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Stimulus Preparation. Faces. Stimulus choice and construction were
guided by two opposing goals. On the one hand, stimuli had to be
as similar as possible with respect to a number of characteristics:
high-level attributes (e.g., sex or age), low-level image descriptors
(e.g., average luminance or contrast), and external feature
properties (e.g., hair color or volume) to eliminate confounds with
facial identity. On the other hand, individual faces needed to be as
different from each other as possible to maximize the discrimi-
nability of the visually based activation patterns they elicit. To
accommodate these different demands, we proceeded as follows.
First, we started with all front-view faces from the Face-Place

3.0 face database (www.face-place.org) and we narrowed down
this dataset to young Caucasian adult male faces displaying
a minimum of three basic emotional expressions (1) in addition
to neutral expressions. This procedure ensures substantial
within-identity image variability while preserving natural poses
that are easy to interpret. In addition, we eliminated all faces
that displayed facial hair, glasses, or other adornments, leaving
us with a set of 128 faces (32 identities × 4 expressions).
Second, faces were normalized to the same size, subsampled to

a lower resolution, and masked. More precisely, an oval mask was
applied to all images to remove background and hair and also to
reduce the dimensionality of the space (Fig. S6).
Third, we converted images to CIEL*a*b*, the color space that

comes closest to that of human vision (2). Each image was nor-
malized next with the same mean and contrast value separately
for each of the three color channels: L* (corresponding to lu-
minance), a* (corresponding to red:green), and b* (correspond-
ing to yellow:blue).
Fourth, we computed pairwise similarity measures across all

faces with a neutral expression. More specifically, we applied
principal component analysis (PCA) to all faces and their mirror
symmetric versions (3). We selected the projections on the first
40 principal components for each image and computed Maha-
lanobis distances between these lower-dimension patterns for
each pair of neutral faces. A Mahalanobis metric was deployed
given that it outperforms other types of metric with regard to
both automatic face recognition (4) and modeling human face
recognition (5). On the basis of these measurements, from all
possible sets of four neutral faces we selected the set that mini-
mized the average similarity score. We also ensured that each
pair of faces within this set scored a similarity value below the
average within the larger initial set.
Finally, we restored the original homogeneous background and

applied the same hair feature to all four faces and their nonneutral
versions (happy, sad, and disgusted). The resulting 16 images (Fig.
1) served as experimental stimuli for our individuation task.
A different set of faces was used for the functional localizers.

Orthographic forms (OFs). Four five-letter pseudowords (Fig. S1)
were presented in four different types of font (Arial Black,
Comic Sans MS, Courier, and Lucida Handwriting). The pseu-
dowords had the same syllable structure but were orthographi-
cally dissimilar in that they had no common letter in the same
position. Moreover, they were composed of different sets of
letters (with the exception of plang and greld that shared the
letter “l” in different positions).

Subjects. Eight Caucasian young adults (five females, age range
18–22) from the Carnegie Mellon University community partic-
ipated in the experiment. All subjects were right-handed and had
normal or corrected-to-normal vision. None of the subjects had

any history of neurological disorders. Two other subjects par-
ticipated in the experiment; however, their data were excluded
from analysis due to large head movements (more than a voxel)
during at least one of three scanning sessions.
Informed consent was obtained from all subjects. The In-

stitutional ReviewBoard of CarnegieMellonUniversity approved
all imaging and behavioral procedures.

Behavioral Procedures. Before scanning, subjects were presented
with the 16-face stimuli described above and were trained to
associate each facial identity with one of four buttons. None of the
subjects were previously familiar with any of the faces presented
nor were they given any biographical information with regard to
them. Similarly, subjects were presented with the 16 OF stimuli
and were trained to associate each individual OF with a button
(face and OF responses were made using different hands ran-
domly assigned to each category). Subjects practiced the task until
accuracy reached ceiling (>98%). Training took place at least 1 d
before each subject’s first scanning session and was also briefly
repeated before each scanning session.
During localizer scans, subjects performed a one-back task

(same/different image). During the remaining functional scans,
they performed the individuation task described above.
Stimuli were presented in the center of the screen against a

black background and subtended a visual angle of 3.2° × 4.1°.
Stimulus presentation and response recording relied on Matlab
(Mathworks) and Psychtoolbox 3.0.8 (6, 7).

Experimental Design. Eight participants were each scanned for
a total of 21 functional runs spread across three 1-h sessions. Of
these, 17 runs used a slow event-related design whereas the rest
used a block protocol suitable for functional localizers.
Localizer scans contained blocks of images grouped by cate-

gory: faces, common objects, houses, words, and pseudofont
strings. Each block consisted of back-to-back presentations of 15
stimuli for a total of 14 s (930 ms per stimulus). Stimulus blocks
were separated by 10 s of fixation and were preceded by a 10-s
fixation interval at the beginning of each run. No single stimulus
was repeated within the course of a run. Each localizer scan
contained 10 stimulus blocks, 2 for each stimulus category, and
had a total duration of 250 s.
Runs with an individuation task used a slow event-related design

with the following structure: a bright fixation cross was presented
in the middle of the screen for 100 ms and then a stimulus
appeared for 400 ms and was replaced by a lower-contrast fixation
cross until the end of the event for 9.5 s. Each run contained a set
of 32 such events following 10 s of fixation (for a total of 330 s). All
face and OF stimuli described above were presented exactly once
during each run. Stimuli were displayed in pseudorandom order to
maximize uncertainty about stimulus identity (8) under the con-
straint that no more than three stimuli from the same category
(face or OF) could be presented in a row.
Our decision to include OF stimuli along with faces was mo-

tivated by several different factors. First, inclusion of a different
category was expected to reduce possible habituation/adaptation
effects caused by prolonged exposure to the same small set of
faces. Second, faces and OFs are perceptually highly dissimilar.
Thus, although pattern discrimination for faces at the individual
level is bound to be challenging for any type of method, dis-
crimination of faces and OFs at the category level should be
relatively easy and could serve as a robust benchmark for our
classification method. Third and most important, the information
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map obtained for face individuation could arguably be a generic
individuation map, that is, not face specific but process specific.
If so, we would expect other categories of objects with which we
have extensive individuation experience, such as OFs, to produce
similar information maps. Analysis of OF discriminability within
the context of the same experiment provides us with a first test of
this hypothesis. Finally, we opted for using pseudowords instead of
actual words because they are unfamiliar (like faces) and minimize
semantic processing while engaging similar mechanisms for OF
processing (9, 10).
Functional scans were equally divided across three different

sessions (seven scans per session) conducted on separate days. A
structural scan was also performed at the beginning (or the end)
of each session.

Imaging Parameters. Subjects were scanned in a Siemens Allegra
3T scanner with a single-channel head coil. Functional images
were acquired with an echo-planar imaging sequence (TR 2 s,
time to echo 31 ms, flip angle 79°, 2.5-mm isotropic voxels, field
of view 240 × 240 mm2, 27 oblique slices covering the ventral
stream). An MP-RAGE sequence (1-mm3 voxels; 192 slices of
size 256 × 256 mm2) was used for anatomical imaging.

Preprocessing. Functional scans were slice scan time corrected,
motion corrected, coregistered to the same anatomical image,
and normalized to percentage of signal change using AFNI (11).
Functional localizer data were smoothed with a Gaussian kernel
of 7.5 mm FWHM. No spatial smoothing was performed on the
rest of the data to allow multivariate analysis to exploit high-
frequency information (12).

Standard Univariate Analysis. After completion of preprocessing
steps we discarded the first 5 vol of each run to allow the he-
modynamics to achieve a steady state and to minimize transient
effects of magnetic saturation. Next, we fitted each type of block
with a boxcar predictor and convolved it with a gamma hemo-
dynamic response function (13). A general linear model (14) was
applied to estimate the coefficient of each predictor inde-
pendently for each voxel. Statistical maps were computed by
t tests of pairwise comparisons between different block types.
Face-selective areas were detected using a face–object contrast.
Correction for multiple comparisons was implemented by con-
trolling the false discovery rate under the assumption of positive/
no correlation (15).

Spatiotemporal Information-Based Brain Mapping. A manually
drawn cortical mask was constructed for each subject’s brain. Fig.
S2A shows the corresponding group mask. Searchlight analysis
was carried out by walking a sphere voxel-by-voxel across the
entire volume of the mask, extracting the spatial–temporal pat-
terns recorded at each location, and testing them for the pres-
ence of relevant information via multivariate analysis. More
specifically, a sphere with a 5-voxel radius was centered on each
voxel within the cortical mask and intersected with the mask to
restrict analysis to cortical voxels. Activation values across this
restricted set of voxels at three different time points (4, 6, and 8 s
after stimulus onset) were extracted for each stimulus pre-
sentation and concatenated into a single pattern.
Our choice of a 5-voxel spatial radius was based on pilot data not

included in the current analysis. In addition, to test the sensitivity of
our results as a function of this parameter, we conducted identical
analyses for searchlight radii of 4 and 6 voxels. We note that in-
creasing the size of the searchlight may both benefit and hurt the
mapping results and their interpretation. A larger searchlight
augments the amount of potentially useful information but also
increases the dimensionality of the patterns leading to more
overfitting. Also, the larger the searchlight is, the less local the
mapping results will be: Highly local information will be exploited

byall searchlightmasks that contain itover a larger area, thus leading
to a more diffuse map—see Fig. S3 for an example. Our choice
represents a compromise between searching for local information
and exploiting a sufficient amount of spatial information.
The temporal size of the window was selected to capture the

peak of the hemodynamic response function (HRF) (16). We note
that a full-blown version of a spatial–temporal searchlight would
have to walk a window in both space and time. Whereas this
approach may provide a more detailed assessment of the tem-
poral–spatial profile of information maps, such analysis comes at
significant additional computational cost. As an alternative to this
approach, we restrict our analysis to spatial mapping and keep the
position of our temporal window fixed.
Next, to boost the signal-to-noise ratio (SNR) of our patterns,

we averaged stimulus-specific patterns by stimulus identity. Thus,
all patterns elicited during a functional run by images of the same
individual, irrespective of the expression displayed, were com-
bined into a single one. This procedure produced 17 different
patterns, 1 per run, for each of four different facial identities. A
similar procedure was used for OF stimuli.
To measure identity discriminability, we applied multiclass

SVM classification using a one-against-one approach to speed up
computations (17)—that is, each facial identity is compared with
every other one at a time. Our particular choice of classifier is
linear SVM with a trainable c term because it appears to perform
better or, at least, equivalently to other classifiers tested on
neuroimaging data (18, 19). Leave-one-run-out cross-validation
was carried out for each pair of facial identities. At the same
time, nested cross-validation within each training set was con-
ducted to optimize the c term (allowed to range between 2−4 and
210) and minimize overfitting. Discriminability was next encoded
using the sensitivity measure d′ (20). Voxelwise averaging of
these estimates across each of the six pairs of identities com-
pared produced subject-specific information maps.
Because it appears thatmultivariate analysis is able exploit high-

frequency spatial information (12, 21), we attempted to minimize
the amount of distortion of the functional data and preserve this
information. Thus, multivariate analysis was carried out on un-
smoothed data in each subject’s native space. However, for the
purpose of group analysis all information maps were brought into
Talairach space. Group information maps were obtained by av-
eraging across subjects and statistical effects were computed using
a one-sample t test against chance (d′ = 0). Finally, multiple-
comparison correction was implemented using FDR.
Whereas the analysis described above was designed to take

advantage of information distributed across patterns of activation,
it is possible that patterns per se contribute little, if anything, to the
effects detected. In other words, it is possible that multivariate
effects present in the data can be accounted for by univariate
effects. To test this hypothesis, we carried out an analysis following
the same procedure with the sole difference that patterns are
averaged into single values previous to classification. This sim-
plification renders the analysis comparable to a univariate t test.
Finally, we conducted a similar set of multivariate analyses to

examine expression discrimination and OF individuation as well
as category-level classification (faces versus OFs). More precisely,
we computed discrimination performance among (i) four differ-
ent expressions across changes in facial identity, (ii) four different
OF identities across changes in font type, and (iii) two categories
across variations in both identity and category-specific changes.
In all other respects, the computation of the respective infor-
mation maps follows the procedure described above.
With respect to category-level discrimination, we note two

factors that need to be taken into account. First, the categories
being discriminated, faces and OFs, are very dissimilar, both
perceptually and conceptually. Second, the SL size was larger
than that typically used, e.g., a 2-voxel radius (22), and repre-
sented a compromise between maintaining a local encoding con-
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straint and maximizing the amount of spatial information as
discussed above. Thus, it is possible that category information is
somewhat more focal than we ended up finding (Fig. S2). Nev-
ertheless, category differentiation was sufficiently dispersed to
produce a rather diffuse information-based map.
Analyses were carried out in Matlab using the SVMLIB 2.88

library for pattern classification (23).

Note on the Use of Spatiotemporal Information in Pattern
Classification. The use of spatiotemporal information for multi-
variate analyses (24) presents us with an interesting opportunity.
The temporal properties of the BOLD signal (e.g., time to peak
or time to rise) provide a rich source of information regarding
the neural dynamics (25). However, both their interpretation in
relationship with the actual neural dynamics and their estimation
can be problematic (26)—although not more so than that of the
ubiquitously used signal amplitude. Multivariate spatiotemporal
analysis (24, 27) allows us to bypass the latter problem in that no
estimation of temporal properties (or amplitudes for that mat-
ter) is required. Rather, the use of such information is implicit
and, thus, eliminates the issue of model (mis)specification (26).
Furthermore, if selecting a single time point for the analysis, it

is unclear which one encodes the most diagnostic spatial in-
formation. The HRF peak may lead, in certain cases, to the best
decoding accuracy (28). However, the shape of the HRF, in-
cluding the timing of the peak, can vary significantly among
cortical areas and across subjects (29). Fortunately, the use of
multiple time points allows for the possibility that diagnostic
spatial information, whether corresponding to the response peak
or not, can be present at different times in different areas or
across different subjects. Our analysis above uses a combination
of these two approaches by exploiting multiple time points while
restricting their number to those likely to capture the HRF peak.
Overall, the advantages above make spatiotemporal analysis

very appealing as long as the increase in pattern dimensionality
introduced by this approach can be handled adequately (e.g., by
the use of classifiers that scale well with dimensionality).

RFE Analysis. RFE serves three different but related goals: di-
mensionality reduction within the original feature space, optimi-
zation of classification performance, and feature ranking (30). The
analysis proceeds as follows: (i) we train a linear SVM classifier on
a given feature set, (ii) we compute a ranking criterion for all
features, (iii) we eliminate the feature with the smallest rank, and
(iv) we repeat until no features are left in the set.
One of the simplest feature ranking criteria for linear SVM,

and the one we follow here, is based on maximizing the separating
margin width of the classifier (30). More specifically, the algo-
rithm eliminates within each iteration the feature with the
smallest ci = wi

2, where wi is the weight corresponding to feature
i. This procedure has the effect of maintaining the largest pos-
sible margin width W = kwk at each iteration step. The number
of iteration steps corresponds, in this version of the algorithm, to
the total number of features in the initial set. Whereas batch
elimination provides an easy alternative to speeding up compu-
tations, it may lead to suboptimal estimates of performance and
also compromise feature ranking. For this reason, we favored
single-feature elimination in our analysis.
RFE analysis has been successfully used in the past to reduce

the dimensionality of fMRI data (31) and to map voxel diag-
nosticity in category-level discrimination (32). Here, we use it
both to map feature (voxel X time point) diagnosticity and to
improve on the classification models derived for individuation.
The analysis was separately applied to each pair of facial

identities. Diagnosticity rankings as well as performance estimates
were computed by averaging across all six different pairs.

Contribution of Low-Level Image (Dis)Similarity to Individuation
Performance. Low-level similarity was computed between any
two images of different facial identities. More precisely, we ap-
plied an L2 (Euclidian) metric (4) to estimate low-level image
dissimilarity. To ensure the robustness of the results, the metric
was applied in three different ways corresponding to different
ways of extracting information: (i) to entire images using only the
luminance channel, (ii) to cropped images using only luminance,
and (iii) to cropped images using all color channels (Fig. S6).
The manipulations above are motivated, first, by the privileged

role of internal features relative to external ones in face per-
ception (33) and, second, by the contribution of color to face
processing (34, 35). Thus, to deal with the first issue we used
cropping to eliminate external features (e.g., hair and face out-
line) and to retain internal ones (e.g., eyes and mouth). To deal
with the second, we combined similarity measures computed
independently for each color channel. However, whereas color is
known to be involved both in low-level (36) and in high-level face
processing (35), the relative contribution of different color
channels is still unclear (37). For this reason, all channels were
given equal weight in computing the estimates corresponding to
case iii above. Specifically, channel-specific estimates were z-
scored across image pairs and then averaged to produce single
values for each pair. Finally, the values obtained for all 16 image
pairs corresponding to two different identities were averaged to
produce a single score (Table S1).
The three types of measurement are in overall agreement with

each other: identities 1 and 2 along with 2 and 4 are relatively
similar to each other whereas 3 and 4 are the most dissimilar
(identity numbers refer to the columns in Fig. 1).
Next, dissimilarity estimates were correlated with individuation

performance across identity pairs separately for each ROI, ex-
perimental subject, and type of measurement. The resulting
correlation coefficients were converted into normally distributed
variables using Fisher’s z transform, allowing us to conduct
parametric tests on the results:

z ¼ 1
2
ln
1þ r
1− r

:

Finally, average subject scores were compared against chance via
one-group t statistics (Fig. S4).

Pairwise ROI Analysis. ROI-based classification patterns provide
only a coarse and summary measure of the relevant information
present in the ROIs, namely in the activation patterns they host.
However, they can be useful in that they offer an estimate of
common biases in misclassification.
To compare classification patterns produced by different

ROIs we used both partial correlation and conditional mu-
tual information while controlling for the pattern of correct
(true) labels.
Correlation coefficients were converted to z scores using

Fisher’s z transform.
Conditional mutual information (38) was computed as follows:

IðC1;C2jTÞ ¼ ∑
C1;C2∈f0;1g
T∈f0;1g

pðC1;C2;TÞlog
�

pðC1;C2jTÞ
pðC1jTÞpðC2jTÞ

�
:

Here C1 and C2 are binary variables encoding the classification
labels for two different regions and T is a binary variable en-
coding the true labels.
The two measures were separately computed for each pair of

ROIs and averaged across face pairs and subjects.
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Fig. S1. Experimental orthographic form (OF) stimuli (four pseudowords × four types of font). All stimuli were five-letter pronounceable nonwords with the
same syllabic structure but different orthographic properties (they contain different letters in a given position).

Fig. S2. (A) Group cortical mask and group information-based maps of category-level discrimination (faces vs. OFs; q < 0.05) derived through (B) multivariate
searchlight and (C) its univariate analog. Effect size is scaled logarithmically. Crosshairs mark the discrimination peaks in each map (Talairach coordinates −11,
−76, −11 and 31, −24, −16 for B and C, respectively). The differences between the two types of map indicate that univariate analysis underestimates the
amount and expanse of category information in ventral cortex compared with its multivariate counterpart.
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Fig. S3. (A–C) Group information-based maps of face individuation obtained with SL masks of different spatial radii (4, 5, and 6 voxels). Maps were
thresholded at a liberal level (q < 0.10) for better comparison with each other. Larger masks yielded a larger number of significant voxels as expected on the
basis of the loss of spatial specificity. Despite such variation, the three maps agree on the presence of individuation effects in the bilateral FG and the right
aMTG. (D) Examples of SL ROIs (orange), bilateral FFA (green), and their overlap (red) within a single subject.

Fig. S4. Correlation of discrimination performance with low-level image distances across different SL ROIs (Fisher’s z scores). Low-level distances were
computed in three different ways: across the entire image using only luminance (full L*), across internal features using only luminance (cropped L*), and across
internal features using all color channels (cropped L*a*b*). The laFG produced correlations of discrimination performance and image distance for luminance-
based measurements (P < 0.05 uncorrected for multiple comparisons)—the effect was less reliable across all color channels (P < 0.06 uncorrected).

Fig. S5. The time course of feature elimination by time point for 4,000 features—top 1,000 features for each of four ROIs. Features tend to be eliminated at
similar rates across different time points although we note a small advantage for features extracted at 8 s poststimulus onset (shaded areas correspond to ±1 SE
across subjects).
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Fig. S6. Examples of image cropping used for stimulus selection and for measurements of low-level image similarity. Images were cropped to show only
internal features. Face images courtesy of the Face-Place Face Database Project (http://www.face-place.org/) Copyright 2008, Michael J. Tarr. Funding provided
by NSF Award 0339122.

Table S1. Estimates of low-level image distances across facial identity pairs (z scores)

Identity pair Full image (L*) Cropped image (L*) Cropped image (L*a*b*)

1–2 −0.31 −0.54 −1.07
1–3 −0.19 0.22 0.31
1–4 0.58 0.08 0.04
2–3 −0.15 0.13 −0.08
2–4 −0.91 −0.91 −0.38
3–4 0.98 1.02 1.19
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