# **Supporting Information**

### Lacan et al. 10.1073/pnas.1100723108

#### **SI Materials and Methods**

Ancient DNA Procedures. Drastic precautions were taken to avoid contaminations by modern DNA templates (1): pre-PCR and post-PCR procedures were carried out in two separate laboratories located on two separate floors. Pre-PCR procedures were performed in a dedicated laboratory under laminar flux. Workbenches, surfaces, and all equipment were systematically wiped with bleach, rinsed with ultrapure water, and irradiated for at least 2 h with UV light before each manipulation. Laboratory access was limited to authorized personnel only who always wore gloves, overshoes, laboratory coats, and face masks. Pipettes, plastic ware, and aerosol-resistant tips were sterile and used exclusively for ancient DNA work. DNA from people handling the anthropological material (members of the museum and laboratory staff) was also analyzed to rule out recent contamination. DNA extracted from sheep or goat bone fragments also retrieved in the ossuary were used as a negative control to detect potential contamination that could have occurred during excavation.

**Statistical Analyses.** To study putative genetic relationships between individuals from the ossuary, kinship was determined from autosomal STR profiles with ML-Relate software (2) and confirmed with DNA•VIEW Software (3), with which the LR was calculated assuming a prior probability of 0.5.

Human specimens from necropoles cannot be of course considered as a population in a statistical sense. Furthermore ancient DNA data could not be obtained for all the specimens buried, and Y-haplotypes were not determined for all male individuals. However, to try to characterize affinities between the ancient Treilles specimens and current European populations, we performed cross-population comparisons from HVI sequences and partial Y-chromosomal haplotypes with the ARLEQUIN 3.1

- 1. Keyser C, et al. (2009) Ancient DNA provides new insights into the history of south Siberian Kurgan people. *Hum Genet* 126:395–410.
- Kalinowski S, Wagner A, Taper M (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. *Mol Ecol Notes* 6: 576–579.
- 3. Brenner CH (1997) Symbolic kinship program. Genetics 145:535-542.

software (4). Two databases were compiled for both uniparental markers. The mtDNA database comprises 14,699 HVI haplotypes associated with their corresponding haplogroup. The NRY database comprises 49 European populations representing 10,488 Y-STR profiles. References used to compile these databases are available in Table S8. For maternal lineages, comparisons were based on HVI haplotypes, and for paternal lineages, they were based on seven STR markers (DYS19, DYS389a, DYS389b, DYS390, DYS391, DYS393, and DYS439) and on the seven male individuals for whom complete datasets were obtained (195, 575, 584, 596, 615, 616, and 636). The pattern of genetic differentiation was visualized by multidimensional scaling plot (XLstat, version 7.5.2) and by plotting on a map all F<sub>ST</sub> values obtained in the comparison between the Treilles population and each population in the database, using Surfer software (version 8.0; Golden Software).

The percentage of shared lineages between Treilles and each present-day population in the databases was graphically also plotted on a map by using Surfer software (version 8.0; Golden Software).

A haplotype network was generated for NRY haplogroup G2a\* from the Treilles data and all European data via the medianjoining algorithm of Network, version 4.5.1.6. To obtain the most parsimonious networks the reticulation permissivity was set to zero. Datasets were preprocessed using the star contraction option in Network, version 4.5.1.6 (5). Because of the high level of reticulation in the G2a\* sample, Y-STR loci were subdivided into two mutation rate classes based on observed STR allelic variance and weighted as follows: 2 (low) for DYS391 and DYS392 and 1 (high) for DYS389I, DYS389II, DYS19, DYS393, and DYS390 (6).

- Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. *Evol Bioinform Online* 1:47–50.
- Forster P, Torroni A, Renfrew C, Röhl A (2001) Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. *Mol Biol Evol* 18:1864–1881.
- Tishkoff SA, et al. (2007) History of click-speaking populations of Africa inferred from mtDNA and Y chromosome genetic variation. *Mol Biol Evol* 24:2180–2195.



Fig. S1. Spatial distribution of the genetic matrilineal distances between Treilles samples and modern Western Eurasian populations.



Fig. 52. Multidimensional scaling plot of genetic distances calculated for mtDNA data. The red square represents Treilles samples.



Fig. S3. Spatial distribution of the genetic patrilineal distances between Treilles male samples and modern Western Eurasian populations.





DNA C



Fig. S5. Median joining network of Y-G2a haplotypes in current western European populations and in the Treilles male specimens (in red).

| 10 <sup>-3</sup> (12 | )/13          | (29)/30              | (8/12)           | 12/12             | 16/17            | 6/6            | 12/12          | 11/12           | 17/(19)          | 12/15.2          | 17/17                | (8/8)                 | 12/16              | XX         | 12/13            | 22/23            |
|----------------------|---------------|----------------------|------------------|-------------------|------------------|----------------|----------------|-----------------|------------------|------------------|----------------------|-----------------------|--------------------|------------|------------------|------------------|
| (11                  | (/13)         | 31.2/33.2            | 6/6              | 11/11             |                  | 8              | 9/10           | 11/12           | 24/25            |                  | (71)<br>(71          |                       | 14/15              | X          | 12/12            | 22/24            |
| 10                   | )/14<br>2/14  | 30.2/31.2<br>30/30   | 9/12<br>(7)/10   | 11/11<br>(9/12)   | 15/17<br>18/18   | 6/9,3<br>6/(8) | 8/11<br>9/(13) | 9/(13)<br>9/9   | 17/19<br>(20/20) | 12/14<br>13/14   | 16/17<br>(15)/<br>17 | 9/(11)<br>(11/<br>(11 | (12)/14<br>13/19   | ž ž        | 11/13<br>11/11   | 20/24<br>(19)/20 |
| 10                   | )/14<br> /14  | 28/31<br>31.2/31.2   | 11/12<br>(10/12) | 11/(12)<br>9/(11) | 18/18<br>16/17   | - <i>LL</i>    | 8/8<br>9/(10)  | 11/11<br>(9/12) | 17/21<br>(17/17) | 12/13<br>14/15   | 17/20<br>14/16       | (8/11)<br>(11/<br>11) | (14)/17<br>(16/19) | × ×        | 11/13<br>12/12   | 21/22<br>21/23   |
| 11                   | /16           | 27/28                | 10/12            | 12/12             | 15/18            | 6/7            | 8/11           | 9/12            | 17/21            | 12/13            | 17/17                | 8/11                  | 14/16              | ΧX         | 10/11            | 23/24            |
| (10<br>14            | )/10)<br> /15 | (29/32.2)<br>29/32.2 | 10/12<br>12/(13) | 10/12<br>10/(12)  | (16/16)<br>18/18 | —<br>6/9.3     | 8/(12)<br>8/12 | (9)/11<br>8/12  | (21/21)<br>20/21 | (14/14)<br>14/14 | —<br>(15)/<br>16     | —<br>8/11             | (13)/14<br>12/15   | (xX)<br>XX | (13/13)<br>12/13 | 24/25<br>22/23   |
| 14                   | 1/16          | 28/(30)              | 8/(12)           | 10/10             | (15)/18          | (8'6'6)        | 8/11           | (14/14)         | 17/(20)          | 13/15            | (15)/<br>17          | Ι                     | (14)/19            | ۲X         | (10)/12          | 24/24            |
| 10                   | 116           | 31.2/32.2            | 10/12            | 10/12             | (15)/18          | 6/6            | 9/13           | 9/13            | 16/21            | 12/14            | 17/17                | 8/8                   | 11/20              | ×۲         | 11/(15)          | 20/24            |
| 10/                  | ((13)         | (24.2/<br>24.2)      | Ι                | (13/13)           | 16/16            | Ι              | 8/8            | I               | I                | 13/14.2          | (15/<br>17)          | (11/                  | Ι                  | X          | 12/12            | Ι                |
| 11                   | 1/14          | 24.2/30              | 11/(12)          | 10/10             | (16)/18          | 9,3/<br>9,3    | 10/12          | (12)/13         | 23/23            | 14/16            | 14/18                | Ĩ                     | 13/17              | ΧX         | 11/12            | 21/24            |
| 11                   | 1/15          | 31/31.2              | (10)/12          | 12/12             | (17)/18          | 7/9.3          | 11/11          | (12)/13         | 17/(23)          | 13/14            | 15/16                | 8/8                   | 14/20              | XX         | 11/12            | 24/24            |
|                      | I             | I                    | 12/12            | (10/10)           | l                | Ι              | 10/11          | 9/(11)          |                  | Ι                | (71)<br>(71          | Ι                     | (12/17)            | (XX)       | I                | 25/26            |
| 13                   | 1/13          | 29/33.2              | 9/10             | 10/11             | 16/17            | 6/9.3          | 8/11           | 9/12            | 16/24            | 13/13            | 14/16                | 8/8                   | 15/16              | XX         | 11/12            | 19/25            |
| 13                   | 3/13          | 28/28                | 12/12            | 10/(11)           | 16/17            | 9/9.3          | 8/11           | 12/12           | (17)/23          | 13/13            | 15/15                | (8/8)                 | 14/14              | X          | 12/12            | 23/25            |
| 10                   | 1/15          | 29.2/31.2            | 8/9              | 10/12             | 18/19            | (6)/8          | 9/11           | 12/13           | 17/(25)          | 15/(16)          | 18/19                | Ι                     | 18/20              | ∑X         | 11/12            | (21)/26          |
| 14                   | 4/14          | (28/30)              | I                | (6/6)             | 14/15            | 9.3/<br>9.3    | (8/11)         | I               | I                | (13)/14          | 16/17                | (8/8)                 | (12/17)            | λX         | (11/11)          | (19/19)          |
| 10                   | 115           | (28/28)              | I                | 10/10             | (16)/18          | (8.9/9)        | 8/8            | 11/11           | 17/20            | 13/15            | 15/15                | (8/8)                 | 12/19              | ××         | 10/12            | 24/24            |
| 10                   | V13           | 28/29                | (8/10)           | 11/11             | 17/18            | (1/1)          | (8/8)          | 11/12           | (23/23)          | 12/12            | 14/14                | I                     | 18/19              | XX         | 10/13            | 21/21            |
| 1                    | 1/12          | 28/28                | (111)            | 12/12             | 15/15            | 9/(9.3)        | 8/11           | 8/13            | 20/20            | 15.2/<br>15.2    | 14/14                | 11/11                 | 12/18              | ž          | 11/11            | 20/20            |
| 10                   | 113           | 28/33.2              | 10/11            | 10/12             | 18/18            | 6/9.3          | 8/11           | 11/13           | 17/20            | 13/16            | 15/16                | 8/8                   | 19/20              | ××         | 11/12            | 22/24            |
| 10                   | 0/10          | (31.2)/<br>33.2      | 8/8              | 12/13             | 15/18            | (6)/8          | 9/11           | 12/14           | 17/24            | 15/16            | 17/19                | 8/8                   | 15/18              | ž          | 12/12            | 21/21            |
|                      |               |                      |                  |                   |                  |                |                |                 |                  |                  |                      |                       |                    |            |                  |                  |
| 13                   | 3/13          | 28/31                | 10/11            | 10/12             | 15/17            | 8/9            | 12/13          | 12/12           | 18/24            | 13/15            | 17/17                | 8/11                  | 11/16              | XX         | 11/12            | 21/<br>23,2      |
| 13                   | 114           | 28/29                | 8/10             | 11/11             | 15/18            | 7/9.3          | 11/11          | 11/12           | 24/25            | 13/15.2          | 14/17                | 8/10                  | 12/15              | ××         | 11/13            | 21/22            |
| 12                   | ./14          | 29/29                | 9/11             | 12/12             | 14/18            | 9/9.3          | 12/12          | 11/11           | 17/19            | 13/13            | 15/15                | 11/11                 | 14/17              | XX         | 11/11            | 21/23            |
| 10                   | 111           | 30/32.2              | 10/10            | 11/12             | 16/17            | 9/9.3          | 8/11           | 11/12           | 20/23            | 14/14            | 16/18                | 11/12                 | 12/13              | XX         | 11/13            | 19/25            |
| 10                   | 1/13          | 29/30                | 9/11             | 10/11             | 14/18            | 9/9.3          | 11/11          | 11/14           | 17/22            | 14/15.2          | 14/18                | 8/12                  | 15/17              | ∑X         | 12/12            | 20/23            |

sample. Alleles in brackets were observed just once. The five last profiles are those of the researchers of the Natural History Museum of Toulouse (France) and of the laboratory members who have recently been in contact with the samples. The DNA quantity mentioned was obtained from one DNA extract per sample with the Quantifiler Human DNA Quantification Kit (Applied Biosystems). Undet, undetermined; NA, data not acquired.

PNAS PNAS

Table S1. Consensus STR autosomal profiles of the 24 Treilles human specimens

|            |                                |                        |            |                |          |          |          |         |                    |         |            | SNP     | typing I    | esults   |            |           |         |          |                             |        |         |        |            |                          | Haplogroup           |
|------------|--------------------------------|------------------------|------------|----------------|----------|----------|----------|---------|--------------------|---------|------------|---------|-------------|----------|------------|-----------|---------|----------|-----------------------------|--------|---------|--------|------------|--------------------------|----------------------|
|            |                                | Haplogroup<br>inferred |            |                |          |          |          |         |                    |         |            |         |             |          |            |           |         |          |                             |        |         |        |            | laplogroup<br>nferred by | inferred<br>from the |
| Sample     | H                              | from HVI               | μ          | J2-<br>5715757 | -11-     | T2-      | T2B-     | U5-     | U5B1C-<br>±1510100 | - ^ -   | -X-        | X1- H1  | -J1- H.     | B- HV    | -U/N -     | - K-      | -1 X/L  | K1A-     | Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Υ | K2B-   | -       | -U-    | X2-        | SNP .                    | two                  |
| Name       | polymorphisms                  | seduences              | 970/1      | /כלכו טט       | AL 12033 | IA 1423: | 2068005  | 1319/1  | יופוכוו            | 1408cht | 144/001    | 1400031 |             | 19/114/0 | 0/61970    |           | 1021023 | 20-049/1 | 19/10                       | 1/1771 | 49/1644 | 220800 |            | lenotyping               | recnniques           |
| 137        | 16224C                         | U5 or K2b1             | ⊢          | ט              | υ        | ۷        | ט        | U       | F                  | ט       | F          | F       | 5           | ⊢        | ט          | ۷         | ۷       | υ        | ⊢                           | υ      | ۷       | ט      | ט          | US                       | US                   |
| 001        | 16270T 16311C                  | -                      | ۲          | Ĺ              | Ĺ        | <        | C        | ۲       | ۲                  | Ĺ       | ۲          | F       | +           | ۰        | ~          | ~         | Ľ       | Ĺ        | ۲                           | ļ      | <       | ~      | Ĺ          | Ξ                        | Σ                    |
| 701        | 161091 16120C                  | - <u>-</u>             | - +        | <i>,</i>       | , c      | ۲ <      | <i>,</i> | - ı     | - +                | ,       | - +        | - +     | - F         | - +      | <b>₹</b> ( | ۲ ۹       | ס <     | י נ      | - +                         | J      | ۲ ۹     | τ ι    | ,          | 5 1                      | 5 1                  |
|            | 10/791 176191                  | ۍ ب                    | - 1        | יפ             | ، ر      | ₹ .      | יפ       | 5       | - 1                | יפ      | - 1        | - 1     | י -         | - 1      | יפ         | ₹ .       | ۷ ک     | ر        | - 1                         | ، ر    | ∢ •     | פ .    | יפ         | £ :                      | £ :                  |
| 209        | 16069T 16126C                  | - ;                    | ⊢ I        | ט ט            | U        | ∢ •      | טט       | ⊢ ।     | ⊢ I                | טט      | <b>ب</b> ا | - 1     | - I<br>• •  | ⊢        | ۷ .        | ∢ •       | יס      | (        | <b>ب</b> ا                  | 0 0    | ۷ ،     | ۷ ،    | . U        | 5                        | 5                    |
| 570        | 16189C 16223T                  | XZ                     | -          | ט              | υ        | ۷        | ט        | -       | -                  | ט       | U          | -       | בי          | -        | ٩          | ۷         | ۷       | υ        | -                           | υ      | ۷       | ۷      | ٩          | XZ                       | X2                   |
| ľ          | 162/81                         | -<br>-                 | ٢          | ţ              | ţ        | •        | ţ        | ŀ       | ٢                  | ţ       | ٢          | ŀ       | +<br>(      |          | ţ          |           |         | ţ        |                             | ţ      |         | ţ      | ţ          | =                        | =                    |
| 1/0        |                                | , s                    | - +        | <b>9</b> 0     | J        | ∢ <      | שפ       | - +     |                    | שנ      | - +        | - +     | - ר<br>ס ני | L        | טפ         | <         | ∢ <     | J        |                             | J      | ∢ <     | ס <    | <b>9</b> 0 |                          |                      |
| 2/2        | 102301<br>167776 16766T        |                        | - +        | שי             | J        | ۲ <      | שי       | - (     | - +                | י פ     | - +        | - +     | ר -<br>ס ני | ר נ      | שי         | ۲ <       | ۲ <     | J        |                             | J      | ( <     | 1      | י פ        |                          |                      |
| c/c        | 162201 02201<br>16270T 16362TC | S                      | -          | פ              | J        | ۲        | פ        | ر       | -                  | פ       | _          | _       | ב           | -        | פ          | ٢         | ٢       | ر        | -                           | ر      | ۲       | פ      | פ          | 6                        | 6                    |
| 577        | CRS                            | н 2                    | U          | Ċ              | U        | ٩        | Ċ        | F       | F                  | Ċ       | F          | F       | U<br>U      | U        | G          | ٩         | ٩       | U        | F                           | U      | ٩       | ٩      | Ċ          | Ĥ                        | Ĥ                    |
| 579        | 16224C 16270T                  | II5 or K2h1            | , r        | י פ            | , c      | < ⊲      | י פ      | . ر     | · -                | , c     | · -        |         | , ⊢<br>וי   | ,        | י פ        | < ⊲       | (       | , c      | · -                         | , c    | < ⊲     | ( U    | י פ        | Ë                        | Ē                    |
| 581        | CRS                            | H*                     | . u        | טי             | υ C      | ( ⊲      | טי       | , ⊢     |                    | ט פ     |            |         | ່ ເ<br>ງ ຫ  | - u      | טי         | ( <       | ( ⊲     | υ C      |                             | υ C    | (⊲      | 0 0    | ט פ        | 8 <del>1</del>           | 3 f                  |
| - 22       | 16069T 16126C                  | : -                    | <b>،</b> ۱ | י פ            | , c      | < ⊲      | י פ      | • +     | · -                | , c     | · -        | • F     | , -<br>, 4  | ,        |            | < ⊲       | ( U     | , c      | · -                         | , c    | < ⊲     | <      | , c        | ; =                      | ; =                  |
|            | 161367 1630AT                  | чст<br>ЧСТ             | - +        | , u            | , c      | ( "      | ~        |         |                    | , u     |            | - +     | <br>( (     |          | ני         | ( <       | ) <     | , c      |                             | , c    | (       | ( <    | , u        | , t                      | 1. T                 |
| 10C        | 16296T 162041                  | 77                     | -          | פ              | ر        | 9        | ¢        | -       | -                  | פ       | -          | _       |             | -        | פ          | ٢         | ٢       | ر        | -                           | ر      |         | t      | פ          | 171                      | 171                  |
| E 0.7      | 740001 100201                  | -                      | F          | U              | L        | <        | U        | ۲       | ۲                  | U       | F          | F       | -           | ۲        | ~          | ~         | C       | C        | ۲                           | Ĺ      | <       | <      | U          | Σ                        | Ξ                    |
| 100        | 101001 101200                  |                        | -          |                | , ر      | τ ι      | •        | - +     | - +                | , c     | - +        | - +     | - 1<br>( (  | - •      | <b>t</b> ( | ۲ ،       | • פ     | , נ      | - +                         | , ر    | ٢       | 1      | ,          | 5 7                      | 5                    |
| 880        | 16126C 162941                  | 071                    | I          | פ              | ر        | 9        | ۲        | -       | _                  | פ       | _          | _       | ב           | -        | פ          | ۲         | A       | ر        | -                           | ر      | I       | ۲      | פ          | 07 I                     | 07 I                 |
|            |                                | ;                      | ł          | ţ              | ţ        |          | C        | ł       | ŀ                  | ţ       | ţ          | ŀ       | ۱<br>ر      | •        | •          |           |         | ţ        | ł                           | ţ      |         |        |            |                          |                      |
| 765        | 16183C 16189C                  | ×                      | -          | פ              | ر        | ٩        | פ        | -       | -                  | 9       | J          | _       | ב           | _        | ¥          | A         | ٩       | ر        | -                           | ر      | ٩       | ٨      | ¥          | X                        | X                    |
|            | 10/201 102201                  | =                      | Ļ          | ļ              | ţ        | ~        | ţ        | ٢       | ٢                  | ţ       | ۲          | ٢       | ł           |          | ţ          | •         | ~       | ţ        | ٢                           | ļ      |         |        | ţ          | -                        | Ξ                    |
| 965        | D69291                         | Ξ                      | י נ        | יפ             | ، ر      | ₹ •      | יפ       | - 1     | - ,                | יפ      | - 1        | - 1     | ••          | ، ر      | יפ         | ∢ •       | ∢ •     | ، ر      | - 1                         | ، ر    | ∢ •     | 4 ،    | יפ         | Ē                        | Ē                    |
| 593        | ŝ                              | *                      | J          | יפ             | , נ      | 4 ،      | י פ      | - 1     | - 1                | י פ     | - 1        | - +     | - (<br>4 (  | י נ      | סנ         | ∢ •       | ∢ •     | J        | - •                         | , נ    | 4 •     | 4 ،    | י פ        | Ē                        | Ē                    |
| 009        | ŝ                              | *                      | J          | יפ             | , נ      | 4 ،      | י פ      | - 1     | - 1                | י פ     | - 1        | - +     | י כ         | י נ<br>  | סנ         | ∢ •       | ∢ •     | J        | - •                         | , נ    | 4 •     | 4 ،    | י פ        | Ξ                        | Ë                    |
| 603        |                                | *_ `                   | ، ر        | יפ             | J        | 4 ،      | יפ       | - +     | - +                | י פ     | - +        | - +     | - +<br>• •  | ۰ ر      | סנ         | ∢ ι       | ∢ ι     | J I      | - •                         | J      | ∢ •     | ג ו    | י פ        | Ē                        | Ē                    |
| 604        | 16224C 16311C                  | ¥ !                    | - 1        | יפ             | ، ر      | A        | יפ       | - 1     | - 1                | פ       | - 1        | - 1     | י כ         | - '      | יפ         | פ .       | י פ     |          | - 1                         | ، ر    | ∢ •     | פ .    | יפ         | K la                     | Kla                  |
| 609        | 16298C                         | 0<br>M                 | ⊢          | ט              | υ        |          | ט        | F       | F                  | I       | F          | -       | י<br>ט      |          | ט          | A         | A       | υ        | -                           | υ      | ۷       | ۷      | ט          | ><br>H                   | 0<br>M               |
| 611        | 16189C 16192T                  | U5b1c                  | ⊢          | ש              | υ        | ۷        | ט        | U       | υ                  | ט       | F          | -       | י-<br>ש     | ⊢        | ט          |           | ۷       | υ        | F                           | υ      | ۷       | ט      | ט          | U5b1c                    | U5b1c                |
| :          | 107/01 103110                  |                        | I          | ,              | ,        |          | 1        | I       | I                  | ,       | I          | ı       |             |          |            |           | ,       | ,        | I                           | ,      |         |        | ,          | :                        | :                    |
| 612        | 16069T 16126C                  | - :                    | - 1        | יט             | 0        | ۸ ک      | יט       | - 1     | - 1                | יט      | - 1        | - 1     | - I<br>4 I  |          | • ۲        | ۷ ک       | יט      | U I      | - 1                         | 0      | ۷ ،     | ۷ ک    | יט         | 5 3                      | 5                    |
| 614        | 16224C 16311C                  | ⊻ :                    | - 1        | יפ             | ، ر      | ∢ •      | יפ       | - 1     | - 1                | יפ      | _ (        | - 1     | י -<br>י פ  | - '      | י פ        | י פ       | י פ     | - •      | - 1                         | ، ر    | ∢ •     | פ .    | י פ        | K la                     | Kia                  |
| C   Q      | 161834 161894                  | <                      | -          | פ              | ر        | ۲        | פ        | -       | -                  | פ       | ر          | _       | ב           | -        | đ          | ۲         | ∢       | ر        | -                           | ر      | ۲       | ۲      | ۲          | 77                       | 77                   |
| 616        | 16/161 16136C                  | -                      | F          | e              | C        | <        | Ċ        | F       | F                  | e       | ۲          | F       | -           | ۲        | <          | <         | e       | C        | F                           | Ċ      | <       | <      | e          | 2                        | Ξ                    |
| 636        | 16183C 16189C                  | ×                      |            | טי             | υ C      | ( ⊲      | טי       |         |                    | ט פ     | . ر        |         | ິ⊢<br>ເຫ    |          | ( 4        | ( <       | • ⊲     | υ C      |                             | υ C    | (⊲      | ٩      |            | , cx                     | , x                  |
|            | 16223T 16278T                  | ť                      |            | ,              | ,        |          | ,        |         |                    | J       | ,          |         | ,           |          | :          |           |         | ,        |                             | ,      | ÷       |        | :          | Į                        | Į                    |
| 637        | 16298C                         | 0VH                    | ⊢          | ט              | υ        | ۷        | ט        | ⊢       | F                  | ٩       | F          | -       | ר<br>ט      |          | ט          | ۷         | ۷       | υ        | ⊢                           | υ      | ۷       | ۷      | ט          | >                        | >                    |
| Research t | team                           |                        |            |                |          |          |          |         |                    |         |            |         |             |          |            |           |         |          |                             |        |         |        |            |                          |                      |
| m          | 16270T                         | US                     | ⊢          | ט              | υ        | ۷        | ט        | υ       | μ                  | ט       | μ          | ⊢       | 5           | н        | ט          | ٩         | ۷       | υ        | ⊢                           | υ      | ۷       | ט      | ט          | US                       | US                   |
| 5          | CRS                            | *н                     | U          | ט              | υ        | ۷        | ט        | ⊢       | ⊢                  | ט       | F          | -<br>-  | 5           | 0        | ט          | ۷         | ۷       | υ        | ⊢                           | υ      | ۷       | ۷      | ט          | т                        | т                    |
| 4          | 16093C 16189C                  | U5                     | ⊢          | ט              | U        | ۷        | ט        | U       | ⊢                  | ט       | F          | ⊢       | 5           | -        | ט          | ۷         | ۷       | υ        | ⊢                           | υ      | ۷       | ט      | ט          | U5                       | U5                   |
|            | 16270T 16274A                  |                        |            |                |          |          |          |         |                    |         |            |         |             |          |            |           |         |          |                             |        |         |        |            |                          |                      |
| -          | CRS                            | *н                     | υ          | ט              | υ        | ۷        | ט        | ⊢       | ⊢                  | ט       | F          | -       | ט<br>ט      | 0        | ט          | ۷         | ۷       | υ        | ⊢                           | υ      | ۷       | ۷      | ט          | H                        | H                    |
| 2          | 16129A 16223T                  | -                      | ⊢          | ט              | U        | ۷        | ט        | ⊢       | F                  | U       | F          | -       | L<br>D      | н        | U          | ۷         | ט       | υ        | ⊢                           | υ      | ۷       | ۷      | ٩          | N1'5                     | _                    |
| Mitod      | hondrial haplogr               | roups were e           | stabl      | ished b        | v HVI se | auenci   | ng as v  | vell as | bv SNP             | tvping  | of codi    | ng posi | tions of    | f the m  | tDNA. SI   | APs in bo | old are | variant  | s at co                     | ncerne | d posit | ions.  |            |                          |                      |

| Population                       | F <sub>st</sub> | <i>P</i> value       |
|----------------------------------|-----------------|----------------------|
| Middle East                      |                 |                      |
| Iranians                         | 0.00338         | 0.25225 ± 0.0353     |
| Saudi Arabians                   | 0.02746         | $0.00000 \pm 0.0000$ |
| Syrians                          | 0.00588         | 0.14414 ± 0.0309     |
| Iraqis                           | 0.01515         | 0.07207 ± 0.0227     |
| Druze                            | 0.02639         | $0.00000 \pm 0.0000$ |
| Yemenis                          | 0.06229         | $0.00000 \pm 0.0000$ |
| Kurds                            | 0.01418         | 0.04505 ± 0.0203     |
| Dubai                            | 0.02235         | $0.00901 \pm 0.0091$ |
| Palestinians                     | 0.01156         | 0.02703 ± 0.0139     |
| Turks                            | 0.00216         | 0.27027 ± 0.0303     |
| North Caucasus                   |                 |                      |
| Russian Caucasians               | 0.0157          | 0.01802 ± 0.0121     |
| Western Russians                 | 0.01538         | $0.01802 \pm 0.0121$ |
| Other North Caucasus populations | 0.00965         | $0.05405 \pm 0.0201$ |
| South Caucasus                   | 0.00740         | 0.40044 0.0004       |
| Georgians                        | 0.00712         | $0.10811 \pm 0.0264$ |
| Armenians                        | 0.00719         | $0.05405 \pm 0.0201$ |
| Azerbaijanis                     | 0.01911         | $0.01802 \pm 0.0121$ |
| Britich                          | 0.02286         | 0.00000 + 0.0000     |
| British                          | 0.02286         | $0.00000 \pm 0.0000$ |
| Normandia Franch                 | 0.01955         | $0.02703 \pm 0.0139$ |
| Porigord Limourin Franch         | 0.02691         | $0.01802 \pm 0.0121$ |
| Var French                       | 0.02091         | $0.00000 \pm 0.0000$ |
| Welch                            | 0.03002         | $0.00000 \pm 0.0000$ |
| Cornish                          | 0.00762         | $0.00301 \pm 0.0031$ |
| Irish                            | 0.02224         | $0.0000 \pm 0.0000$  |
| North Central Europe             | 0.02221         |                      |
| Germans                          | 0.00461         | 0.13514 + 0.0365     |
| Danish                           | 0.00769         | 0.11712 + 0.0273     |
| Czechs                           | 0.01481         | 0.03604 + 0.0148     |
| Polish                           | 0.00255         | 0.27027 ± 0.0470     |
| Slovakians                       | 0.01472         | $0.02703 \pm 0.0194$ |
| Swiss                            | 0.00295         | 0.27928 ± 0.0394     |
| Austrians                        | -0.00027        | 0.43243 ± 0.0485     |
| Latvians                         | 0.03072         | $0.00000 \pm 0.0000$ |
| South Tyrol Ladins               | 0.01427         | 0.03604 ± 0.0201     |
| South Tyrol Germans              | 0.00664         | 0.20721 ± 0.0430     |
| South Tyrol Italians             | 0.00259         | 0.23423 ± 0.0364     |
| Scandinavia                      |                 |                      |
| Norwegians                       | 0.01138         | 0.06306 ± 0.0237     |
| Finns                            | 0.01576         | 0.25225 ± 0.0353     |
| Southeastern Europe              |                 |                      |
| Bulgarians                       | 0.00002         | 0.32432 ± 0.0473     |
| Hungarians                       | 0.03682         | $0.00000 \pm 0.0000$ |
| Bosnians                         | 0.00675         | 0.15315 ± 0.0305     |
| Serbians                         | 0.01092         | 0.06306 ± 0.0139     |
| Romanian                         | -0.00144        | 0.54054 ± 0.0664     |
| Western Mediterranean            |                 |                      |
| North Portuguese                 | 0.00582         | 0.07207 ± 0.0227     |
| Central Portuguese               | -0.00126        | 0.53153 ± 0.0417     |
| South Portuguese                 | 0.00832         | $0.09009 \pm 0.0271$ |
| Galicians                        | 0.01786         | $0.02703 \pm 0.0139$ |
| Spanish Catalans                 | -0.00049        | $0.43243 \pm 0.0466$ |
| Andalusians                      | 0.00766         | 0.11712 ± 0.0237     |
| Balearic Islanders               | -0.00189        | $0.52252 \pm 0.0297$ |
| Basques                          | 0.00884         | $0.0/20/\pm 0.0297$  |
|                                  | 0.00767         | 0 10010 0 00 10      |
|                                  | 0.0076/         | $0.12013 \pm 0.0242$ |
| i uscans<br>Acono Italians       | 0.00231         | $0.25225 \pm 0.0445$ |
| Acone Italians                   | -0.00272        | $0.5/658 \pm 0.02/8$ |
| Bologna Italians                 | -0.00108        | $0.51351 \pm 0.0526$ |

#### Table S3. F<sub>ST</sub> values calculated between Treilles and modern Western Eurasian population data

#### Table S3 Cont.

PNAS PNAS

| Population                      | F <sub>st</sub> | P value              |
|---------------------------------|-----------------|----------------------|
| Modena Italians                 | 0.0145          | 0.05405 ± 0.0201     |
| Pavia Italians                  | 0.01635         | 0.09009 ± 0.0303     |
| Roma Italians                   | 0.01064         | $0.08108 \pm 0.0286$ |
| Turino Italians                 | 0.00218         | 0.32432 ± 0.0546     |
| Terni Italians                  | -0.00498        | 0.58559 ± 0.0530     |
| Molisio-Abruzzo-puglia Italians | 0.01832         | 0.02703 ± 0.0139     |
| Campania Italians               | 0.01079         | 0.13514 ± 0.0311     |
| Sicilians                       | 0.00451         | 0.17117 ± 0.0212     |
| Corsicans                       | 0.02365         | $0.00000 \pm 0.0000$ |
| Sardinians                      | 0.00736         | 0.15315 ± 0.0273     |
| Slovenians                      | 0.00745         | 0.16216 ± 0.0353     |
| Croatians                       | 0.00696         | $0.18919 \pm 0.0212$ |
| Eastern Mediterranean           |                 |                      |
| Macedonians                     | 0.00487         | 0.23423 ± 0.0411     |
| Albanians                       | 0.0018          | 0.35135 ± 0.0515     |
| Cretans                         | 0.00892         | 0.13514 ± 0.0203     |
| Cypriots                        | 0.01888         | 0.02703 ± 0.0139     |
| Northern Greek                  | -0.00061        | 0.45946 ± 0.0286     |
| Central Greeks                  | 0.00043         | $0.36036 \pm 0.0664$ |
| Southern Greeks                 | 0.00867         | $0.07207 \pm 0.0182$ |
|                                 |                 |                      |

 $F_{ST}$  values calculated between mtDNA for Treilles (29 samples, 13 haplotypes) and modern Western Eurasian populations data (14,699 HVI haplotypes).

|                                  | Shared lir            | neages, %            |
|----------------------------------|-----------------------|----------------------|
| Population                       | No mismatches allowed | One mismatch allowed |
| Middle East                      |                       |                      |
| Iranians                         | 2,448                 | 4,196                |
| Saudi Arabians                   | 1,198                 | 2,994                |
| Syrians                          | 4,444                 | 10,000               |
| Iraqis                           | 1,961                 | 9,804                |
| Druze                            | 3,810                 | 7,619                |
| Yemenis                          | 2,985                 | 10,448               |
| Kurds                            | 3,448                 | 8,621                |
| Dubai                            | 1,829                 | 4,878                |
| Palestinians                     | 3,030                 | 7,071                |
| Turks                            | 1,961                 | 3,922                |
| North Caucasus                   |                       |                      |
| Caucasian Russians               | 2,970                 | 8,911                |
| Western Russians                 | 2.778                 | 6.481                |
| Other North Caucasus populations | 1,765                 | 4,706                |
| South Caucasus                   |                       |                      |
| Georgians                        | 2,732                 | 5,464                |
| Armenians                        | 1,613                 | 5,914                |
| Azerbaijanis                     | 5,556                 | 13,889               |
| Northwestern Europe              |                       |                      |
| British                          | 3,896                 | 11,688               |
| Bretagne French                  | 7.5                   | 12.5                 |
| Normandie French                 | 6.667                 | 11,111               |
| Perigord-Limousin French         | 6.667                 | 11,111               |
| Var French                       | 9.091                 | 22,727               |
| Welsh                            | 17,391                | 30,435               |
| Cornish                          | 16,667                | 29,167               |
| Irish                            | 2,564                 | 6,410                |
| North-central Europe             |                       |                      |
| Germans                          | 2,564                 | 4,029                |
| Danish                           | 2,857                 | 5,714                |
| Czechs                           | 3,125                 | 5,208                |
| Polish                           | 1,527                 | 3,308                |
| Slovakians                       | 5,185                 | 8,148                |
| Swiss                            | 4,651                 | 8,527                |
| Austrians                        | 7,463                 | 11,940               |
| Latvians                         | 2.941                 | 5.882                |
| South Tyrol Ladins               | 10,204                | 16,327               |
| South Tyrol Germans              | 12,000                | 16,000               |
| South Tyrol Italians             | 9,756                 | 19,512               |
| Scandinavia                      |                       | -                    |
| Norwegians                       | 3,306                 | 8,264                |
| Finns                            | 3,822                 | 7,006                |
| South Eastern Europe             | -                     | -                    |
| Bulgarians                       | 12,500                | 29,167               |
| Hungarians                       | 3,623                 | 7,246                |
| Bosnians                         | 3,497                 | 6,993                |
| Serbians                         | 4,348                 | 10,870               |
| Romanian                         | 5,000                 | 12,500               |
| Western Mediterranean            |                       | -                    |
| Northern Portuguese              | 3.681                 | 5.521                |
| Central Portuguese               | 4.070                 | 6.395                |
| Southern Portuguese              | 5.298                 | 7.285                |
| Galicians                        | 5.882                 | 12.941               |
| Spanish Catalans                 | 7.527                 | 10.753               |
| Andalusians                      | 4.000                 | 10.000               |
| Balearic islanders               | 7,317                 | 24,390               |
| Basques                          | 8,602                 | 12.903               |
| Central Mediterranean            | -,                    | ,                    |
| Northeastern Italians            | 5,357                 | 9,821                |

## Table S4. Shared mitochondrial lineages between Treilles and modern Western Eurasian populations

#### Table S4 Cont.

PNAS PNAS

|                                 | Shared lin            | eages, %             |
|---------------------------------|-----------------------|----------------------|
| Population                      | No mismatches allowed | One mismatch allowed |
| Tuscans                         | 3,139                 | 5,381                |
| Acone Italians                  | 9,091                 | 18,182               |
| Bologna Italians                | 11,111                | 25,000               |
| Modena Italians                 | 6,061                 | 24,242               |
| Pavia Italians                  | 11,429                | 20,000               |
| Roma Italians                   | 3,797                 | 10,127               |
| Turino Italians                 | 4,444                 | 17,778               |
| Terni Italians                  | 10,000                | 30,000               |
| Molisio-Abruzzo-puglia Italians | 4,348                 | 8,670                |
| Campania Italians               | 2,564                 | 12,821               |
| Sicilians                       | 4,587                 | 7,339                |
| Corsicans                       | 9,677                 | 19,355               |
| Sardinians                      | 3,822                 | 7,006                |
| Slovenians                      | 7,813                 | 14,063               |
| Croatians                       | 8,333                 | 16,667               |
| Eastern Mediterranean           |                       |                      |
| Macedonians                     | 4,242                 | 5,455                |
| Albanians                       | 4,225                 | 11,268               |
| Cretans                         | 5,769                 | 10,577               |
| Cypriots                        | 3,333                 | 13,333               |
| Northern Greek                  | 2,885                 | 4,327                |
| Central Greeks                  | 14,286                | 28,571               |
| Southern Greeks                 | 2,830                 | 5,660                |

Mitochondrial shared lineages between Treilles (29 samples, 13 haplotypes) and modern Western Eurasian populations (14,699 HVI haplotypes). Analyses were performed for 0 or 1 mismatch.

|                |           |           |            |           |            |         |            | Υ-ST     | R         |           |          |           |              |           |          |            |             | z                | RY SNPs t | yping resu    | lts             |              |                       |                 |
|----------------|-----------|-----------|------------|-----------|------------|---------|------------|----------|-----------|-----------|----------|-----------|--------------|-----------|----------|------------|-------------|------------------|-----------|---------------|-----------------|--------------|-----------------------|-----------------|
|                |           |           |            |           |            |         |            |          |           |           |          |           | <del>-</del> |           |          |            |             |                  |           | <u>-</u>      |                 |              | c                     | _               |
| sampie<br>name | DYS456 D  | 1 168E2Y( | DY5390     | DYS389II  | DY5458     | DY519   | DY5385     | JY5393   | DY5391    | DY 5439   | DY5635   | DY5392    | H4 D         | YS437 D   | YS438 D  | YS448 M    | r-<br>287 P | , 15<br> 5<br> ≤ | 170       | γ-12-<br>M438 | Y-12A-<br>P37.2 | -ט-ץ<br>M201 | Positive<br>Y-markers | наріоgroup<br>Y |
| 137            | 14        | 12        | 23         |           | 18         | 15      | Ι          | 14       | 10        | 11        | I        | I         | 11           | 16        | Ι        | - 20       |             | F                |           | A             | T               | I            | P15+                  | G2a             |
| 139            | I         | 12        | I          | I         | 18         | 15      | I          | I        | 10        | 11        | I        | I         | 11           | I         | 10       |            | I           | Ŧ                | I         | ٨             | г               | I            | P15+                  | G2a             |
| 195            | 14        | 12        | 23         | 30        | 18         | 15      | (13/15)    | 14       | 10        | 11        | 21       | I         | 11           | 16        | I        |            | I           | F                | I         | ٩             | г               | I            | P15+                  | G2a             |
| 209            | 14        | 12        | 23         | Ι         | 18         | 15      | (13/15)    | 14       | 10        |           | I        |           | 11           | I         |          |            |             | I                | I         | ٩             | T               | I            |                       | G2a             |
|                |           |           |            |           |            |         |            |          |           |           |          |           |              |           |          |            |             |                  |           |               |                 |              |                       | (%6.66)         |
| 570            | 14        | 12        | 23         | I         | 18         | I       | 13/(15)    | 14       | 10        | 11        | 21       | 11        | 11           | 16        | Ι        |            | 1           | F                | 1         | ٩             | г               | I            | P15+                  | G2a             |
| 575            | 14        | 12        | 23         | 30        | 18         | 15      | 13/(15)    | 14       | 10        | 11        | 21       | I         | 11           | 16        | 10       | 20         | 1           | F                | 1         | ٩             | г               | I            | P15+                  | G2a             |
| 577            | 14        | I         | I          | I         | 16         | I       | I          | 13       | I         | I         | Ι        | I         | 12           | I         | Ι        |            | 1           | υ                | 1         | ט             | U               | Ι            | M438+ P37.2+          | I2a             |
| 579            | 14        | 12        | 23         | I         | 18         | I       | 13/(15)    | 14       | 10        | 11        | 21       | I         | 11           | 16        | 10       |            | I           | F                | I         | ٨             | I               | I            | P15+                  | G2a             |
| 583            | 14        |           | I          | I         | 18         | I       | 13/(15)    | 14       | 10        | 11        | I        | I         | 11           | 16        |          |            |             | I                | I         | ٨             | I               | I            |                       | G2a             |
|                |           |           |            |           |            |         |            |          |           |           |          |           |              |           |          |            |             |                  |           |               |                 |              |                       | (%8.66)         |
| 584            | 15        | 12        | 23         | 30        | 18         | 15      | 13/15      | 14       | 10        | 12        | 21       | I         | 11           | 16        |          |            | I           | F                | I         | ٨             | F               | I            | P15+                  | G2a             |
| 587            | 14        | 12        | 23         | I         | I          | I       | 15         | 14       |           | I         | 21       | I         | I            |           |          |            | I           | F                | I         | ٨             | I               | I            | P15+                  | G2a             |
| 588            | 14        | 12        | 23         | I         | 18         | I       | 13/(15)    | 14       | 10        | 11        | I        | I         | 11           | 16        | I        |            | I           | ⊢                | I         | A             | I               | Ι            | P15+                  | G2a             |
| 592            | 14        | 12        | 23         | I         | 18         | I       | 13/15      | 14       | 10        | 11        | I        | I         | 11           | 16        | I        |            | I           | ⊢                | I         | A             | F               | I            | P15+                  | G2a             |
| 593            | 14        | I         | I          | I         | 18         | I       | I          | I        | I         | I         | I        | I         | I            | I         | I        |            | I           | ⊢                | I         | A             | F               | I            | P15+                  | G2a             |
| 596            | 14        | 13        | 23         | 28        | 16         | 16      | 12         | 13       | 10        | 12        | 22       | 11        | 12           | 15        | 10       | 22         | I           | υ                | I         | ט             | υ               | Ι            | M438+P37.2+           | I2a             |
| 600            | 14        | 12        | Ι          | 30        | 18         | I       | 13/15      | 14       | 10        | 11        | 21       | Ι         | 11           | 16        | 10       | I          | I           | F                | I         | ٨             | Ι               | I            | P15+                  | G2a             |
| 604            | 14        | I         | I          | I         | 18         | 15      | I          | 14       | 10        | I         | 21       | I         | 11           | I         | I        | I          | I           | F                | I         | ٩             | F               | Ι            | P15+                  | G2a             |
| 611            | Ι         | I         | Ι          | Ι         | I          | Ι       | I          | I        | I         | I         | Ι        | Ι         | I            | I         | I        |            | I           | F                | I         | A             | F               | Ι            | P15+                  | G2a             |
| 612            | 14        | 12        | Ι          | Ι         | 18         | Ι       | (13/15)    | 14       | 10        | 11        | 21       | Ι         | 11           | Ι         | Ι        |            | I           | F                | I         | Ι             | Ι               | Ι            |                       | G2a             |
| 615            | 14        | 12        | 23         | 30        | 18         | 15      | 13/15      | 14       | 10        | 11        | 21       | 11        | 11           | 16        | 10       | - 20       | ·<br>I      | I                | I         | ٨             | т               | Ι            |                       | G2a             |
|                |           |           |            |           |            |         |            |          |           |           |          |           |              |           |          |            |             |                  |           |               |                 |              |                       | (100%)          |
| 616            | 14        | 12        | 23         | 30        | 18         | 15      | 13/15      | 14       | 10        | 11        | 21       | 11        | 11           | 16        | 10       | 20         | I           | F                | I         | ٩             | Ι               | I            | P15+                  | G2a             |
| 636            | 14        | 12        | 23         | 30        | 18         | 15      | 13/15      | 14       | 10        | 11        | 21       | 11        | 11           | 16        | 6        |            | I           | F                | I         | ٨             | Ι               | I            | P15+                  | G2a             |
| Research       | team      |           |            |           |            |         |            |          |           |           |          |           |              |           |          |            |             |                  |           |               |                 |              |                       |                 |
| -              | 15        | 14        | 24         | 30        | 18         | 13      | 13/14      | 13       | 6         | 10        | 21       | 11        | 11           | 14        | 10       | 20         | 4           | υ                | ۷         | ٨             | F               | I            |                       | E1b1b           |
| 2              | 16        | 13        | 24         | 28        | 17         | 14      | 11/12      | 13       | 11        | 13        | 24       | 13        | 11           | 15        | 12       | 20         | ∢           | υ                | ٩         | ٨             | F               | I            |                       | R1b             |
| ß              | 15        | 14        | 24         | 30        | 18         | 14      | 12/14      | 13       | 11        | 11        | 24       | 13        | 12           | 15        | 12       | 19         | A           | υ                | ۷         | ٨             | н               | ט            |                       | R1b             |
| Dash           | es denot: | e that a  | illeles co | ould not  | be clea    | rly amp | olified fo | r the lo | ocus in q | uestion   | . Conser | S-Y susr  | TR prof      | lles were | built af | fter two i | amplifi     | cations          | from at   | least thr     | ee differe      | nt DNA e     | xtracts for ea        | ich sample.     |
| Alleles i      | n bracket | ts were   | observe    | d just on | ice. The   | three l | ast profil | es are 1 | those of  | the male  | e resear | chers of  | the Nat      | ural Hist | ory Mus  | eum of To  | aulouse     | e (Franc         | e) and o  | f the labc    | ratory me       | ambers wh    | no have recer         | itly been in    |
| contact        | with the  | sample    | s. For sa  | imples 20 | 19, 583, I | 615, fo | which t    | he Y hä  | aplogrou  | p could   | not be o | confirme  | ed by th     | e typing  | of SNP,  | the deter  | minatio     | on of th         | ie haplo  | group wa      | s conduct       | ed solely 1  | from the hap          | lotype. The     |
| percent        | age of pi | robabili  | ty is shc  | own in th | ne last c  | :olumn. | SNPs in    | bold a   | re variar | its at cc | ncerneo  | d positic | ns.          |           |          |            |             |                  |           |               |                 |              |                       |                 |

Table S5. Y-haplogroups inferred from Y- STR haplotypes and NRY-SNPs typing results for the male specimens

| Population            | F <sub>st</sub> | P value              |
|-----------------------|-----------------|----------------------|
| Middle East           |                 |                      |
| Iranians              | 0.29758         | $0.00000 \pm 0.0000$ |
| Bakhtiari             | 0.32066         | $0.00000 \pm 0.0000$ |
| Gilaki                | 0.32231         | $0.00000 \pm 0.0000$ |
| Mazandarani           | 0.32759         | $0.00000 \pm 0.0000$ |
| Syrians               | 0.28712         | $0.00000 \pm 0.0000$ |
| Druze                 | 0.28894         | $0.00000 \pm 0.0000$ |
| Palestinians          | 0.27848         | $0.00000 \pm 0.0000$ |
| Lebanese              | 0.27520         | $0.00000 \pm 0.0000$ |
| Turks                 | 0.26764         | $0.00000 \pm 0.0000$ |
| North Caucasus        |                 |                      |
| Abazinians            | 0.42472         | $0.00000 \pm 0.0000$ |
| Abkhazians            | 0.44302         | $0.00000 \pm 0.0000$ |
| Chechenians           | 0.42307         | $0.00000 \pm 0.0000$ |
| Darginians            | 0.39692         | $0.00000 \pm 0.0000$ |
| Ingushians            | 0.45255         | $0.00000 \pm 0.0000$ |
| Kabardinians          | 0.31682         | $0.00000 \pm 0.0000$ |
| South Caucasus        |                 |                      |
| Georgians             | 0.30749         | $0.00000 \pm 0.0000$ |
| Armenians             | 0.29941         | $0.00000 \pm 0.0000$ |
| Azerbaijanis          | 0.31764         | $0.00000 \pm 0.0000$ |
| Lezginians            | 0.40088         | $0.00000 \pm 0.0000$ |
| Ossetians             | 0.35485         | $0.00000 \pm 0.0000$ |
| Northwestern Europe   |                 |                      |
| French                | 0.32143         | $0.00000 \pm 0.0000$ |
| Irish                 | 0.28895         | $0.00000 \pm 0.0000$ |
| Belgians              | 0.28996         | $0.00000 \pm 0.0000$ |
| Dutch                 | 0.30891         | $0.00000 \pm 0.0000$ |
| North central Europe  |                 |                      |
| Germans               | 0.26655         | $0.00000 \pm 0.0000$ |
| Danish                | 0.27898         | $0.00000 \pm 0.0000$ |
| Polish                | 0.27598         | $0.00000 \pm 0.0000$ |
| Scandinavia           |                 |                      |
| Norwegians            | 0.26608         | $0.00000 \pm 0.0000$ |
| Southeastern Europe   |                 |                      |
| Hungarian             | 0.26761         | $0.00000 \pm 0.0000$ |
| Serbian               | 0.28178         | $0.00000 \pm 0.0000$ |
| Serbian Romanian      |                 |                      |
| Montenegrin           | 0.27567         | $0.00000 \pm 0.0000$ |
| Western Mediterranean |                 |                      |
| Portuguese            | 0.27854         | $0.00000 \pm 0.0000$ |
| Spanish               | 0.00724         | $0.00000 \pm 0.0000$ |
| Basque                | 0.01392         | $0.00000 \pm 0.0000$ |
| Central Mediterranean |                 |                      |
| Italians              | 0.26635         | $0.00000 \pm 0.0000$ |
| Eastern Mediterranean |                 |                      |
| Maltese               | 0.37106         | $0.00000 \pm 0.0000$ |
| Cypriots              | 0.29806         | $0.00000 \pm 0.0000$ |
| Northern Greeks       | 0.28846         | $0.00000 \pm 0.0000$ |

Table S6. F<sub>ST</sub> values calculated between Y-chromosomal data of Treilles' samples and modern Western Eurasian population data (49 populations representing 10,488 Y-STR profiles)

| Population                       | Shared lineages, % |
|----------------------------------|--------------------|
| Middle East                      |                    |
| Iranians                         | 0                  |
| Syrians                          | 0                  |
| Druze                            | 0                  |
| Palestinians                     | 0                  |
| Lebanese                         | 0.355              |
| Turks                            | 0.699              |
| North Caucasus                   |                    |
| Other North Caucasus populations | 0                  |
| South Caucasus                   |                    |
| Georgians                        | 0                  |
| Armenians                        | 0                  |
| Azerbaijanis                     | 0                  |
| Other South Caucasus populations | 0                  |
| Northwestern Europe              |                    |
| French                           | 0                  |
| Irish                            | 0                  |
| Belgians                         | 0                  |
| Dutch                            | 0                  |
| North Central Europe             |                    |
| Germans                          | 0.226              |
| Danish                           | 0                  |
| Polish                           | 0                  |
| Scandinavia                      |                    |
| Norwegians                       | 0                  |
| Southeastern Europe              |                    |
| Hungarians                       | 0                  |
| Serbians                         | 0                  |
| Serbian Romanians                | 0                  |
| Montenegrins                     | 0                  |
| Western Mediterranean            |                    |
| Portuguese                       | 1.980              |
| Galician                         | 0                  |
| Catalan                          | 0                  |
| Other Spanish                    | 0.248              |
| Basque                           | 0                  |
| Central Mediterranean            |                    |
| Italians                         | 0.385              |
| Sicilians                        | 0                  |
| Sardinians                       | 0                  |
| Eastern Mediterranean            |                    |
| Maltese                          | 0                  |
| Cypriots                         | 2.062              |
| North Greeks                     | 0                  |

Table S7.Shared Y- lineages between Treilles and modern WesternEurasian populations (49 populations representing 10,488 Y-STRprofiles)

#### Table S8. References of the populations included in the databases

| Population (size)                         | References HVS-I | Population (size)                         | References Y-STR |
|-------------------------------------------|------------------|-------------------------------------------|------------------|
| Middle East ( <i>n</i> = 2,689)           |                  | Middle East ( <i>n</i> = 2,482)           |                  |
| Iranians                                  | 1, 2             | Iranians                                  | 3                |
| Saudi Arabians                            | 4–6              |                                           |                  |
| Syrians                                   | 2, 7             | Syrians                                   | 8                |
| Iraqis                                    | 9                |                                           |                  |
| Druze                                     | 10, 11           | Druze                                     | 11               |
| Yemenis                                   | 12               |                                           |                  |
| Kurds                                     | 2, 13            |                                           |                  |
| Dubai                                     | 14               |                                           |                  |
| Palestinians                              | 2                | Palestinians                              | 8                |
|                                           |                  | Lebanese                                  | 15               |
| Turks                                     | 2, 16-20         | Turks                                     | 21, 22           |
| North Caucasus ( $n = 594$ )              | 2                | North Caucasus (n = 78)                   |                  |
|                                           | 2                |                                           |                  |
| Western Russians                          | 23               | Other North Courses                       | 26               |
| Other North Caucasus                      | 10, 19, 24, 25   |                                           | 20               |
| populations<br>South Caucacus $(n - 652)$ |                  | populations<br>South Caucasus $(n = 424)$ |                  |
| South Caucasus $(I = 0.52)$               | 12 10 27 29      | Goorgians                                 | 26               |
| Armonians                                 |                  | Armonians                                 | 20               |
| Armenians                                 | 2, 27, 29        | Armeniaris                                | 20               |
| Azerbaljanis                              | 27               | Azerbaijariis<br>Othor South Caucasus     | 3, 20            |
|                                           |                  | nonulations                               | 20               |
| Northwestern Europe ( $n - 783$ )         |                  | Northwestern Europe $(n - 408)$           |                  |
| British                                   | 30               | Northwestern Europe (n = 400)             |                  |
| French                                    | 31               | French                                    | 32               |
| Welsh                                     | 20               |                                           | 52               |
| Cornish                                   | 20               |                                           |                  |
| Irish                                     | 20, 33           | Irish                                     | 34               |
|                                           | .,               | Belgians                                  | 35               |
|                                           |                  | Dutch                                     | 36               |
| North-Central Europe (n = 3,239)          |                  | North-Central Europe ( $n = 1,695$ )      |                  |
| Germans                                   | 20, 23, 37-39    | Germans                                   | 36, 40           |
| Danish                                    | 2, 20            | Danish                                    | 41               |
| Czechs                                    | 42               |                                           |                  |
| Polish                                    | 23, 43, 44       | Polish                                    | 45               |
| Slovakians                                | 29, 46           |                                           |                  |
| Swiss                                     | 20, 47, 48       |                                           |                  |
| Latvians                                  | 49               |                                           |                  |
| Austrians                                 | 50               |                                           |                  |
| South Tyrol Ladins                        | 51, 52           |                                           |                  |
| South Tyrol Germans                       | 51               |                                           |                  |
| South Tyrol Italians                      | 51               |                                           |                  |
| Scandinavia ( $n = 712$ )                 | 52               | Scandinavia ( $n = 1,967$ )               |                  |
| Norwegians                                | 53               | Norwegians                                | 54               |
| Finns                                     | 55-57            | South costom Function (m. 1070)           |                  |
| Southeastern Europe ( $n = 909$ )         | 16               | Southeastern Europe ( $n = 1,078$ )       |                  |
| Buigarians                                |                  | lungariant                                | 61               |
| Pompanans                                 | 50-00<br>67 62   | Hungarians                                | 01               |
| Sorbians                                  | 62, 03           | Sorbians                                  | 64               |
| Bomanian                                  | 65               | Serbian Romanians                         | 66               |
| Komaman                                   | 05               | Montenegrins                              | 64               |
| Western Mediterranean ( $n = 1.625$ )     |                  | Western Mediterranean ( $n = 1.442$ )     | 04               |
| Portuguese                                | 67. 68           | Portuguese                                | 69               |
| Galicians                                 | 68. 70           | Galicians                                 | 69. 71           |
| Spanish Catalans                          | 72. 73           | Spanish Catalans                          | 69               |
| Andalusians                               | 72, 74, 75       | · F · · · · · · · · · · · · · · · · · ·   |                  |
| Balearic islanders                        | 75               |                                           |                  |
|                                           | -                | Other Spanish                             | 69, 71, 76, 77   |
| Basques                                   | 2, 72, 78-80     | Basques                                   | 69               |
| Central Mediterranean ( $n = 2,040$ )     |                  | Central Mediterranean ( $n = 562$ )       |                  |
| Northeastern Italians                     | 52, 81-84        | Northern Italians                         | 85               |
|                                           |                  |                                           |                  |

#### Table S8 Cont.

| Population (size)                 | References HVS-I | Population (size)               | References Y-STR |
|-----------------------------------|------------------|---------------------------------|------------------|
| Tuscanians                        | 75, 86, 87       |                                 |                  |
| Other Italians: Acone,            | 84, 88, 89       |                                 |                  |
| Bologna, Firenze,                 |                  |                                 |                  |
| Modena, Pavia,                    |                  |                                 |                  |
| Roma, Turino,                     |                  |                                 |                  |
| Terni, Molisio-                   |                  |                                 |                  |
| Abruzzo-puglia, Campania          |                  |                                 |                  |
|                                   |                  | Southern Italians               | 71               |
| Sicilians                         | 88, 90           | Sicilians                       | 71, 91           |
| Corsicans                         | 92               |                                 |                  |
| Sardinians                        | 20, 75, 93, 94   | Sardinians                      | 95               |
| Slovenians                        | 63               |                                 |                  |
| Croatians                         | 62               |                                 |                  |
| Eastern Mediterranean (n = 1,298) |                  | Eastern Mediterranean (n = 404) | )                |
| Macedonians                       | 65, 88, 96, 97   |                                 |                  |
| Albanians                         | 65, 98           |                                 |                  |
| Cretans                           | 7, 88, 99        | Maltese                         | 8                |
| Cypriots                          | 100              | Cypriots                        | 8                |
| Northern Greek                    | 97, 100          | Northern Greeks                 | 101              |
| Central Greeks                    | 88, 97           |                                 |                  |
| Southern Greeks                   | 83, 88, 97       |                                 |                  |
| Other Greeks                      | 65               |                                 |                  |

1. Metspalu M, et al. (2004) Most of the extant mtDNA boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans. BMC Genet 5:26.

2. Richards M, et al. (2000) Tracing European founder lineages in the Near Eastern mtDNA pool. Am J Hum Genet 67:1251–1276.

- 3. Roewer L, Willuweit S, Stoneking M, Nasidze I (2009) A Y-STR database of Iranian and Azerbaijanian minority populations. Forensic Sci Int Genet 4:e53-e55.
- 4. Abu-Amero KK, González AM, Larruga JM, Bosley TM, Cabrera VM (2007) Eurasian and African mitochondrial DNA influences in the Saudi Arabian population. BMC Evol Biol 7:32.

5. Abu-Amero KK, Larruga JM, Cabrera VM, González AM (2008) Mitochondrial DNA structure in the Arabian Peninsula. BMC Evol Biol 8:45.

- 6. Di Rienzo A, Wilson AC (1991) Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad Sci USA 88:1597–1601.
- 7. Vernesi C, et al. (2001) Genetic characterization of the body attributed to the evangelist Luke. Proc Natl Acad Sci USA 98:13460–13463.
- 8. Zalloua PA, et al.; Genographic Consortium Identifying genetic traces of historical expansions: Phoenician footprints in the Mediterranean. Am J Hum Genet 83:633-642.
- 9. Al-Zahery N, et al. (2003) Y-chromosome and mtDNA polymorphisms in Iraq, a crossroad of the early human dispersal and of post-Neolithic migrations. Mol Phylogenet Evol 28:
- 458–472.
- 10. Macaulay V, et al. (1999) The emerging tree of West Eurasian mtDNAs: A synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232-249.
- 11. Shlush Ll, et al. (2008) The Druze: A population genetic refugium of the Near East. PLoS ONE 3:e2105.
- 12. Kivisild T, et al. (2004) Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears. Am J Hum Genet 75:752-770.
- 13. Comas D, Calafell F, Bendukidze N, Fañanás L, Bertranpetit J (2000) Georgian and kurd mtDNA sequence analysis shows a lack of correlation between languages and female genetic lineages. Am J Phys Anthropol 112:5–16.
- 14. Alshamali F, Brandstätter A, Zimmermann B, Parson W (2008) Mitochondrial DNA control region variation in Dubai, United Arab Emirates. Forensic Sci Int Genet 2:e9-e10.
- 15. Zalloua PA, et al.; Genographic Consortium (2008) Y-chromosomal diversity in Lebanon is structured by recent historical events. Am J Hum Genet 82:873–882.
- Calafell F, Underhill P, Tolun A, Angelicheva D, Kalaydjieva L (1996) From Asia to Europe: Mitochondrial DNA sequence variability in Bulgarians and Turks. Ann Hum Genet 60:35–49.
   Comas D, Calafell F, Mateu E, Pérez-Lezaun A, Bertranpetit J (1996) Geographic variation in human mitochondrial DNA control region sequence: the population history of Turkey and its relationship to the European populations. Mol Biol Evol 13:1067–1077.
- 18. Di Benedetto G, et al. (2001) DNA diversity and population admixture in Anatolia. Am J Phys Anthropol 115:144-156.
- 19. Quintana-Murci L, et al. (2004) Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Am J Hum Genet 74:827-845.
- 20. Richards M, et al. (1996) Paleolithic and neolithic lineages in the European mitochondrial gene pool. Am J Hum Genet 59:185-203.
- 21. Alakoc YD, et al. (2010) Y-chromosome and autosomal STR diversity in four proximate settlements in Central Anatolia. Forensic Sci Int Genet 4:e135-e137.
- 22. Cinnioğlu C, et al. (2004) Excavating Y-chromosome haplotype strata in Anatolia. Hum Genet 114:127-148.
- 23. Malyarchuk BA, et al. (2002) Mitochondrial DNA variability in Poles and Russians. Ann Hum Genet 66:261-283.
- 24. Nasidze I, et al. (2004) Mitochondrial DNA and Y-chromosome variation in the caucasus. Ann Hum Genet 68:205-221.
- 25. Lebedeva IA, Seryogin YA, Poltaraus AB, Mitochondrial DNA Polymorphism in Adygeis. Available at http://www.ncbi.nlm.nih.gov/nuccore; accession numbers AF285277–AF285384.
- 26. Nasidze I, Schädlich H, Stoneking M (2003) Haplotypes from the Caucasus, Turkey and Iran for nine Y-STR loci. Forensic Sci Int 137:85–93.
- 27. Nasidze I, et al. (2004) Genetic evidence concerning the origins of South and North Ossetians. Ann Hum Genet 68:588–599.
- 28. Reidla M, Mitochondrial DNA Lineages in Georgia. Available at http://www.ncbi.nlm.nih.gov/nuccore; accession numbers AJ389196–AJ389375.
- 29. Metspalu E, Kivisild T, Kaldma K, Reidla M, Villems R, Mitochondrial DNA Lineages and the History of the Roms (Gypsies). Available at http://www.ncbi.nlm.nih.gov/nuccore; accession numbers AJ233203–AJ233348 and AJ240164–AJ240248 (Armenians and Slovaks).
- 30. Piercy R, Sullivan KM, Benson N, Gill P (1993) The application of mitochondrial DNA typing to the study of white Caucasian genetic identification. Int J Legal Med 106:85–90.
- 31. Dubut V, et al. (2004) mtDNA polymorphisms in five French groups: Importance of regional sampling. *Eur J Hum Genet* 12:293–300.
- 32. Balaresque P, et al. (2010) A predominantly neolithic origin for European paternal lineages. PLoS Biol, 10.1371/journal.pbio.1000285.
- 33. McEvoy B, Richards M, Forster P, Bradley DG (2004) The Longue Durée of genetic ancestry: Multiple genetic marker systems and Celtic origins on the Atlantic facade of Europe. Am J Hum Genet 75:693–702.
- 34. Ballard DJ, Phillips C, Thacker CR, Court DS (2006) Y chromosome STR haplotype data for an Irish population. Forensic Sci Int 161:64–68.
- 35. De Maesschalck K, et al. (2005) Y-chromosomal STR haplotypes in a Belgian population sample and identification of a micro-variant with a flanking site mutation at DYS19. Forensic Sci Int 152:89–94.
- 36. Rodig H, et al. (2008) Evaluation of haplotype discrimination capacity of 35 Y-chromosomal short tandem repeat loci. Forensic Sci Int 174:182–188.
- 37. Brandstätter A, Klein R, Duftner N, Wiegand P, Parson W (2006) Application of a quasi-median network analysis for the visualization of character conflicts to a population sample of mitochondrial DNA control region sequences from southern Germany (Ulm). Int J Legal Med 120:310–314.
- Lutz S, Weisser HJ, Heizmann J, Pollak S (1998) Location and frequency of polymorphic positions in the mtDNA control region of individuals from Germany. Int J Legal Med 111:67–77.
   Tetzlaff S, Brandstätter A, Wegener R, Parson W, Weirich V (2007) Mitochondrial DNA population data of HVS-I and HVS-II sequences from a northeast German sample. Forensic Sci Int 172:218–224.
- 40. Hohoff C, et al. (2007) Y-chromosomal microsatellite mutation rates in a population sample from northwestern Germany. Int J Legal Med 121:359-363.
- 41. Hallenberg C, Nielsen K, Simonsen B, Sanchez J, Morling N (2005) Y-chromosome STR haplotypes in Danes. Forensic Sci Int 155:205–210.

- 42. Malyarchuk BA, Vanecek T, Perkova MA, Derenko MV, Sip M (2006) Mitochondrial DNA variability in the Czech population, with application to the ethnic history of Slavs. Hum Biol 78: 681–696.
- 43. Grzybowski T, et al. (2007) Complex interactions of the Eastern and Western Slavic populations with other European groups as revealed by mitochondrial DNA analysis. Forensic Sci Int Genet 1:141–147.
- 44. Malyarchuk BA, Rogozin IB, Berikov VB, Derenko MV (2002) Analysis of phylogenetically reconstructed mutational spectra in human mitochondrial DNA control region. Hum Genet 111:46–53.
- 45. Rebała K, Szczerkowska Z (2005) Polish population study on Y chromosome haplotypes defined by 18 STR loci. Int J Legal Med 119:303–305.
- 46. Malyarchuk BA, et al. (2008) Mitochondrial DNA variability in Slovaks, with application to the Roma origin. Ann Hum Genet 72:228–240.
- 47. Dimo-Simonin N, Grange F, Taroni F, Brandt-Casadevall C, Mangin P (2000) Forensic evaluation of mtDNA in a population from south west Switzerland. Int J Legal Med 113:89–97. 48. Pult I, et al. (1994) Mitochondrial DNA sequences from Switzerland reveal striking homogeneity of European populations. Biol Chem Hoppe Seyler 375:837–840.
- Pair (, et al. (1994) Mitochondrial DNA sequences from switzenand reveal striking homogeneity of European populations. *Biol Chem Toppe Seyler 37:303–640*.
   Pliss L, et al. (2006) Mitochondrial DNA portrait of Latvians: towards the understanding of the genetic structure of Baltic-speaking populations. *Ann Hum Genet* 70:439–458.
- 50. Parson W, Parsons TJ, Scheithauer R, Holland MM (1998) Population data for 101 Austrian Caucasian mitochondrial DNA d-loop sequences: Application of mtDNA sequence analysis to
- a forensic case. Int J Legal Med 111:124–132.
- 51. Thomas MG, et al. (2008) New genetic evidence supports isolation and drift in the Ladin communities of the South Tyrolean Alps but not an ancient origin in the Middle East. Eur J Hum Genet 16:124–134.
- 52. Vernesi C, Fuselli S, Castri L, Bertorelle G, Barbujani G (2002) Mitochondrial diversity in linguistic isolates of the Alps: a reappraisal. Hum Biol 74:725–730.
- 53. Helgason A, et al. (2001) mtDna and the islands of the North Atlantic: Estimating the proportions of Norse and Gaelic ancestry. Am J Hum Genet 68:723-737.
- 54. Dupuy BM, et al. (2001) Y-chromosome variation in a Norwegian population sample. Forensic Sci Int 117:163-173.
- 55. Kittles RA, et al. (1999) Autosomal, mitochondrial, and Y chromosome DNA variation in Finland: evidence for a male-specific bottleneck. Am J Phys Anthropol 108:381–399.
- 56. Lahermo P, et al. (1996) The genetic relationship between the Finns and the Finnish Saami (Lapps): Analysis of nuclear DNA and mtDNA. Am J Hum Genet 58:1309–1322.
- 57. Meinilä M, Finnilä S, Majamaa K (2001) Evidence for mtDNA admixture between the Finns and the Saami. Hum Hered 52:160–170.
- 58. Bogácsi-Szabó E, et al. (2005) Mitochondrial DNA of ancient Cumanians: Culturally Asian steppe nomadic immigrants with substantially more western Eurasian mitochondrial DNA lineages. Hum Biol 77:639–662.
- 59. Irwin J, et al. (2007) Hungarian mtDNA population databases from Budapest and the Baranya county Roma. Int J Legal Med 121:377-383.
- 60. Tömöry G, et al. (2007) Comparison of maternal lineage and biogeographic analyses of ancient and modern Hungarian populations. Am J Phys Anthropol 134:354–368.
- Völgyi A, Zalán A, Szvetnik E, Pamjav H (2009) Hungarian population data for 11 Y-STR and 49 Y-SNP markers. Forensic Sci Int Genet 3:e27–e28.
   Harvey M, Gordon K, Owens K, Lee M, King MC, MtDNA Sequences from Balkan Populations. Available at http://www.ncbi.nlm.nih.gov/nuccore; accession numbers AY005666– AY005724 (Croatians), AY005729–AY005784 (Serbians), and AY005485–AY005644 (Bosnians).
- 63. Malyarchuk BA, et al. (2003) Mitochondrial DNA variability in Bosnians and Slovenians. Ann Hum Genet 67:412–425.
- 64. Mirabal S, et al. (2010) Human Y-chromosome short tandem repeats: A tale of acculturation and migrations as mechanisms for the diffusion of agriculture in the Balkan Peninsula. Am J Phys Anthropol 142:380–390.
- 65. Bosch E, et al. (2006) Paternal and maternal lineages in the Balkans show a homogeneous landscape over linguistic barriers, except for the isolated Aromuns. Ann Hum Genet 70: 459–487.
- 66. Regueiro M, et al. (2011) Divergent patrilineal signals in three Roma populations. Am J Phys Anthropol 144:80-91.
- 67. Pereira L, Cunha C, Amorim A (2004) Predicting sampling saturation of mtDNA haplotypes: An application to an enlarged Portuguese database. Int J Legal Med 118:132–136.
- 68. González AM, et al. (2003) Mitochondrial DNA affinities at the Atlantic fringe of Europe. Am J Phys Anthropol 120:391–404.
- 69. Adams SM, et al. (2008) The genetic legacy of religious diversity and intolerance: Paternal lineages of Christians, Jews, and Muslims in the Iberian Peninsula. Am J Hum Genet 83: 725–736.
- 70. Salas A, Comas D, Lareu MV, Bertranpetit J, Carracedo A (1998) mtDNA analysis of the Galician population: A genetic edge of European variation. Eur J Hum Genet 6:365–375.
- 71. Rodríguez V, et al. (2009) Genetic sub-structure in western Mediterranean populations revealed by 12 Y-chromosome STR loci. Int J Legal Med 123:137–141.
- 72. Côrte-Real HB, et al. (1996) Genetic diversity in the Iberian Peninsula determined from mitochondrial sequence analysis. Ann Hum Genet 60:331-350.
- Crespillo M, et al. (2000) Mitochondrial DNA sequences for 118 individuals from northeastern Spain. *Int J Legal Med* 114:130–132.
   Casas MJ, Hagelberg E, Fregel R, Larruga JM, González AM (2006) Human mitochondrial DNA diversity in an archaeological site in al-Andalus: Genetic impact of migrations from North Africa in medieval Spain. *Am J Phys Anthropol* 131:539–551.
- 75. Falchi A, et al. (2006) Genetic history of some western Mediterranean human isolates through mtDNA HVR1 polymorphisms. J Hum Genet 51:9–14.
- 76. Gaibar M, et al. (2010) STR genetic diversity in a Mediterranean population from the south of the Iberian Peninsula. Ann Hum Biol 37:253-266.
- 77. Flores C, et al. (2003) A predominant European ancestry of paternal lineages from Canary Islanders. Ann Hum Genet 67:138–152.
- 78. Alfonso-Sánchez MA, et al. (2008) Mitochondrial DNA haplogroup diversity in Basques: A reassessment based on HVI and HVII polymorphisms. Am J Hum Biol 20:154-164.
- Alzualde A, Izagirre N, Alonso S, Alonso A, de la Rúa C (2005) Temporal mitochondrial DNA variation in the Basque Country: Influence of post-neolithic events. Ann Hum Genet 69: 665–679.
- 80. Bertranpetit J, et al. (1995) Human mitochondrial DNA variation and the origin of Basques. Ann Hum Genet 59:63-81.
- 81. Guimaraes S, et al. (2009) Genealogical discontinuities among Etruscan, Medieval, and contemporary Tuscans. Mol Biol Evol 26:2157–2166.
- Guinardas, Je can (2007) Generalizadas anticiparta discontratas anticipartas in contentia in contratas and contentiation anticiparta in contentiation anticiparta in contentiation and contenination and contentiation and contentiation and contentiation
- 83. Vernesi C, et al. (2004) The Etruscans: A population-genetic study. Am J Hum Genet 74:694-704.
- 84. Babalini C, et al. (2005) The population history of the Croatian linguistic minority of Molise (southern Italy): A maternal view. Eur J Hum Genet 13:902-912.
- 85. Turrina S, Atzei R, De Leo D (2006) Y-chromosomal STR haplotypes in a Northeast Italian population sample using 17plex loci PCR assay. Int J Legal Med 120:56-59.
- 86. Achilli A, et al. (2007) Mitochondrial DNA variation of modern Tuscans supports the near eastern origin of Etruscans. Am J Hum Genet 80:759–768.
- Francalacci P, Bertranpetit J, Calafell F, Underhill PA (1996) Sequence diversity of the control region of mitochondrial DNA in Tuscany and its implications for the peopling of Europe. Am J Phys Anthropol 100:443–460.
- 88. Forster P, et al. (2002) Continental and subcontinental distributions of mtDNA control region types. Int J Legal Med 116:99–108.
- 89. Turchi C, et al.; Ge.F.I. Group Italian mitochondrial DNA database: results of a collaborative exercise and proficiency testing. Int J Legal Med 122:199-204.
- 90. Cali F, et al. (2001) MtDNA control region and RFLP data for Sicily and France. Int J Legal Med 114:229–231.
- 91. Di Gaetano C, et al. (2009) Differential Greek and northern African migrations to Sicily are supported by genetic evidence from the Y chromosome. Eur J Hum Genet 17:91–99.
- 92. Varesi L, et al. (2000) Mitochondrial control-region sequence variation in the Corsican population, France. Am J Hum Biol 12:339-351.
- 93. Caramelli D, et al. (2007) Genetic variation in prehistoric Sardinia. Hum Genet 122:327-336.
- 94. Varesi L, Piras IS, Calo CM, Vona G, Mitochondrial DNA Polymorphism in the HVRI Control Region in the Population of Sardinia (Gallura). Available at http://www.ncbi.nlm.nih. gov/nuccore; accession numbers DQ081414–DQ081464.
- 95. Ghiani ME, et al. (2009) Population data for Y-chromosome haplotypes defined by AmpFISTR YFiler PCR amplification kit in North Sardinia (Italy). Coll Antropol 33:643-651.
- 96. Zimmermann B, et al. (2007) Mitochondrial DNA control region population data from Macedonia. Forensic Sci Int Genet 1:e4–e9.
- 97. Kouvatsi A, Karaiskou N, Apostolidis A, Kirmizidis G (2001) Mitochondrial DNA sequence variation in Greeks. Hum Biol 73:855-869.
- 98. Belledi M, et al. (2000) Maternal and paternal lineages in Albania and the genetic structure of Indo-European populations. Eur J Hum Genet 8:480-486.
- 99. Villems R, Homo sapiens Mitochondrial DNA D-Loop HVR1 Sequence. Available at http://www.ncbi.nlm.nih.gov/nuccore; accession numbers AJ274757-AJ274942.
- 100. Irwin J, et al. (2008) Mitochondrial control region sequences from northern Greece and Greek Cypriots. Int J Legal Med 122:87–89.
- 101. Kovatsi L, Saunier JL, Irwin JA (2009) Population genetics of Y-chromosome STRs in a population of Northern Greeks. Forensic Sci Int Genet 4:e21-e22.