hz, 1H), 7.02 (td, J = 7.5, 0.8 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 5.29-5.24 (m, 1H), 3.65 (s, 3H), 3.22 (s, 3H), 2.69 (dd, J = 15.9, 5.7 Hz, 1H), 2.61-2.49 (m, 3H), 1.70 (d, J = 6.5 Hz, 6H). ¹³C NMR (125 MHz; CDCl₃): δ 174.6, 170.2, 165.3, 157.9, 144.9, 130.6, 128.7, 123.5, 123.0, 108.8, 106.8, 102.0, 75.7, 65.7, 52.0, 39.8, 32.5, 27.3, 26.5, 23.0; LRMS (ESI): Mass calcd for C₂₀H₂₁NO₇ [M+H]⁺: 388, found 388.

Spiro-oxindole 4m: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 38 mg (66% yield) of **4m** (20:1 dr) as a light yellowish oil. $R_f = 0.48$ (33% ethyl acetate/hexanes); Analytical data for **4m**: FTIR (film) $\tilde{v} = 2963$, 2936, 2875, 1722, 1650, 1614, 1404, 1276, 1202, 1092, 751 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.34-7.31 (m, 5H), 7.28 (dd, J = 6.2, 2.4 Hz, 1H), 7.07 (dd, J = 7.1, 1.2 Hz, 1H), 7.01 (td, J = 7.4, 0.9 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 4.73 (dd, J = 10.8, 2.9 Hz, 1H), 4.49 (d, J = 12.2 Hz, 1H), 4.41 (d, J = 12.2 Hz, 1H), 3.31 (d, J = 9.0 Hz, 1H), 3.21 (s, 3H), 3.18 (d, J = 9.0 Hz, 1H), 2.65 (dd, J = 17.9, 12.0 Hz, 1H), 2.32 (dd, J = 17.9, 2.9 Hz, 1H), 1.69 (d, J = 5.2 Hz, 6H), 0.96 (s, 3H), 0.90 (s, 3H). ¹³C NMR (125 MHz; CDCl₃): δ 175.0, 167.0, 158.2, 144.9, 138.9, 130.2, 129.5, 128.4, 127.5, 127.5, 123.5, 122.7, 108.6, 106.6, 102.2, 76.3, 75.6, 73.5, 73.4, 38.0, 28.5, 27.3, 26.4, 23.0, 21.1, 21.0; LRMS (ESI): Mass calcd for C₂₈H₃₁NO₆ [M+H]⁺: 478; found 478.

Spiro-oxindole 4n: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 20 mg (51% yield) of **4n** (20:1 dr) as a light yellowish oil. $R_f = 0.31$ (33% ethyl acetate/hexanes); Analytical data for **4n**: FTIR (film) $\tilde{v} = 2941$, 2963, 1721, 1650, 1613, 1408, 1375, 1204, 1091, 752 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.34-7.31 (m, 5H), 7.29-7.26 (m, 1H), 7.12 (dd, J = 7.3, 1.1 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 5.02-4.99 (m, 1H), 4.46 (q, J = 9.6 Hz, 2H), 3.59-3.51 (m, 2H), 3.22 (s, 3H), 2.46-2.44 (m, 2H), 1.96-1.83 (m, 2H), 1.70 (d, J = 7.6 Hz, 6H).¹³C NMR (125 MHz; CDCl₃): δ 174.9, 165.6, 157.8, 144.7, 138.4, 130.5, 129.1, 128.5, 127.7, 127.2, 123.1, 122.8, 109.0, 106.5, 102.2, 75.4, 73.1, 67.2, 66.8, 35.1, 33.0, 27.3, 26.1, 23.0; LRMS (ESI): Mass calcd for C₂₆H₂₇NO₆ [M+H]⁺: 450; found 450.

Spiro-oxindole 40: Purified by flash chromatography using 20% ethyl acetate/hexanes to afford 29 mg (57% yield) of **4n** (20:1 dr) as a light yellowish oil. $R_f = 0.45$ (33% ethyl acetate/hexanes); Analytical data for **4n**: FTIR (film) $\tilde{v} = 2939$, 2862, 2095, 1719, 1650, 1613, 1406, 1275, 1091, 753 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.32 (td, J = 7.7, 1.3 Hz, 1H), 7.12 (dd, J = 7.2, 1.0 Hz, 1H), 7.03 (td, J = 7.5, 0.9 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 4.84 (td, J = 6.5, 2.6 Hz, 1H), 3.26-3.21 (m, 5H), 2.38-2.36 (m, 2H), 1.70 (d, J = 9.4 Hz, 6H), 1.61-1.52 (m, 4H), 1.39-1.33 (m, 4H). ¹³C NMR (125 MHz; CDCl₃): δ 175.1, 165.9, 158.1, 144.8, 130.4, 129.1, 123.4, 123.0, 108.8, 106.7, 102.3, 75.8, 69.1, 51.4, 35.0, 33.1, 28.8, 27.3, 26.6, 26.5, 24.7, 22.9; LRMS (ESI): Mass calcd for C₂₂H₂₆N₄O₅ [M+H]⁺: 427; found 427.

Pyranone 5: A solution of **4h** (30 mg, 0.08 mmol) in DMSO (4 mL) and H_2O (0.5 mL) was heated to 120 °C (bath temperature) for 24 hours. The mixture was then cooled to room temperature and diluted with brine (10 mL) and extracted with EtOAc (3 x 3mL).

The combined organic layers were filtered, concentrated and purified by flash chromatography (15% ethyl acetate/hexanes) to yield 22 mg (93%) of **5** as a yellowish oil. $R_f = 0.18$ (20% ethyl acetate/hexanes); Analytical data for **5**: FTIR (film) $\tilde{v} = 2922$, 1722, 1615, 1471, 1375, 1094, 752 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.47 (dd, J = 7.4, 0.8 Hz, 1H), 7.42-7.40 (m, 2H), 7.38-7.29 (m, 3H), 7.15 (d, J = 0.8 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 5.97 (dd, J = 11.1, 3.2 Hz, 1H), 3.17 (s, 3H), 2.95 (dd, J = 14.9, 0.8 Hz, 1H), 2.86 (ddd, J = 14.9, 3.2, 1.9 Hz, 1H), 2.74 (ddd, J = 14.9, 11.1, 0.8 Hz, 1H), 2.54 (dd, J = 14.9, 1.9 Hz, 1H); ¹³C NMR (125 MHz; CDCl₃): δ 203.6, 174.5, 143.4, 140.8, 130.7, 128.8, 128.4, 127.8, 126.2, 124.1, 123.6, 108.9, 78.2, 73.7, 49.0, 45.8, 26.1. LRMS (ESI): Mass calcd for C₁₉H₁₇NO₃ [M+H]⁺: 308; found 308.

Ketoester 6: A septum-sealed microwave tube charged with spiro-oxindole **4h** (50 mg, 0.128 mmol) and MeOH (0.05 mL, 1.28 mmol) in toluene (2 mL) was irradiated in a monomode microwave cavity at 160 °C for 2 h. The solvent was removed in vacuo and the crude product was purified by flash chromatography (30% ethyl acetate/hexanes) to yield 38 mg (81%) of **6** as a light yellowish solid. $R_f = 0.25$ (33% ethyl acetate/hexanes); Analytical data for **6**: FTIR (film) $\tilde{v} = 3059$, 3033, 2921, 1719, 1660, 1615, 1471, 1220, 1092, 752 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 12.37 (s, 1H), 7.36 (dd, J = 8.3, 1.3 Hz, 2H), 7.33-7.30 (m, 2H), 7.29-7.26 (m, 2H), 7.20 (dd, J = 7.3, 0.8 Hz, 1H), 7.03 (td, J = 7.5, 0.9 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), 5.77 (dd, J = 10.9, 2.9 Hz, 1H), 3.40 (s, 3H), 3.19 (s, 3H), 2.86 (dd, J = 17.6, 10.9 Hz, 1H), 2.68 (dd, J = 17.6, 3.0 Hz, 1H); ¹³C NMR (125 MHz; CDCl₃): δ 175.9, 173.5, 170.0, 144.5, 140.1, 130.7, 129.9, 128.6, 128.3, 126.6, 123.7, 123.0, 108.1, 97.5, 76.8, 70.7, 51.7, 36.4, 26.3; LRMS (ESI): Mass calcd for C₂₁H₁₉NO₅ [M+H]⁺: 366; found 366.

Pyrazolone 7: A septum-sealed microwave tube charged with spiro-oxindole **4h** (25 mg, 0.064 mmol) and MeOH (0.05 mL, 1.28 mmol) in toluene (2 mL) was irradiated in a monomode microwave cavity at 160 °C for 2 h. Then methyl hydrazine (0.02 mL, 0.41 mmol) was added and the reaction mixture was irradiated at 90 °C for an extra 30 min. The solvent was removed in vacuo and **7** (18 mg, 81%) was obtained as white prisms after washing with diethyl ether. Analytical data for **7**: IR (film) $\tilde{v} = 3399$, 2923, 2129, 1717, 1603, 1011, 750 cm⁻¹; ¹H NMR (500 MHz; CD₃OD): δ 7.42-7.40 (m, 2H), 7.38-

7.33 (m, 3H), 7.30-7.27 (m, 1H), 7.21 (dd, J = 7.4, 0.8 Hz, 1H), 7.08 (td, J = 7.5, 0.9 Hz, 1H), 7.00 (d, J = 7.8 Hz, 1H), 5.80 (dd, J = 9.3, 4.8 Hz, 1H), 3.39 (s, 3H), 3.22 (s, 3H), 2.94-2.92 (m, 2H); ¹³C NMR (125 MHz; CD₃OD): δ 177.4, 147.2, 142.0, 131.3, 130.2, 129.6, 129.5, 129.1, 127.4, 125.7, 124.3, 110.0, 77.4, 73.5, 49.6, 30.9, 26.4; LRMS (ESI): Mass calcd for C₂₁H₁₉N₃O₃ [M+H]⁺: 362; found 362.

Thio-pyrimidine-one 8: A septum-sealed microwave tube charged with spiro-oxindole **4h** (50 mg, 0.128 mmol) and thiourea (97 mg, 1.28 mmol) in toluene (2 mL) was irradiated in a monomode microwave cavity at 160 °C for 4 h. The solvent was removed in vacuo and the crude product was purified by flash chromatography (30% ethyl acetate/hexanes) to yield 21 mg (42%) of **8** as a brownish solid. $R_f = 0.21$ (33% ethyl acetate/hexanes); Analytical data for **8**: FTIR (film) $\tilde{v} = 3218$, 3159, 3059, 2932, 1724, 1653, 1614, 1569, 1470, 1374, 1200, 1129, 1024, 731 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 11.74 (bs, 1H), 7.45-7.39 (m, 6H), 7.14 (d, J = 7.2 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 5.97 (bs, 1H), 5.73 (d, J = 9.2 Hz, 1H), 2.77 (s, 3H), 2.66-2.59 (m, 1H), 2.43-2.38 (m, 1H); ¹³C NMR (125 MHz; CDCl₃): δ 174.9, 174.3, 159.4, 151.9, 144.6, 139.7, 130.4, 129.1, 128.9, 128.1, 127.1, 123.8, 123.3, 109.9, 108.3, 76.4, 70.9, 33.2, 26.1; LRMS (ESI): Mass calcd for $C_{21}H_{17}N_3O_3S$ [M+H]⁺: 392; found 392.

Bicyclic dioxinone 10a: Prepared according to the general procedure using 6-(2-hydroxy-4-phenylbutyl)-2,2-dimethyl-4*H*-1,3-dioxin-4-one (50 mg, 0.18 mmol) and methyl 2,2-dimethoxy-2-phenylethanoate (25 mg, 0.12 mmol) and purified by flash chromatography using 30% EtOAc/hexanes to afford 40 mg (79% yield) of **10a** (20:1 dr) as a yellow oil. $R_f = 0.45$ (33% ethyl acetate/hexanes); Analytical data for **10a**: FTIR (film) $\tilde{v} = 2924$, 2853, 1730, 1644, 1404, 1273, 1205, 1011, 751 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.56-7.54 (m, 2H), 7.35-7.27 (m, 5H), 7.21-7.17 (m, 3H), 3.97 (tdd, J = 7.5, 7.2, 4.0 Hz, 1H), 3.81 (s, 3H), 2.86 (ddd, J = 14.1, 8.9, 5.3 Hz, 1H), 2.71 (dt, J = 14.1, 8.1 Hz, 1H), 2.42 (dd, J = 17.9, 10.6 Hz, 1H), 2.30 (dd, J = 17.8, 3.2 Hz, 1H), 2.07-2.01 (m, 1H), 1.97-1.90 (m, 1H), 1.66 (s, 3H), 1.50 (s, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 170.8, 163.4, 158.5, 141.4, 139.7, 128.6, 128.3, 127.8, 127.5, 126.1, 106.2,

106.1, 81.2, 70.1, 52.9, 36.9, 33.5, 31.2, 29.8, 27.1, 23.4; LRMS (ESI): Mass calcd for $C_{25}H_{26}O_6$ [M+H]⁺: 423; found 423.

Bicyclic dioxinone 10b: Prepared according to the general procedure using 2,2dimethoxyacenaphthylen-1-(2*H*)-one (50 mg, 0.22 mmol) and 6-(2-hydroxyhexyl)-2,2dimethyl-4*H*-1,3-dioxin-4-one (75 mg, 0.33 mmol) and purified by flash chromatography using 30% EtOAc/hexanes to afford 71 mg (82% yield) of **10b** (20:1 dr) as a white solid. $R_f = 0.77$ (33% ethyl acetate/hexanes); Analytical data for **10b**: mp = 120-150 °C (decomp.); FTIR (film) $\tilde{v} = 2955$, 2934, 2870, 1723, 1650, 1406, 1276, 1202, 1009, 786 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 8.09 (d, *J* = 8.2 Hz, 1H), 7.99 (d, *J* = 7.0 Hz, 1H), 7.89 (d, *J* = 8.3 Hz, 1H), 7.73 (dd, *J* = 8.1, 7.0 Hz, 1H), 7.63 (dd, *J* = 8.3, 6.9 Hz, 1H), 7.44 (d, *J* = 6.9 Hz, 1H), 4.79-4.74 (m, 1H), 2.46-2.44 (m, 2H), 1.78 (s, 3H), 1.72 (s, 3H), 1.61-1.55 (m, 1H), 1.53-1.47 (m, 1H), 1.31-1.23 (m, 4H), 0.83 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz; CDCl₃): δ 201.7, 166.1, 158.5, 142.5, 139.4, 131.6, 131.5, 130.9, 128.6, 128.4, 126.0, 122.3, 119.9, 106.6, 102.9, 79.1, 70.1, 34.9, 33.3, 27.3, 27.2, 22.9, 22.6, 14.0. LRMS (ESI): Mass calcd for C₂₄H₂₄O₅ [M+H]⁺: 393; found 393.

Selected NMR Spectra

HPLC Traces of Racemic and Enantioenriched Compounds

Racemic 1a:

Racemic 4a:

DAD1 A, Sig=254,4 Ref=360,100 (EAC\EAC3-146.D) mAU] 500 400 10.98 300-3 200 100 0 20 10 16 Area Percent Report Sorted Bv Sional : Multiplier 1.0000 : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 10.903 VB 0.5817 8595.79297 235.55894 20.0497 2 17.078 VB 0.9036 3.42767e4 579.93500 79.9503 Totals : 4.28725e4 815.49394

Enatioenriched 1a:

Enatioenriched 4a

Determination of Absolute Stereochemistry of 4h

The absolute stereochemistry of **4h** was determined by the X-ray diffraction. Pure material was obtained by recrystallization from dichloromethane.

X-ray crystal structure of (3,7'-*cis*)-1,2',2'-trimethyl-7'-phenyl-7',8'-dihydro-4'*H*-spiro[indoline-3,5'-pyrano[4,3-*d*][1,3]dioxine]-2,4'-dione **4h**:

X-ray diffraction was performed at -120 °C and raw frame data were processed using SAINT. Molecular structure was solved using direct methods and refined by F2 by full-matrix least-squares techniques. The GOF = 1.06 for 265 variables refined to R1 = 0.032 for 3371 reflections with I>2 α (I). There was no absorption correction. The flack parameter was 0.0. Further information is contained in the CCDC file 803846.

Determination of Absolute Stereochemistry of 10b

The relative stereochemistry of **10b** (the minor diastereomer from the reaction) was determined by the X-ray diffraction. Pure material was obtained by recrystallization from diethyl ether/ethyl acetate.

X-ray crystal structure of (1,7'-*cis*)-7'-butyl-2',2'-dimethyl-7',8'-dihydro-2*H*,4'*H*-spiro[acenaphthylene-1,5'-pyrano[4,3-*d*][1,3]dioxine]-2,4'-dione **10b**:

X-ray diffraction was performed at -120 °C and raw frame data were processed using SAINT. Molecular structure was solved using direct methods and refined by F2 by full-matrix least-squares techniques. The GOF = 1.03 for 265 variables refined to R1 = 0.042 for 2521 reflections with I>2 α (I). There was no absorption correction. The flack parameter was 0.0. Further information is contained in the CCDC file 803480.

