Supporting Information

Iron-Catalyzed Asymmetric Epoxidation of β,β-Disubstituted Enones

Yasuhiro Nishikawa and Hisashi Yamamoto

Department of Chemistry, The University of Chicago

5735 S. Ellis Avenue, Chicago, Illinois, 60637 (USA)

Contents

1. General Information	S 2
2. Experimental procedure for preparation of ligand (L1-6) and characterization data	
2.1. SI-1 and characterization data	S2
2.2. SI-2-5 and characterization data	S 3
2.3. L1-6 and characterization data	S 4
3. Experimental procedure for preparation of starting materials 1a- o and characterization data	S 6
4. Experimental procedure for iron-catalyzed asymmetric epoxidation and characterization data	
(2a-n)	S10
4.1. Another example of the iron-catalyzed asymmetric epoxidation.	S13
5. Experimental procedure for Lewis acid mediated rearrangement and characterization data	
(3a , 3l , and 3o)	S14
6. Experimental procedure for the synthesis of the isoxazoline 4a and characterization data	S15
7. References	S15
8. Complete ref 17a	S16
9. X-ray crystallographic analysis of [Fe(L3) ₂ (CH ₃ CN)(OTf)](OTf)	S 16
10. Copies of ¹ H-NMR and ¹³ C-NMR spectra (SI-2-5, L1-6)	S38
11. Copies of ¹ H-NMR and ¹³ C-NMR spectra (1a-m , 1o)	S48
12. Copies of ¹ H-NMR, ¹³ C-NMR spectra and HPLC analysis (2a-n)	S62
13. Copies of ¹ H-NMR, ¹³ C-NMR spectra and HPLC analysis (3a , 3l , 3o and 4a)	S 90

1. General Information. All reactions were carried out in flame-dried glassware under nitrogen atmosphere and stirred via magnetic stir-plates. All reactions were monitored by analytical thin-layer chromatography using Whatman pre-coated silica gel plates with F254 indicator. Visualization was accomplished by UV light (256 nm), phosphomolybdic acid, iodine, or anisaldehyde. Flash column chromatography was performed using Biotage Isolera one with Biotage SNAP cartridge KP-sil or KP-NH. All reactions were carried out with anhydrous solvents unless otherwise noted. Anhydrous acetonitrile was dried with M BRAUN solvent purification system (A2 Alumina). FeCl₂ and peracetic acid were purchased from Aldrich and used as received. Fe(OTf)₂ was purchased from Strem and used as received. All other reagents and starting materials, unless otherwise noted, were purchased from commercial vendors. Infrared spectra were recorded as thin films on sodium chloride plates using a Nicolet 20 SXB FTIR. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 500 (500 MHz ¹H, 126 MHz ¹³C). Chemical shift values (δ) are reported using tetramethylsilane in CDCl₃ or residual CD₂HOD (δ H 3.31) and CD₃OD (δ C 49.15) in CD₃OD or residual DMSO-*d*₅ (δ H 2.50) and DMSO-*d*₆ (δ C 39.51). The ¹H NMR spectra are reported as follows δ (number of protons, multiplicity, coupling constant *J*). Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet) and br (broad).

Experimental procedure for preparation of ligands L1-L6 and characterization data. Experimental procedure for preparation of SI-1 and characterization data.

procedure.1 **SI-1**: **SI-1** synthesized by modified literature То of was a solution (R)-2,2'-dibromo-1,1'-binaphthyl² (2.51 g, 6.09 mmol) in THF (30 mL) was added *n*-BuLi (1.6M solution in Hex, 3.8 mL, 6.1 mmol) at -78 °C. After stirring at that temperature for 1 h, the reaction was quenched by adding saturated aqueous NH₄Cl, warmed up to room temperature and then diluted with EtOAc. The organic layer was separated, washed with brine, dried with Na₂SO₄ and evaporated to give the crude product which was purified by a short pad of silica gel. The obtained oil was crystallized from hexane to furnish the title compound (87%) concomitant with a small amount of 1,1'-binaphthyl as white-pink crystal. ¹H-NMR (CDCl₃) 8.00 (1H, d, J=8.5), 7.97 (1H, d, J=8.5), 7.91 (1H, d, J=8.0), 7.83 (1H, d, J=8.5), 7.80 (1H, d, J=8.5), 7.64 (1H, dd, J=8.3, 7.3), 7.49 (2H, m), 7.41 (1H, dd, J=7.0, 1.0), 7.31 (1H, ddd, J=8.3, 7.0, 1.0), 7.27 (1H, m), 7.22 (1H, d, *J*=8.5), 7.18 (1H, d, *J*=8.5). ¹³C NMR (CDCl₃) δ 138.1, 137.3, 134.4, 133.6, 132.3, 132.0, 129.9, 129.3, 12 8.3, 127.95, 127.92, 126.9, 126.8, 126.3, 126.1, 126.0, 125.7, 125.5, 122.7.

2.2. General procedure for preparation of SI-2~5 and characterization data.

To a mixture of 3,8-dibromophenanthroline³ (676 mg, 2.0 mmol), $Pd(PPh_3)_4$ (347 mg, 0.3 mmol), and a corresponding boronic acid (5.0 mmol) were added a degassed mixture of THF (14 mL) and toluene (14 mL) at room temperature under nitrogen atmosphere. After the addition of a degassed aq. Na₂CO₃ (1 M solution, 5.0 mL, 5.0 mmol), the reaction mixture was heated to reflux for 18 h. After cooling to room temperature, the reaction was poured into 1 M aqueous NaOH (20 mL) and extracted three times with CH₂Cl₂. The organic layer was dried with Na₂SO₄ and evaporated to give the crude product which was purified by silica gel chromatography. The obtained oil was crystallized from hexane/EtOAc to furnish a desired product.

SI-3: 61 % as white crystal, m.p. 157-160 °C; ¹H NMR (CDCl₃) δ 9.22 (2H, d, J = 2.2 Hz), 8.22 (2H, d, J = 2.2 Hz), 7.88 (2H, s), 7.36-7.45 (8H, m), 2.38 (6H, s); ¹³C NMR (CDCl₃) δ 151.2, 144.8, 137.9, 136.8, 135.9, 135.5, 130.7,

130.2, 128.4, 128.1, 126.9, 126.2, 20.5; IR (neat) 3017, 2959, 1559, 1457, 1423, 918, 757 cm⁻¹; MS (ESI⁺) m/z (%): 361 ([M+H]⁺, 100).

SI-4: 66% yield as yellow solid, m.p. 208-212 °C; ¹H NMR (CDCl₃) δ 9.42 (2H, d, J = 2.3 Hz), 8.39 (2H, d, J = 2.2 Hz), 7.88 (2H, s), 7.40 (4H, s), 7.12 (2H, s), 2.46 (12H, s); ¹³C NMR (CDCl₃) δ 149.6, 145.0, 138.8, 137.5, 135.

9, 133.3, 130.0, 128.4, 127.0, 125.4, 21.4; IR (neat) 3030, 2917, 2860, 1603, 1435, 1366, 1221, 1038, 849, 736, 699 cm⁻¹; MS (ESI⁺) m/z (%): 777 ([2M+H]⁺, 50), 389 ([M+H]⁺, 100).

SI-5: 54 % yield as a brown solid, m.p. 132-134 °C; ¹H NMR (CDCl₃) δ 9.43 (2H, d, J = 2.2 Hz), 8.38 (2H, d, J = 2.1 Hz), 7.87 (2H, s), 7.43 (4H, s), 7.16 (2H, s), 2.77 (8H, q, J = 7.6), 1.34 (12H, t, J = 7.6 Hz); ¹³C NMR (CDCl₃) δ 149.7, 145.3, 145.0, 137.7, 136.1, 133.3, 128.4, 127.6, 127.0, 1

24.6, 28.9, 15.7; IR (neat) 3023, 2963, 2931, 2871, 1600, 1423, 1370, 868, 736, 705 cm⁻¹; MS (ESI⁺) m/z (%): 445 ([M+H]⁺, 100).

2.3. Representative procedure for the preparation of L1-6 and characterization data.

To a solution of **SI-1** (858 mg, 2.57 mmol) in THF (13 mL) was added TMEDA (0.44 mL, 2.9 mmol) at room temperature. After cooling to -78 °C, *n*-BuLi (1.6 M solution in Hex, 1.8 mL, 2.9 mmol) was added dropwise to the mixture which was stirred at that temperature for 1 h. To this solution was added a THF solution (26 mL in 2 portions) of **SI-4** (1.50 g, 3.86 mmol) which was pre-dried by azeotropic removal of water with toluene. Warmed up to room temperature overnight, the reaction was further stirred for 12 h at room temperature. The reaction was quenched by adding water and extracted three times with CH_2Cl_2 and the combined organic layers were dried with Na_2SO_4 and evaporated. To the obtained residue in benzene (20 mL) was added a solution of *o*-chloranil (696 mg, 2.83 mmol) in benzene (6 mL) at room temperature. After stirring at the same temperature for 2 h, the reaction was quenched by adding 1 M aqueous NaOH solution. The mixture was filtered with celite, and the filtrate was extracted three times with CH_2Cl_2 . The combined organic layers were dried over Na_2SO_4 and evaporated. To the product was purified by silica gel chromatography (EtOAc/*n*-Hex) to give **L5** (1.03 g) which was further purified by recrystallization from *n*-hexane/EtOAc.

L1 (86% yield): White solid, m.p. 195-200 °C; ¹H NMR (CD₃OD) δ 9.06 (1H, d, J = 2.0 Hz), 8.39 (1H, dd, J = 8.1, 1.5 Hz), 8.27 (1H, d, J = 8.5 Hz), 8.06 (1H, d, J = 8.2 Hz), 7.91 (1H, s), 7.90 (1H, d, J = 5.8 Hz), 7.86 (1H, d, J = 8.0 Hz), 7.78 (1H, dt, J = 8.7, 1.6 Hz), 7.71-7.76 (2H, m), 7.70 (1H, dt, J = 8.4, 1.7 Hz), 7.65 (1H, dt, J = 8.8, 1.7 Hz), 7.54 (1H, t, J = 7.4 Hz), 7.46 (1H, d, J = 8.5 Hz), 7.41 (1H, dd, J = 8.1, 7.0 Hz), 7.24-7.39 (4H,

m), 7.07-7.12 (1H, m), ; ¹³C NMR (CD₃OD) δ 161.3, 150.8, 146.8, 146.5, 140.0, 138.2, 137.93, 137.90, 136.3, 135.3, 135.1, 134.9, 134.5, 131.0, 130.6, 129.9, 129.7, 129.4, 128.4, 128.2, 127.8, 127.67, 127.65, 127.59, 127.55, 127.1, 126.6, 125.7, 124.6; IR (neat) 2361, 2337, 1653, 1559, 1540, 1506, 752 cm⁻¹; MS (ESI⁺) m/z (%): 433 ([M+H]⁺, 100); [α]_D²⁴ +316 (MeOH, *c* 0.36)

L2 (53% yield): Pale brown solid, m.p. 124-127 °C (decomp.); ¹H NMR (CDCl₃) δ 9.24 (1H, dd, J = 4.3, 1.6 Hz), 8.48 (1H, d, J = 8.6 Hz), 8.17 (1H, dd, J = 8.1, 1.5 Hz), 8.16 (1H, d, J = 8.9 Hz), 8.00 (1H, d, J = 8.2 Hz), 7.85 (1H, d, J = 7.8 Hz), 7.80 (1H, d, J = 8.4 Hz), 7.65 (1H, d, J = 8.7 Hz), 7.60 (1H, dd, J = 7.9, 4.6 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.55 (1H, d, J = 8.7 Hz), 7.50 (1H, t, J = 7.4 Hz),

7.34-7.39 (2H, m), 7.28 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.18 (1H, d, J = 8.5 Hz), 7.01 (1H, d, J = 8.4 Hz), 7.21-7.27 (2H, m), 7.21-7

Hz), 1.98 (3H, s); ¹³C NMR (CDCl₃) δ 159.1, 150.3, 146.5, 146.0, 138.4, 135.9, 135.7, 135.2, 134.8, 134.5, 134.0, 133.8, 132.6, 131.8, 129.1, 128.78, 128.75, 128.6, 128.1, 127.9, 127.8, 126.8, 126.7, 126.45, 126.40, 126.3, 126.1, 124.8, 123.4, 122.6, 20.9; IR (neat) 2361, 1588, 1507, 1487, 853, 814, 751 cm⁻¹; MS (ESI⁺) m/z (%): 447 ([M+H]⁺, 100); [α]_D²⁶ +299 (CHCl₃, *c* 0.95)

L3 (78% yield): White semisolid; ¹H NMR (DMSO- d_6 , VT80) δ 9.39 (1H, d, J = 2.0 Hz), 8.68 (1H, d, J = 2.0 Hz), 8.17 (1H, d, J = 8.4 Hz), 8.09 (1H, s), 8.08 (1H, d, J = 7.4 Hz), 7.97 (1H, d, J = 8.8 Hz), 7.92-7.97 (4H, m), 7.88 (1H, d, J = 8.8 Hz), 7.72 (1H, br-d, J = 8.0 Hz), 7.69 (1H, d, J = 8.5 Hz), 7.61 (2H, t, J = 7.7 Hz), 7.48-7.55 (2H, m), 7.27 (1H, ddd, J = 8.2, 7.1, 1.1 Hz), 7.22 (1H, br-t, J = 7.2 Hz), 7.15-7.20 (1H, m), 7.14 (1H, t, J = 7.6 Hz), 7.04-7.12

(1H, m), 7.01 (1H, d, J = 8.5 Hz), 6.74-6.98 (5H, m); ¹³C NMR (DMSO- d_6 , VT80) δ 157.6, 148.0, 144.2, 143.0, 141.6, 138.5, 138.08, 138.05, 136.6, 136.1, 135.4, 135.2, 134.3, 134.1, 132.6, 132.3, 132.2, 132.0, 131.6, 128.8, 128.7, 128.1, 127.9, 127.6, 127.3, 127.1, 127.0, 126.8, 126.7, 126.6, 126.3, 125.9, 125.7, 125.6, 1 24.8, 124.5, 124.1; IR (neat) 2361, 1506, 1410, 803, 779, 751, 697 cm⁻¹; MS (ESI⁺) m/z (%): 585 ([M+H]⁺, 100); $[\alpha]_D^{22}$ +248 (CHCl₃, *c* 0.5)

L4 (58% yield): White solid, m.p. 250-252 °C; ¹H NMR (DMSO- d_6 , VT80) δ 9.08 (1H, d, J = 1.6 Hz), 8.42 (1H, d, J = 2.1 Hz), 8.07-8.12 (2H, m), 8.03 (1H, d, J = 8.2 Hz), 7.97 (1H, d, J = 8.8 Hz), 7.90 (1H, d, J = 8.8 Hz), 7.79-7.87 (1H, br-s), 7.80 (1H, d, J = 8.2 Hz), 7.71-7.76 (1H, m), 7.48 (1H, t, J = 7.5 Hz), 7.36-7.46 (4H, m), 7.34 (1H, t, J = 7.4 Hz), 7.22 (3H, t, J = 7.2 Hz), 7.04

(1H, br-t, J = 7.4 Hz), 6.93 (1H, d, J = 8.4 Hz), 6.75-7.10 (5H, m), 3.06 (3H, s), 2.38 (3H, s); ¹³C NMR (DMSO- d_6 , VT80) δ 149.7, 143.9, 143.0, 138.4, 137.3, 137.1, 137.0, 135.6, 135.3, 135.0, 134.9, 134.5, 132.5, 132..1, 132.0, 131.9, 130.20, 130.15, 129.9, 129.6, 127.77, 127.74, 127..6, 127.14, 127.05, 126.8, 126.46, 126. 43, 126.3, 126.1, 125.9, 125.8, 125.7, 125.5, 125.0, 124.7, 124.24, 124.18, 78.7, 19.6; IR (neat) 3055, 2957, 1494, 1455, 1430, 1408, 1216, 1074, 924, 803, 752 cm⁻¹; MS (ESI⁺) m/z (%): 613 ([M+H]⁺, 100); $[\alpha]_D^{22}$ +507 (CHCl₃, *c* 0.93)

L5 (62% yield): Yellow solid, m.p. 145-148 °C (decomp.); ¹H NMR (DMSO- d_6 , VT80) δ 9.37 (1H, d, J = 2.0 Hz), 8.64 (1H, d, J = 1.9 Hz), 8.18 (1H, d, J = 8.4 Hz), 8.08 (1H, d, J = 8.2 Hz), 8.03 (2H, s), 7.97 (1H, d, J = 8.4 Hz) 7.95 (1H, d, J = 10.0 Hz), 7.85 (1H, d, J = 8.8 Hz), 7.72 (1H, br-d, J = 7.5 Hz), 7.68 (1H, d, J = 8.7 Hz), 7.53 (2H, s), 7.51 (1H, ddd, J = 8.1, 6.9, 1.2 Hz), 7.25 (1H, ddd, J = 8.3, 7.0, 1.2 Hz), 7.19-7.28 (1H, m), 7.13 (1H, br-s), 7.11

(1H, d, J = 7.8 Hz), 6.99 (1H, d, J = 8.5 Hz), 6.91 (1H, t, J = 7.2 Hz), 6.74 (1H, br-s), 6.48 (2H, br-s), 2.43 (6H, s), 2.02 (6H, br-s); ¹³C NMR (DMSO- d_6 , VT80) δ 157.7, 148.0, 144.1, 142.9, 138.7, 138.0, 137.8, 136.5, 13 6.2, 135.8, 135.6, 135.0, 134.3, 134.2, 132.5, 132.2, 132.0, 131.6, 129.4, 128.8, 127.6, 127.0, 126.8, 126.72, 12 6.66, 126.5, 126.21, 125.81, 125.77, 125.5, 124.6, 124.5, 123.9, 20.5, 20.3; IR (neat) 1602, 1407, 1218, 849, 802, 747 cm⁻¹; MS (ESI⁺) m/z (%): 641 ([M+H]⁺, 100); [α]_D²³ +432 (CHCl₃, *c* 1.00)

Et L6 (24% yield): Yellow solid, m.p. 153-158 °C (decomp.); ¹H NMR (DMSO- d_6 , VT80) δ 9.38 (1H, d, J = 2.0 Hz), 8.65 (1H, br-s), 8.20 (1H, d, Et J = 8.4 Hz), 8.05-8.13 (3H, m), 7.99 (1H, d, J = 8.4 Hz), 7.96 (1H, d, J = 8.9 Hz), 7.87 (1H, d, J = 8.7 Hz), 7.65-7.73 (2H, m), 7.57 (2H, br-s), 7.51 (1H, ddd, J = 8.0, 7.1, 0.9 Hz), 7.24 (1H, br-t, J = 7.2 Hz), 7.19 (1H, br-s), 7.11 (1H, br-t, J = 7.6 Hz), 6.98 (1H, d, J = 8.4 Hz), 6.88 (1H, br-t, J = 7.3

Hz), 6.82 (2H, br-s), 6.59 (2H, br-s), 2.76 (4H, q, J = 7.6 Hz), 2.28-2.42 (4H, m), 1.31 (6H, t, J = 7.6 Hz), 0.95 (6H, t, J = 7.6 Hz); IR (neat) 1598, 1458, 1408, 1216, 869, 745, 709 cm⁻¹; MS (ESI⁺) m/z (%): 697 ([M+H]⁺, 100); $[\alpha]_D^{24}$ +331 (CHCl₃, *c* 0.57)

3. Experimental procedure for preparation of starting material 2a-d and characterization data.

General procedure⁵: To a suspension of NaH (60 % dispersion in oil, 12.0 mmol) in THF (10 mL) was added a solution of triethyl phosphonoacetate (12.0 mmol) in THF (5 mL) under an nitrogen atmosphere at 0 °C. After being stirred at room temperature for 30 min, a solution of a corresponding ketone (10 mmol) in THF (5 mL) was added to the reaction mixture at 0 °C. After being further stirred at room temperature for 16 h, the reaction was quenched by adding sat. aq. NaHCO₃ and diluted with EtOAc. The organic layer was separated and washed with brine, dried over MgSO₄ and concentrated at reduced pressure. The residue was purified by silica gel column chromatography (Et₂O:*n*-Hex=0:100 to 10:90) to afford the corresponding α , β -unsaturated ester.

To a suspension of the α , β -unsaturated ester (3.0 mmol) obtained above and *N*,*O*-dimethylhydroxylamine hydrochloride (6.0 mmol) in THF (6.0 mL) was added dropwise *i*PrMgCl (2.0 M solution in THF, 6.0 mmol) under nitrogen atmosphere at -5 to -10 °C. After being stirring at 0 °C for 30 min, the reaction was quenched by

adding sat. aq. NH_4Cl and diluted with EtOAc. The organic layer was separated and washed with brine, dried over MgSO₄ and concentrated at reduced pressure. The residue was purified by silica gel column chromatography (EtOAc:*n*-Hex=10:90 to 40:60) to afford the corresponding Weinreb amide.

To a solution of the Weinreb amide (1.0 mmol) obtained above in THF (2.0 mL) was added dropwise a solution of the corresponding Grignard reagent or lithium reagent (1.5 mmol) under nitrogen atmosphere at -30 °C. After being stirring at 0 °C for 30 min, the reaction was quenched by adding sat. aq. NH₄Cl and diluted with EtOAc. The organic layer was separated and washed with brine, dried over MgSO₄ and concentrated at reduced pressure. The residue was purified by silica gel column chromatography (EtOAc:*n*-Hex=0:100 to 10:90) to afford the corresponding β , β -disubstituted enone.

 $\begin{array}{c} \mbox{Me} & \mbox{O} \\ \mbox{Ph} & \mbox{Ia} \ (43\% \ yield)^{5}: \ yellow \ oil; \ ^1H \ NMR \ (CDCl_3) \ \delta \ 7.98-8.02 \ (2H, \ m), \ 7.53-7.59 \ (3H, \ m), \ 7.45-7.50 \ (2H, \ m), \ 7.45-7.50 \ (2H, \ m), \ 7.38-7.45 \ (3H, \ m), \ 7.17 \ (1H, \ d, \ J = 1.3 \ Hz), \ 2.60 \ (3H, \ d, \ J = 1.3 \ Hz); \ ^{13}C \ NMR \ (CDCl_3) \ \delta \ 191.8, \ 155.0, \ 142.7, \ 139.3, \ 132.5, \ 129.1, \ 128.6, \ 128.5, \ 128.2, \ 126.4, \ 122.1, \ 18.8; \ IR \ (neat) \ 3058, \ 1658, \ 1599, \ 1493, \ 1448, \ 1275, \ 1214, \ 1047, \ 1025, \ 951, \ 854, \ 753 \ cm^{-1}; \ MS \ (ESI^+) \ m/z \ (\%): \ 223 \ ([M+H]^+, \ 100). \end{array}$

1b (26% yield): yellow oil; ¹H NMR (CDCl₃) δ 8.00 (2H, d, J = 8.9 Hz), 7.55-7.59 (2H, m), 7.37-7.45 (3H, m), 7.13 (1H, d, J = 1.2 Hz), 6.96 (2H, d, J = 8.9 Hz), 3.88 (3H, s), 2.57 (3H, d, J = 1.2 Hz); ¹³C NMR (CDCl₃) δ 190.7, 163.2, 153.7, 142.9, 132.2, 130.6, 128.9, 128.6, 126.4, 122.3, 113.7, 55.5, 18.8; IR (neat) 3062, 3030,

2975, 2938, 2879, 1691, 1598, 1450, 1402, 1228, 1001, 946, 845, 751; MS (ESI⁺) m/z (%): 253 ([M+H]⁺, 100).

1c (45% yield): yellow oil; ¹H NMR (CDCl₃) δ 7.91 (2H, d, J = 8.2 Hz), 7.57 (1H, dd, J = 8.0, 1.5 Hz), 7.37-7.45 (3H, m), 7.27 (2H, d, J = 8.0 Hz), 7.15 (1H, d, J = 1.0 Hz), 2.58 (3H, d, J = 1.1 Hz), 2.42 (3H, s); ¹³C NMR (CDCl₃) δ 191.6, 154.4, 143.3, 142.9, 136.8, 129.2, 129.0, 128.6, 128.4, 126.5, 122.3, 21.6, 18.8; IR (neat) 3056, 3029,

2920, 1653, 1608, 1573, 1446, 1276, 1221, 1206, 1179, 1049, 945, 822 cm⁻¹; MS (ESI⁺) m/z (%): 237 ([M+H]⁺, 100).

1d (46% yield): yellow oil; ¹H NMR (CDCl₃) δ 8.02 (2H, m), 7.55-7.59 (2H, m), 7.38-7.45 (3H, m), 7.15 (2H, t, *J* =8.6 Hz), 7.12 (1H, s), 2.59 (3H, s); ¹³C NMR (CDCl₃) δ 190.3, 165.4 (d, *J* = 254 Hz), 155.4, 142.6, 135.7 (d, *J* =2.4 Hz), 130.8 (d, *J* = 9.2 Hz), 129.2, 128.6, 121.7, 115.6 (d, *J* = 21.8 Hz), 18.9; IR (neat) 3061, 1656,

1599, 1504, 1446, 1276, 1213, 1155, 841, 766 cm⁻¹; MS (ESI⁺) m/z (%): 241 ([M+H]⁺, 100).

1e (39% yield): yellow solid; ¹H NMR (CDCl₃) δ 8.08 (2H, d, J = 8.16 Hz), 7.74 (1H, d, J = 8.12 Hz), 7.55-7.62 (2H, m), 7.40-7.47 (3H, m), 7.15 (1H, s), 2.64 (3H, s).; ¹³C NMR (CDCl₃) δ 190.4, 157.2, 142.5, 142.2, 133.8 (q, J = 32.6 Hz), 129.5, 128.7, 128.5, 126.5, 125.8 (q, J = 5.2 Hz), 123.7 (q, J = 272 Hz), 121.2, 19.1.; IR

(neat) 1661 1596, 1575, 1447, 1410, 1325, 1276, 1213, 1129, 1112, 1067, 1015, 950, 844, 768, 746, 694 cm⁻¹; MS (ESI⁺) m/z (%): 291 ([M+H]⁺, 100).

1656, 1594, 1446, 1378, 1278, 1241, 1164, 761 cm⁻¹; MS (ESI⁺) m/z (%): 237 ([M+H]⁺, 100).

Me O Me Ph 1g (28% yield): yellow oil; ¹H NMR (CDCl₃) δ 7.58-7.61 (1H, m), 7.53-7.56 (2H, m), 7.35-7.42 (4H, m), 7.25-7.28 (2H, m), 6.89 (1H, d, J = 1.3 Hz), 2.58 (3H, d, J = 1.2 Hz), 2.53 (3H, s); ¹³C NMR (CDCl₃) δ 196.1, 154.4, 142.5, 140.6, 137.3, 131.5, 130.7, 129. 2, 128.6, 128.4, 126.5, 125.6, 125.3, 20.6, 18.6; IR (neat) 1659, 1593, 1573, 1446, 1212,

1040, 942, 756, 695 cm⁻¹; MS (ESI⁺) m/z (%): 237 ([M+H]⁺, 100).

1h (43% yield)⁶: ; ¹H NMR (CDCl₃) δ 8.50 (1H, br-s), 8.09 (1H, dd, J = 8.6, 1.7 Hz), 7.97 (1H, d, J = 8.1 Hz), 7.93 (1H, d, J = 8.6 Hz), 7.89 (1H, d, J = 7.9 Hz), 7.63 (2H, m), 7.60 (1H, ddd, J = 8.1, 6.8, 1.3 Hz), 7.55 (1H, ddd, J = 8.1, 6.8, 1.3 Hz), 7.40-7.49 (2H, m), 7.32 (1H, d, J = 1.3 Hz), 2.64 (3H, d, J = 1.3 Hz); ¹³C NMR

 $(CDCl_3) \ \delta \ 191.8, \ 155.0, \ 142.8, \ 136.6, \ 135.3, \ 132.6, \ 129.7, \ 129.5, \ 129.1, \ 128.6, \ 128.4, \ 128.2, \ 127.8, \ 126.7, \ 126.5, \ 124.3, \ 122.2, \ 18.9; \ IR \ (neat) \ 3056, \ 1650, \ 1626, \ 1595, \ 1572, \ 1446, \ 1380, \ 1281, \ 1183, \ 1124, \ 856, \ 821, \ 763 \ cm^{-1}; \ MS \ (ESI^+) \ m/z \ (\%): \ 273 \ ([M+H]^+, \ 100).$

Me O Ph Ii (31% yield): yellow oil; ¹H NMR (CDCl₃) δ 7.96-8.00 (2H, m), 7.56 (1H, t, J = 7.4Hz), 7.46-7.53 (4H, m), 7.39 (2H, d, J = 8.6 Hz), 7.14 (1H, d, J = 1.2 Hz), 2.56 (3H, d, J = 1.1 Hz); ¹³C NMR (CDCl₃) δ 191.7, 153.4, 141.0, 139.1, 135.1, 132.7, 128.8, 128.6, 128.2, 127.8, 122.4, 18.7; IR (neat) 1655, 1600, 1489, 1447, 1276, 1214, 1095,

1046, 1011, 825, 780, 691 cm⁻¹; MS (ESI⁺) m/z (%): 259 ([M+H+2]+, 30), 257 ($[M+H]^+$, 100).

Me O hightarrow Ph **1j** (54% yield): yellow oil; ¹H NMR (CDCl₃) δ 8.00-8.05 (3H, m), 7.84-7.92 (3H, m), 7.70 (1H, dd, J = 8.6 Hz), 7.57 (1H, tt, J = 7.4, 1.3 Hz), 7.47-7.54 (4H, m), 7.32 (1H, d, J = 1.2 Hz), 2.71 (3H, d, J = 1.2 Hz); ¹³C NMR (CDCl₃) δ 191.9, 154.8, 139.9, 139.4, 133.5, 133.2, 132.5, 128.6, 128.5, 128.29, 128.25, 127.6, 126.8, 126.6, 126.2,

124.1, 122.5, 18.9; IR (neat) 3057, 1655, 1600, 1447, 1281, 1268, 1237, 1211, 855, 818, 737, 698 cm⁻¹; MS (ESI⁺) m/z (%): 273 ($[M+H]^+$, 100).

Et O Ph 11 (21% yield)⁵: yellow oil; ¹H NMR (CDCl₃) δ 7.99 (2H, d, J = 7.8 Hz), 7.52-7.57 (3H, m), 7.47 (2H, t, J = 7.6 Hz), 7.37-7.45 (3H, m), 7.04 (1H, s), 3.08 (2H, q, J = 7.5 Hz), 1.13 (3H, t, J = 7.5 Hz); ¹³C NMR (CDCl₃) δ 191.5, 161.4, 141.6, 139.3, 132.5, 129.0, 128.6, 128.5, 128.3, 126.8, 121.9, 25.1, 13.6; IR (neat) 3058, 2970, 2933, 2873, 1657, 1599, 1493, 1448, 1377, 1290, 1240, 1213, 1178, 1046, 1002, 993, 761, 696 cm⁻¹; MS (ESI⁺) m/z (%): 237 ([M+H]⁺, 100).

Ph O Im (18% yield): yellow oil; ¹H NMR (CDCl₃) δ 7.83 (2H, d, J = 8.4 Hz), 7.44 (1H, t, J = 7.4 Hz), 7.34 (2H, t, J = 7.7 Hz), 7.16-7.26 (5H, m), 6.69 (1H, s), 2.31 (3H, s); ¹³C NMR (CDCl₃) δ 193.1, 152.4, 140.6, 138.0, 132.5, 128.7, 128.2, 128.04, 127.95, 127.4, 124.2, 26.5; IR (neat) 1663, 1653, 1636, 1616, 1597, 1577, 1492, 1448, 1240, 1201, 1176, 1025, 977, 848, 778, 761, 736, 696, 668 cm⁻¹; MS (ESI⁺) m/z (%): 223 ([M+H]⁺, 100).

Me

10 (43% yield)⁷: colorless oil; ¹H NMR (CDCl₃) δ 7.47-7.51 (2H, m), 7.35-7.41 (3H, m), 6.50 (1H, d, J = 1.2 Hz), 2.57 (2H, q, J = 7.3), 2.55 (3H, d, J = 1.1 Hz), 1.13 (3H, t, J = 7.3); **10** ¹³C NMR (CDCl₃) δ 201.9, 153.5, 142.7, 129.0, 128.5, 126.4, 124.0, 38.0, 18.4, 8.2; IR (neat) 1684, 1604, 1447, 1377, 1124, 1045, 951, 756, 695 cm⁻¹. 4. Experimental procedure for Iron-catalyzed asymmetric epoxidations and characterization data.

General procedure: A solution of Fe(OTf)₂ (0.025 M solution in CH₃CN, 0.31 mL, 7.8 µmol) was added to L5 (10 mg, 15.6 µmol) under nitrogen atmosphere at room temperature. After rinsed with additional CH₃CN (0.31 mL), the reaction mixture was stirred at room temperature for 3 h. To the solution of iron complex was added a solution of a corresponding enone (0.156 mmol) in CH₃CN (0.1 mL) and the mixture was cooled in ice bath. To the reaction was rapidly added CH₃CO₃H (32 wt% solution in CH₃CO₂H, 50 µL, 0.234 mmol). After being stirred in ice bath for 30 min, the reaction was quenched by adding a mixture of 10 % aq. Na₂S₂O₃ and sat. aq. NaHCO₃, and diluted with EtOAc. The organic layer was separated and washed with brine, dried over MgSO₄ and concentrated at reduced pressure. The residue was purified by silica gel column chromatography and NH-silica gel column chromatography (EtOAc:*n*-Hex=0:100 to 15:85) to afford the corresponding α,β -epoxyketone.

 $\begin{array}{c} \mbox{Me} & \mbox{O} \\ \mbox{Me} & \mbox{O} \\ \mbox{Ph} \\ \mbox{2a} \end{array} \begin{array}{c} \mbox{2a} (80 \% \text{ yield}, 91 \% \text{ ee})^8 \text{: white solid; } ^1 \text{H NMR (CDCl}_3) \ \delta \ 7.96 \ (2\text{H}, \text{d}, J = 7.8 \ \text{Hz}), \ 7.62 \ (1\text{H}, \text{d}, J = 7.4 \ \text{Hz}), \ 7.46 \ -7.52 \ (4\text{H}, \text{m}), \ 7.43 \ (2\text{H}, \text{t}, J = 7.5 \ \text{Hz}), \ 7.37 \ (1\text{H}, \text{t}, J = 7.2 \ \text{Hz}), \ 4.16 \ (1\text{H}, \text{s}), \ 1.64 \ (3\text{H}, \text{s}); \ ^{13}\text{C NMR (CDCl}_3) \ \delta \ 193.0, \ 140.4, \ 135.6, \ 134.0, \ 128.9, \ 128.8, \ 128.2, \ 125.1, \end{array}$

s), 1.64 (SH, 8), C NMR (CDCl₃) o 195.0, 140.4, 155.0, 154.0, 128.9, 128.8, 128.2, 125.1, 66.9, 62.8, 16.9; IR (neat) 1691, 1598, 1449, 1383, 1229, 957, 848, 751 cm⁻¹; MS (ESI⁺) m/z (%): 499 ($[2M+Na]^+$, 30), 239 ($[M+H]^+$, 100); $[\alpha]_D^{23}$ -137 (CHCl₃, *c* 0.66); lit.^{7b} for (2*S*, 3*R*)-isomer: $[\alpha]_D^{25}$ +147 (CHCl₃, *c* 1.3); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=5/95, flow rate = 1.0 mL/min, λ = 254 nm), t_r (minor) = 12.4 min, t_r (major) = 29.3 min.

2b (78% yield, 90 % ee): yellowish oil; ¹H NMR (CDCl₃) δ 7.96 (2H, d, J = 8.9 Hz),
7.46-7.50 (2H, m), 7.43 (2H, t, J = 7.6 Hz), 7.34-7.39 (1H, m), 6.96 (2H, d, J = 8.9 Hz),
Hz), 4.11 (1H, s), 3.88 (3H, s), 1.62 (3H, s); ¹³C NMR (CDCl₃) δ 191.3, 164.1,
140.6, 130.6, 128.7, 128.1, 125.1, 114.1, 66.8, 62.5, 55.5, 17.0; IR (neat) 1682,

1600, 1261, 1239, 1171, 1025, 956, 857, 765, 699; MS (ESI⁺) m/z (%): 559 ($[2M+Na]^+$, 30), 269 ($[M+H]^+$, 50), 135 (100); $[\alpha]_D^{23}$ -115 (CHCl₃, *c* 0.90); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (minor) = 18.7 min, t_r (major) = 46.1 min.

2c (77 % yield, 92 % ee): white solid; ¹H NMR (CDCl₃) δ 7.82 (2H, d, J = 8.2 Hz), 7.49 (2H, d, J = 7.2 Hz), 7.43 (2H, t, J = 7.4 Hz), 7.37 (1H, t, J = 7.2 Hz), 7.29 (2H, d, J = 8.1 Hz), 4.14 (1H, s), 2.43 (3H, s), 1.62 (3H, s); ¹³C NMR (CDCl₃) δ 192.5, 145.0, 140.5, 133.1, 129.6, 128.7, 128.3, 128.2, 125.1, 66.8, 62.7, 21.8, 17.0; IR (neat) 1688,

1606, 1382, 1232, 1181, 955, 761, 699 cm⁻¹; MS (ESI⁺) m/z (%): 527 ([2M+Na]⁺, 30), 253 ([M+H]⁺, 70), 119 (100); $[\alpha]_D^{24}$ -128 (CHCl₃, *c* 0.72); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (minor) = 12.7 min, t_r (major) = 34.6 min.

2d (78 % yield, 92 % ee): white solid; ¹H NMR (CDCl₃) δ 8.02 (2H, m), 7.46-7.51 (2H, m), 7.43 (2H, t, J = 7.4 Hz), 7.35-7.40 (1H, m), 7.17 (2H, t, J = 8.6 Hz), 4.11 (1H, s), 1.63 (3H, s); ¹³C NMR (CDCl₃) δ 191.5, 166.2 (d, J = 257 Hz), 140.2, 132.1, 131.0 (d, J = 9.6 Hz), 128.8, 128.3, 125.1, 116.2 (d, J = 22.1 Hz), 66.7, 62.3, 17.0; IR (neat)

1691, 1598, 1506, 1231, 1156, 958, 860, 763, 699 cm⁻¹; MS (ESI⁺) m/z (%): 535 ($[2M+Na]^+$, 30), 257 ($[M+H]^+$, 70), 123 (100); $[\alpha]_D^{22}$ -129 (CHCl₃, *c* 0.58); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (minor) = 13.5 min, t_r (major) = 34.0 min.

2e (70 % yield, 89 % ee): white solid; ¹H NMR (CDCl₃) δ 8.09 (2H, d, *J* = 8.1 Hz), 7.77 (2H, d, *J* = 8.2 Hz), 7.46-7.50 (2H, m), 7.44 (2H, t, *J* = 7.5 Hz), 7.37-7.41 (1H, m), 4.15 (1H, s), 1.64 (3H, s).; ¹³C NMR (CDCl₃) δ 192.3, 140.0, 138.1, 135.1 (q, *J* = 32.9 Hz), 128.8, 128.7, 128.4, 126.0 (q, *J* = 3.7 Hz), 125.1, 123.4 (q, *J* = 273 Hz),

66.8, 63.1, 17.0.; IR (neat) 1699, 1414, 1326, 1227, 1171, 1131, 1107, 1067, 1015, 958, 863, 766, 698 cm⁻¹; MS (ESI⁺) m/z (%): 307 ([M+H]⁺, 20), 173 (100); $[\alpha]_D^{23}$ -115 (CHCl₃, *c* 0.78); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (minor) = 7.2 min, t_r (major) = 10.9 min.

2f (67 % yield, 90 % ee): white solid; ¹H NMR (CDCl₃) δ 7.80 (1H, s), 7.74 (1H, d, J = 7.6 Hz), 7.47-7.53 (2H, m), 7.41-7.47 (3H, m), 7.37 (2H, t, J = 7.7 Hz), 2.42 (3H, s), 1.63 (3H, s); ¹³C NMR (CDCl₃) δ 193.2, 140.5, 138.9, 135.6, 134.8, 128.74, 128.73, 128.6, 128.2, 125.5, 125.1, 66.9, 62.8, 21.3, 17.0; IR (neat) 1691, 1382, 1254, 1169,

934, 759, 699 cm⁻¹; MS (ESI⁺) m/z (%): 253 ([M+H]⁺, 60), 119 (100); $[\alpha]_D^{23}$ -139 (CHCl₃, *c* 0.93); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=10/90, flow rate = 1.0 mL/min, λ = 254 nm), t_r (minor) = 8.5 min, t_r (major) = 19.6 min.

 $\begin{array}{c} \begin{array}{c} \text{Me} & \text{O} & \text{Me} \\ \text{Ph} & \begin{array}{c} 2 \\ \text{g} \end{array} (61 \% \text{ yield}, 92 \% \text{ ee}): \text{ white solid}; ^{1}\text{H NMR (CDCl}_{3}) \delta 7.65 (1\text{H}, \text{d}, J = 7.8 \text{ Hz}), \\ 7.46-7.50 (2\text{H}, \text{m}), 7.39-7.46 (3\text{H}, \text{m}), 7.34-7.38 (1\text{H}, \text{m}), 7.29 (2\text{H}, \text{t}, J = 8.2 \text{ Hz}), 3.99 \\ (1\text{H}, \text{s}), 2.59 (3\text{H}, \text{s}), 1.69 (3\text{H}, \text{s}); ^{13}\text{C NMR (CDCl}_{3}) \delta 195.8, 140.5, 139.4, 135.2, 132.4, \\ 132.3, 129.3, 128.7, 128.2, 125.9, 125.1, 67.9, 63.2, 21.2, 16.7; \text{IR (neat) 1691, 1455, 1381, 1221, 956, 752, } \\ 731, 698, 656 \text{ cm}^{-1}; \text{MS (ESI^+) m/z (\%): 527 ([2M+Na]^+, 10), 253 ([M+H]^+, 50), 119 (100); [\alpha]_D^{23} - 154 (CHCl_3, c 0.80); \text{ chiral HPLC analysis (Chiralcel AS-H,$ *i*PrOH:*n* $-Hex=10/90, flow rate = 1.0 mL/min, <math>\lambda = 254 \text{ nm}$), tr (minor) = 8.1 min, tr (major) = 13.3 min. \\ \end{array}

2i (88 % yield, 92 % ee): white solid; ¹H NMR (CDCl₃) δ 7.95 (2H, d, J = 7.3 Hz), 7.63 (1H, td, J = 7.5, 0.8 Hz), 7.50 (2H, t, J = 7.7 Hz), 7.38-7.45 (4H, m), 4.11 (1H, s), 1.62 (3H, s); ¹³C NMR (CDCl₃) δ 192.6, 139.0, 135.5, 134.2, 134.0, 129.0, 128.2, 126.6, 66.8, 62.3, 16.8; IR (neat) 1692, 1598, 1495, 1450, 1383, 1229, 1093, 1013,

957, 700, 667 cm⁻¹; MS (ESI⁺) m/z (%): 567 ([2M+Na]⁺, 40), 275 ([M+H+2]⁺, 60), 273 ([M+H]⁺, 95), 105 (100); $[\alpha]_D^{23}$ -184 (CHCl₃, *c* 0.82); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (minor) = 10.1 min, t_r (major) = 30.8 min.

2k (20 % yield, 51 % ee): colorless oil; ¹H NMR (CDCl₃) δ 7.99 (2H, dd, J = 7.4, 1.0 Hz), 7.62 (1H, td, J = 7.4, 1.1 Hz), 7.51 (2H, t, J = 7.7 Hz), 4.06 (1H, s), 1.79 (2H, m), 1.57 (2H, sext, J = 7.6 Hz), 1.23 (3H, s), 1.02 (3H, t, J = 7.3 Hz); ¹³C NMR (CDCl₃) δ 194.4, 135.8, 133.7, 128.8, 128.2, 63.9, 63.5, 40.1, 18.4, 16.3, 14.1; IR (neat) 1691,

1598, 1450, 1401, 1385, 1229, 928, 693 cm⁻¹; MS (ESI⁺) m/z (%): 187 ([M+H]⁺, 20), 105 (100); $[\alpha]_D^{23}$ -7.7 (CHCl₃, *c* 0.19); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (minor) = 7.1 min, t_r (major) = 38.0 min.

 1.3 Hz), 4.15 (1H, s), 2.13 (1H, sext, J = 7.4 Hz), 1.62 (1H, sext, J = 7.3 Hz), 0.91 (3H, t, J = 7.4 Hz); ¹³C NMR (CDCl₃) δ 193.1, 138.7, 135.6, 133.9, 128.9, 128.7, 128.2, 128.0, 125.8, 67.4, 67.1, 23.7, 9.4; IR (neat) 3062, 2975, 2938, 2879, 1691, 1598, 1450, 1228, 946, 845, 751 cm⁻¹; MS (ESI⁺) m/z (%): 253 ([M+H]⁺, 100), 105 (80); $[\alpha]_D^{23}$ -82 (CHCl₃, *c* 1.3); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (minor) = 8.8 min, t_r (major) = 16.9 min.

 $\begin{array}{l} \begin{array}{l} \begin{array}{c} \begin{array}{c} \text{Ph} & \text{O} \\ \text{Me} \end{array} & \begin{array}{c} \text{2m} & (33 \ \% \ \text{yield}, \ 6 \ \% \ \text{ee}): \ \text{yellow \ solid}; \ ^1\text{H \ NMR \ (CDCl_3)} \ \delta \ 7.82 \ (2\text{H}, \ d, \ J = 8.4 \ \text{Hz}), \ 7.54 \\ \begin{array}{c} (1\text{H}, \ t, \ J = 7.4 \ \text{Hz}), \ 7.41 \ (2\text{H}, \ t, \ J = 7.8 \ \text{Hz}), \ 7.31 \ (2\text{H}, \ d, \ J = 8.2 \ \text{Hz}), \ 7.13 \ -7.21 \ (3\text{H}, \ \text{m}), \\ \begin{array}{c} 4.34 \ (1\text{H}, \ \text{s}), \ 1.93 \ (3\text{H}, \ \text{s}); \ ^{13}\text{C \ NMR \ (CDCl_3)} \ \delta \ 192.5, \ 136.6, \ 135.5, \ 133.5, \ 128.6, \ 128.0, \\ \begin{array}{c} 127.9, \ 127.8, \ 126.2, \ 66.1, \ 64.5, \ 24.4; \ \text{IR \ (neat)} \ 1684, \ 1228, \ 9757, \ 763, \ 700, \ 689 \ \text{cm}^{-1}; \ \text{MS \ (ESI^+)} \ \text{m/z \ (\%)}: \\ \begin{array}{c} 239 \ ([\text{M}+\text{H}]^+, \ 100), \ 261 \ ([\text{M}+\text{Na}]^+, \ 50); \ \text{chiral \ HPLC \ analysis \ (Chiralcel \ AS-\text{H}, \ \textit{i} \text{PrOH}: \textit{n}-\text{Hex}=10/90, \ \text{flow \ rate} \\ \end{array} = 1.0 \ \text{mL/min}, \ \lambda = 254 \ \text{nm}), \ t_r \ (\text{minor}) = 7.9 \ \text{min}, \ t_r \ (\text{major}) = 33.0 \ \text{min}. \end{array}$

4.1. Another example of the iron-catalyzed asymmetric epoxidation.

Some of α , β -unsaturated esters can be epoxidized. For example, α -methyl *trans*-cinnamic acid methyl ester was converted to the corresponding epoxide in 49% and 89% ee.

5. Representative procedure for Lewis acid mediated rearrangement and characterization data.

$$\begin{array}{c|c} Me & O \\ Ph & Ph \\ \hline 2a \\ \end{array} \xrightarrow{Ph} \begin{array}{c} BF_3 \cdot OEt_2 (0.5 eq) \\ \hline Et_2O \\ 35 \ ^\circC, \ 30 \ min \\ \end{array} \xrightarrow{Me \ CHO} \\ Ph \\ \hline O \\ 3a \\ \end{array}$$

To a solution of **2a** (16 mg, 0.067 mmol, 91% ee) in Et₂O (0.7 mL) was added BF₃· OEt₂ (4 μ L, 0.033 mmol). After being stirred at 35 °C for 30 min, the reaction was quenched by adding sat. aq. NaHCO₃ and diluted with EtOAc. The organic layer was separated and washed with brine, dried over MgSO₄ and concentrated at reduced pressure. The residue was purified by silica gel column chromatography (EtOAc:*n*-Hex=0:100 to 15:85) to afford **3a** (15.3 mg).

701 cm⁻¹; MS (ESI⁺) m/z (%): 191 ([M+H]⁺, 100); $[\alpha]_D^{23}$ +156 (CHCl₃, *c* 0.34); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=5/95, flow rate = 1.0 mL/min, λ = 210 nm), t_r (minor) = 22.9 min, t_r (major) = 9.3 min.

6. Experimental procedure for the synthesis of isoxazoline 4a and characterization data.

To a solution of **2a** (25 mg, 0.10 mmol, 91% ee) in EtOH (0.66 mL) was added NH₂OH HCl (11 mg, 0.16 mmol) and pyridine (73 mL, 0.90 mmol). After refluxing for 3 h, the reaction was quenched by adding 0.5 M aq. HCl and diluted with Et₂O. The organic layer was separated and dried over MgSO₄ and concentrated at reduced pressure. The obtained residue was dissolved in CHCl₃, and the solution was filtered through short pad of silica gel. The filtrate was concentrated until white solid was precipitated which was collected to afford the oxime **4a** (17 mg, 99% ee).

4a (65 % yield, 99 % ee): white crystal ; ¹H NMR (DMSO-*d*₆) δ 7.71-7.76 (2H, m), 7.39-7.43 (5H, m), 7.36 (2H, t, *J* = 7.6 Hz), 7.26 (1H, t, *J* = 7.2 Hz), 6.34 (1H, d, *J* = 8.1 Hz), 5.18 (1H, d, *J* = 8.1), 1.63 (3H, s); ¹³C NMR (DMSO-*d*₆) δ 157.7, 144.2, 130.0, 128.9, 128.8, 128.4, 127.3, 126.8, 124.7, 90.2, 82.1, 20.6; IR (neat) 3295, 1568, 1496, 1448, 1350, 1049, 928, 919, 757, 697 cm⁻¹; MS (ESI⁺) m/z (%): 254 ([M+H]⁺, 100); $[\alpha]_D^{23}$ -35 (CHCl₃, *c* 0.12); chiral HPLC analysis (Chiralcel AS-H, *i*PrOH:*n*-Hex=10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (minor) = 8.8 min, t_r (major) = 11.8 min.

7. References

- (a) Schilling, B.; Kaufmann, D. E. *Eur. J. Org. Chem.* **1998**, 701. (b) Morrison, D. J.; Piers, W. E.; Parvez, M. *Synlett*, **2004**, *13*, 2429.
- (a) Brown, K. J.; Berry, M. S.; Murdoch, J. R. J. Org. Chem. 1985, 50, 4345. (b) Usanov, D. L.; Yamamoto, H. Angew. Chem. Int. Ed. 2010, 49, 8169.
- 3) Saitoh, Y.; Koizumi, T.; Osakada, K.; Yamamoto, T. Can. J. Chem. 1997, 75, 1336.
- 4) Case, F. H.; Sasin, R. J. Org. Chem. 1955, 20, 1330.
- 5) Lu, S.-M.; Bolm, C. Chem. Eur. J. 2008, 14, 7513.
- 6) Levai, A. Monatsh. Chem. 1995, 126, 1245.
- Kanazawa, Y.; Tsuchiya, Y.; Kobayashi, K.; Shiomi, T.; Itoh, J.-i.; Kikuchi, M.; Yamamoto, Y.; Nishiyama, H. *Chem. Eur. J.* 2005, *12*, 63.
- 8) (a) Adam, W.; Rao, P.; Degen, H.-G.; Saha-Möller, C. *Eur. J. Org. Chem.* 2002, 630.
 (b) Domagala, J. M.; Bach, R. D. *J. Am. Chem. Soc.* 1978, *100*, 1605.
- 9) Moiseev, A. G.; Neckers, D. C. Synthesis, 2005, 2901.
- 10) (a) Brandes, B. D.; Jacobsen, E. N. J. Org. Chem. 1994, 59, 4378-4380. (b) Wang, Z. X.; Tu, Y.;

Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224.

8. Complete ref 17a.

Olson, R. E.; Sielecki, T. M.; Wityak, J.; Pinto, D. J.; Balt, D. G.; Frietze, W. E.; Liu, J.; Tobin, A. E.; Orwat, M. J.; Di Meo, S. V.; Houghton, G. C.; Lalka, G. K.; Mousa, S. A.; Racanelli, A. L.; Hausner, E. A.; Kapil, R. P.; Rabel, S. R.; Thoolen, M. J.; Reilly, T. M.; Anderson, P. S.; Wexler, R. R. *J. Med. Chem.* **1999**, *42*, 1178.

9. X-ray crystallographic analysis of [Fe(L3)₂(CH₃CN)(OTf)](OTf)

[Fe(L3)₂(CH₃CN)(OTf)](OTf): To *rac*-L3 (30 mg, 0.051 mmol) was added Fe(OTf)₂ (0.025 M solution in CH₃CN, 1.0 mL) and CH₃CN (0.5 mL) at room temperature under nitrogen atmosphere. After being stirred for 3 h at the same temperature, the solution was placed without stirring. Crystals were observed after 1 week, which were collected by filtration, washed with cold ether, and dried under nitrogen stream to yield the title compound as crystal (9.1 mg, 25% yield). MS (ESI⁺) m/z (%): 612 ([Fe(L3)₂]²⁺, 20).

The obtained crystal was tested for the epoxidation as follows: A suspension of the obtained crystal (6.1 mg, 4.3 μ mol) and **1a** (19 mg, 86.2 μ mol) in CH₃CN (0.34 mL) was cooled in ice bath. To the suspension, CH₃CO₃H (32 wt% solution in CH₃CO₂H, 27 μ L, 0.129 mmol) was rapidly added. After being stirred in ice bath for 30 min, the reaction was quenched and purified by the same way as described in general procedure of the epoxidation to afford the α , β -epoxyketone **2a** (12 mg. 58% yield).

$Crystal \ Structure \ Report \ for \ Nish02$ $C_{88}H_{56}FeN_4 + 2C_2H_3N + 2CF_3O_3S + 2O$

Report Prepared for: Yasuhiro Nishikawa and Mr. H. Yamamoto

September, 2010

Ian Steele (steele@geosci.uchicago.edu) X-ray Laboratory, Searle B013, 773-834-5861 Department of Chemistry The University of Chicago 5735 S. Ellis Ave. Chicago, Il 60637

Crystallographic Experimental Section

Data Collection

A well formed rhomb (0.16 x 0.12 x 0.10 mm) was selected under a stereomicroscope while immersed in Fluorolube oil to avoid possible reaction with air. The crystal was removed from the oil using a tapered glass fiber that also served to hold the crystal for data collection. The crystal was mounted and centered on a Bruker SMART APEX system at 100 K. Rotation and still images showed the diffractions to be sharp. Frames separated in reciprocal space were obtained and provided an orientation matrix and initial cell parameters. Final cell parameters were obtained from the full data set.

A "full sphere" data set was obtained which samples approximately all of reciprocal space to a resolution of 0.75 Å using 0.3° steps in ω using 10 second integration times for each frame. Data collection was made at 100 K. Integration of intensities and refinement of cell parameters were done using SAINT [1]. Absorption corrections were applied using SADABS [1] based on redundant diffractions.

Structure solution and refinement

The space group was determined as P1(bar) based on systematic absences and intensity statistics. Direct methods were used to locate the Fe and some C atoms from the E-map. Repeated difference Fourier maps allowed recognition of all expected C and N atoms. In addition two C_2H_3N and CF_3O_3S molecules were present, one of the former bonded to Fe through its N atom and one of the latter bonded to Fe through an O atom. In addition two isolated atoms are present which were assigned as O with occupancies of 0.73 and 0.44; presumably these are H_2O molecules. Following anisotropic refinement of all non-H atoms, ideal H-atom positions were calculated except for the two isolated O atoms. Final refinement was anisotropic for all non-H atoms, and isotropic-riding for H atoms. The C_2H_3N and CF_3O_3S molecules bonded to Fe showed moderate disorder while those not bonded molecules showed severe disorder. No other anomalous bond lengths or thermal parameters were noted. All ORTEP diagrams have been drawn with 50% probability ellipsoids.

Equations of interest:

 $R_{int} = \Sigma |F_o^2 - \langle F_o^2 \rangle | / \Sigma |F_o^2|$

$$\mathbf{R}\mathbf{1} = \boldsymbol{\Sigma} \mid \mid \mathbf{F}_{o} \mid - \mid \mathbf{F}_{c} \mid \mid \boldsymbol{/} \boldsymbol{\Sigma} \mid \mathbf{F}_{o} \mid$$

wR2 = $[\Sigma [w (F_o^2 - F_c^2)^2] / \Sigma [w (F_o^2)^2]]^{1/2}$ where: w = q / $\sigma^2 (F_o^2) + (aP)^2 + bP$; q, a, b, P as defined in [1]

GooF = S =
$$[\Sigma [w (F_o^{2-}F_c^{2})^2] / (n-p)^{1/2}$$

n = number of independent reflections;
p = number of parameters refined.

References

[1] All software and sources of scattering factors are contained in the SHELXTL (version 5.1) program library (G. Sheldrick, Bruker Analytical X-ray Systems, Madison, WI).

for Nish02.	
Nish02	
$C_{88}H_{56}FeN_4 + 2C_2H_3N + $	$2CF_{3}O_{3}S + 2O$
1621.47	
100 K	
0.71073 Å	
Triclinic	
P1(bar)	
a = 12.581(2) Å	$\alpha = 108.511(3)^{\circ}$
b = 16.682(3) Å	$\beta = 90.726(3)^{\circ}$
c = 21.338(4) Å	$\gamma = 112.000(3)$ $^{\rm o}$
3892.9(12) Å ³	
2	
1.383 Mg/m ³	
0.325 mm ⁻¹	
1672	
0.16 x 0.12 x 0.10 mm, pa	ale yellow, rhomb
1.76 - 28.35 °	
$-16 \le h \le 16, -22 \le k \le 22$, -28 ≤ 1 ≤ 27
47,447	
18,748 ($R_{int} = 0.0288$)	
10,808	
SADABS based on redun	dant diffractions
1.0, 0.849	
Full-matrix least squares of	$\operatorname{on} \mathrm{F}^2$
$w = q [\sigma^2 (F_o^2) + (aP)^2 + b^2]$	oP] ⁻¹ where:
$P = (F_o^2 + 2F_c^2)/3, a = 0.07$	783, b = 0.0, q =1
18748 / 0 / 1058	
0.897	
R1 = 0.0632, wR2 = 0.15	15
R1 = 0.1084, wR2 = 0.168	84
1.338, -0.579 eÅ ⁻³	
	for Nish02. Nish02 $C_{88}H_{56}FeN_4 + 2C_2H_3N + 3$ 1621.47 100 K 0.71073 Å Triclinic P1(bar) a = 12.581(2) Å b = 16.682(3) Å c = 21.338(4) Å 3892.9(12) Å ³ 2 1.383 Mg/m ³ 0.325 mm ⁻¹ 1672 0.16 x 0.12 x 0.10 mm, pa 1.76 - 28.35 ° -16 ≤ h ≤ 16, -22 ≤ k ≤ 22 47,447 18,748 (R _{int} = 0.0288) 10,808 SADABS based on redun 1.0, 0.849 Full-matrix least squares of $w = q [\sigma^2 (F_o^2) + (aP)^2 + b]$ $P = (F_o^2 + 2F_c^2)/3, a = 0.07$ 18748 / 0 / 1058 0.897 R1 = 0.0632, wR2 = 0.15 R1 = 0.1084, wR2 = 0.164 1.338, -0.579 eÅ ⁻³

	x	У	Z	U(eq)	SOF
C(1)	6278(3)	-1576(2)	7885(2)	21(1)	
C(2)	6604(3)	-1948(2)	8325(2)	21(1)	
C(3)	7134(3)	-1340(2)	8963(2)	23(1)	
C(4)	7311(3)	-410(2)	9153(2)	22(1)	
C(5)	6932(3)	-114(2)	8677(2)	20(1)	
C(6)	7820(3)	236(2)	9811(2)	26(1)	
C(7)	7948(3)	1123(2)	9974(2)	25(1)	
C(8)	7564(3)	1437(2)	9501(2)	23(1)	
C(9)	7046(3)	819(2)	8853(2)	20(1)	
C(10)	7626(3)	2338(2)	9662(2)	23(1)	
C(11)	7155(3)	2590(2)	9210(2)	20(1)	
C(12)	6672(3)	1925(2)	8561(2)	19(1)	
C(13)	7126(3)	3519(2)	9427(2)	25(1)	
C(14)	6090(3)	3614(2)	9345(2)	27(1)	
C(15)	6051(3)	4476(2)	9596(2)	33(1)	
C(16)	7041(4)	5247(2)	9926(2)	37(1)	
C(17)	8079(3)	5160(2)	10012(2)	36(1)	
C(18)	8120(3)	4298(2)	9766(2)	28(1)	
C(19)	6337(3)	-2946(2)	8112(2)	20(1)	
C(20)	6284(3)	-3371(2)	8582(2)	24(1)	
C(21)	5967(3)	-4318(2)	8374(2)	28(1)	
C(22)	5717(3)	-4849(2)	7707(2)	33(1)	
C(23)	5797(3)	-4425(2)	7236(2)	34(1)	
C(24)	6111(3)	-3485(2)	7435(2)	27(1)	
C(25)	6168(3)	2166(2)	8041(1)	20(1)	
C(26)	4946(3)	1787(2)	7888(2)	22(1)	
C(27)	4417(3)	1996(2)	7438(2)	25(1)	
C(28)	5086(3)	2544(2)	7085(2)	23(1)	
C(29)	6318(3)	2918(2)	7229(2)	21(1)	
C(30)	6857(3)	2765(2)	7747(2)	20(1)	
C(31)	4556(3)	2698(2)	6569(2)	28(1)	
C(32)	5214(3)	3182(2)	6198(2)	31(1)	
C(33)	6424(3)	3541(2)	6336(2)	29(1)	
C(34)	6969(3)	3424(2)	6837(2)	24(1)	
C(35)	8142(3)	3226(2)	7954(2)	21(1)	
C(36)	8778(3)	2707(2)	7908(2)	24(1)	
C(37)	9981(3)	3101(2)	8106(2)	29(1)	
C(38)	10559(3)	4041(2)	8352(2)	28(1)	
C(39)	9946(3)	4612(2)	8418(2)	24(1)	
C(40)	8727(3)	4213(2)	8226(2)	21(1)	
$C(4\perp)$	10528(3)	5586(2)	8684(2)	28(1)	
C(42)	9925(3)	6134(2)	8771(2)	29(1)	
C(43)	8723(3)	5738(2)	8595(2)	27(1)	
C(44)	8131(3)	4803(2)	8332(2)	25(1) 24(1)	
C(45)	7099(3)	LULU(2)	6380(2)	24(1)	
C(46)	7005(3)	$\pm 3 \pm \pm (2)$	5842(2)	26(1) 25(1)	
C(47)	5910(3)	1157(2)	5591(2)	25(1) 22(1)	
C(48)	4938(3)	/0/(2)	5848(2)	∠3(⊥)	

Table 2. Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å² x 10^3] for Nish02. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(49)	5121(3)	404(2)	6371(2)	21(1)
C(50)	4147(3)	-106(2)	6626(2)	20(1)
C(51)	3035(3)	-251(2)	6373(2)	23(1)
C(52)	2879(3)	93(2)	5861(2)	26(1)
C(53)	3792(3)	543(2)	5605(2)	26(1)
C(54)	2103(3)	-712(2)	6654(2)	25(1)
C(55)	2277(3)	-1028(2)	7150(2)	23(1)
C(56)	3424(3)	-903(2)	7349(2)	21(1)
C(57)	1270(3)	-1469(2)	7460(2)	26(1)
C(58)	1276(3)	-1123(2)	8147(2)	30(1)
C(59)	303(3)	-1503(3)	8423(2)	37(1)
C(60)	-671(3)	-2232(3)	8023(2)	38(1)
C(61)	-689(3)	-2571(3)	7338(2)	36(1)
C(62)	275(3)	-2185(2)	7055(2)	32(1)
C(63)	3624(3)	-1331(2)	7833(2)	22(1)
C(64)	4057(3)	-765(2)	8507(2)	26(1) 20(1)
C(65)	4209(3)	-1144(2)	8967(2)	30(1) 20(1)
C(66)	3962(3)	-2090(3)	8///(2)	30(1) 25(1)
C(67)	3523(3)	-2667(2)	8103(2)	25(1) 22(1)
C(68)	3331(3)	-2270(2)	/020(2) 0242(2)	$\angle \angle (\perp)$
C(69)	4100(3)	-2405(3)	9243(2)	30(1) 42(1)
C(70)	3523(3)	-3966(3)	9040(2)	$\frac{1}{2}$ (1)
C(71)	3333(3)	-3607(2)	7918(2)	30(1)
C(72)	2894(3)	-3007(2)	6910(2)	31(1) 22(1)
C(73)	3583(3)	-2074(2)	6431(2)	22(1) 25(1)
C(75)	3260(3)	-3307(2)	5758(2)	30(1)
C(76)	2233(3)	-4062(2)	5568(2)	35(1)
C(77)	1482(3)	-4242(2)	6032(2)	33(1)
C(78)	1786(3)	-3643(2)	6712(2)	26(1)
C(79)	994(3)	-3832(2)	7160(2)	28(1)
C(80)	-33(3)	-4595(2)	6956(2)	36(1)
C(81)	-314(3)	-5203(3)	6287(2)	47(1)
C(82)	416(3)	-5029(3)	5838(2)	44(1)
C(83)	8041(3)	1725(2)	5550(2)	33(1)
C(84)	9004(3)	1507(3)	5588(2)	60(1)
C(85)	9942(4)	1844(4)	5270(2)	74(2)
C(86)	9919(4)	2399(3)	4904(2)	61(1)
C(87)	8968(3)	2584(2)	4844(2)	36(1)
C(88)	8034(3)	2248(2)	5158(2)	31(1)
C(89)	9000(4)	333(3)	7441(2)	41(1)
C(90)	10087(5)	183(5)	7379(3)	103(2)
C(91)	6887(3)	-2414(3)	5791(2)	39(1)
C(92)	1514(7)	2463(15)	6764(3)	227(11)
C(93)	1813(11)	3630(8)	6786(5)	242(8)
C(94)	1136(4)	1644(3)	9398(2)	58(1)
F(1)	6022(2)	-3091(1)	5887(1)	48(1)
F(2)	7802(2)	-2209(2)	6227(1)	60(1)
F(3)	7135(2)	-2711(2)	5179(1)	51(1)
F(4)	357(3)	832(3)	9108(2)	161(2)
F(5)	699(3)	2167(4)	9258(3)	169(2)
F(6)	1148(3)	1819(4)	LU023(2)	⊥44(2) 22(1)
Fe(1)	6250(1)	-18(1)	7383(1)	20(I)
$N(\perp)$	6436(2)	-701(2)	8U45(1)	19(1) 10(1)
N(∠)	6202(Z)	LU09(Z)	8386(1) 6627(1)	⊥У(⊥) Э1 (1)
м(S) м(Д)	0202(2) A3AA(2)	2/1(2)	7111 <i>(</i> 1)	∠⊥(⊥) 20(1)
TN (I)	コンコヨ(ム)		/ ㅗ ㅗ ㅗ \ ㅗ /	

NT(E)	01 E 0 (2)	420(2)	7462(1)	22(1)	
м(5)	0130(2)	430(2)	7403(1)	Z3(I)	
N(6)	1521(14)	2031(14)	6880(9)	348(11)	
0(1)	6290(2)	-1202(1)	6598(1)	27(1)	
O(2)	5542(2)	-1746(2)	5431(1)	36(1)	
0(3)	7587(2)	-739(2)	5817(1)	39(1)	
O(4)	2306(4)	1594(5)	8460(2)	196(3)	
O(5)	2831(4)	1165(3)	9310(2)	107(2)	
0(6)	3217(3)	2695(2)	9513(3)	180(3)	
0(7)	3163(5)	3627(4)	8278(3)	95(3)	0.73
O(8)	9971(7)	9968(7)	5681(5)	103(5)	0.44
S(1)	6542(1)	-1409(1)	5917(1)	28(1)	
S(2)	2522(1)	1790(1)	9141(1)	50(1)	

C(1) - N(1)	1.324(4)	C(45) - N(3)	1.328(4)
C(1) - C(2)	1 407(4)	C(45) - C(46)	1 409(4)
C(2) - C(3)	1 385(4)	C(46) - C(47)	1 371(4)
C(2) = C(19)	1,303(4)	C(46) - C(83)	1, 372(4)
C(2) - C(19)	1.400(4)	C(40) - C(03)	1.4/0(4)
C(3) - C(4)	1.401(4)	C(47) - C(48)	1.39/(4)
C(4) - C(5)	1.409(4)	C(48)-C(49)	1.411(4)
C(4)-C(6)	1.429(4)	C(48)-C(53)	1.420(4)
C(5)-N(1)	1.359(4)	C(49)-N(3)	1.358(4)
C(5)-C(9)	1.429(4)	C(49)-C(50)	1.432(4)
C(6) - C(7)	1.352(4)	C(50)-N(4)	1.370(4)
C(7) - C(8)	1.430(4)	C(50)-C(51)	1.397(4)
C(8) - C(10)	1,401(4)	C(51) - C(54)	1,400(4)
C(8) - C(9)	1 402(4)	C(51) - C(52)	1 430(4)
C(9) - N(2)	1 367(4)	C(52) - C(53)	1 345(4)
C(10) - C(11)	1 375(4)	C(54) - C(55)	1 372(4)
C(11) - C(12)	$1 \ 419(4)$	C(55) - C(56)	1,3,2(1) 1,418(4)
C(11) - C(12)	1 495(4)	C(55) - C(57)	1, 100(4)
C(11) - C(13)	1,220(4)	C(55) - C(57)	1, 400(4)
C(12) - N(2)	1.332(4)	C(56) - N(4)	1.343(4)
C(12) - C(25)	1.502(4)	C(56) - C(63)	1.495(4)
C(13) - C(14)	1.387(5)	C(57) - C(62)	1.392(4)
C(13) - C(18)	1.392(4)	C(57) - C(58)	1.395(5)
C(14) - C(15)	1.386(4)	C(58)-C(59)	1.385(5)
C(15)-C(16)	1.380(5)	C(59)-C(60)	1.381(5)
C(16) - C(17)	1.383(5)	C(60)-C(61)	1.386(5)
C(17)-C(18)	1.386(5)	C(61)-C(62)	1.389(5)
C(19)-C(20)	1.390(4)	C(63)-C(68)	1.382(4)
C(19)-C(24)	1.397(4)	C(63)-C(64)	1.410(4)
C(20) - C(21)	1.389(4)	C(64)-C(65)	1.371(4)
C(21) - C(22)	1.375(5)	C(65)-C(66)	1.405(5)
C(22) - C(23)	1.385(5)	C(66) - C(67)	1.415(5)
C(23) - C(24)	1.379(4)	C(66) - C(69)	1.424(4)
C(25) - C(30)	1 381(4)	C(67) - C(72)	1 412(4)
C(25) - C(26)	$1 \ 413(4)$	C(67) - C(68)	1 441(4)
C(26) - C(27)	1 361(4)	C(68) - C(73)	1,496(4)
C(20) - C(27)	1,301(4)	C(60) = C(73)	1, 1, 26E(E)
C(27) - C(20)	1,410(4)	C(09) - C(70)	1.303(5)
C(20) - C(31)	1.410(4)	C(70) - C(71)	1.391(5)
C(28) - C(29)	1.424(4)	C(71) - C(72)	1.305(4)
C(29) - C(34)	1.424(4)	C(73) - C(74)	1.372(4)
C(29) - C(30)	1.426(4)	C(73) - C(78)	1.438(4)
C(30) - C(35)	1.495(4)	C(74) - C(75)	1.406(4)
C(31)-C(32)	1.373(5)	C(75)-C(76)	1.365(5)
C(32)-C(33)	1.399(5)	C(76)-C(77)	1.402(5)
C(33)-C(34)	1.367(4)	C(77)-C(82)	1.420(5)
C(35)-C(36)	1.367(4)	C(77)-C(78)	1.425(5)
C(35)-C(40)	1.436(4)	C(78)-C(79)	1.409(4)
C(36)-C(37)	1.401(4)	C(79)-C(80)	1.371(4)
C(37)-C(38)	1.370(5)	C(80)-C(81)	1.411(5)
C(38) - C(39)	1.411(4)	C(81) - C(82)	1.358(5)
C(39) - C(40)	1.418(4)	C(83) - C(88)	1.389(5)
C(39) - C(41)	1.418(4)	C(83) - C(84)	1.398(5)
C(40) - C(44)	1.413(4)	C(84) - C(85)	1.390(6)
C(41) - C(42)	1 363(5)	C(85) - C(86)	1 395(6)
C(42) - C(43)	1 395(4)	C(86) - C(87)	1 358(6)
C(43) = C(44)	1 366(4)	C(87) = C(89)	1 300/51
C(43) = C(44)	1.300(4)	C(0) = C(00)	T.200(2)

Table 3. Bond lengths [Å] and angles [°] for Nish02.

C(89)-N(5)	1.129(4)	Fe(1) - N(3)	2.132(2)
C(89)-C(90)	1.480(6)	Fe(1) - N(1)	2.136(2)
C(91)-F(1)	1.317(4)	Fe(1)-O(1)	2.166(2)
C(91)-F(3)	1.328(4)	Fe(1)-N(5)	2.217(3)
C(91)-F(2)	1.336(4)	Fe(1)-N(2)	2.227(2)
C(91) - S(1)	1.826(4)	Fe(1)-N(4)	2.245(3)
C(92)-N(6)	0.84(3)	O(1)-S(1)	1.451(2)
C(92)-C(93)	1.82(2)	O(2)-S(1)	1.429(2)
C(94)-F(6)	1.270(5)	O(3)-S(1)	1.442(2)
C(94)-F(4)	1.279(5)	O(4)-S(2)	1.384(4)
C(94)-F(5)	1.294(5)	O(5)-S(2)	1.381(4)
C(94)-S(2)	1.787(5)	O(6)-S(2)	1.381(4)
N(1)-C(1)-C(2)	124.4(3)	C(31)-C(28)-C(29)	119.3(3)
C(3) - C(2) - C(1)	116.6(3)	C(28) - C(29) - C(34)	118.1(3)
C(3) - C(2) - C(19)	122.8(3)	C(28) - C(29) - C(30)	119.6(3)
C(2) - C(3) - C(4)	120.0(3) 120 8(3)	C(25) - C(29) - C(30)	122.3(3) 118 5(3)
C(3) - C(4) - C(5)	118.0(3)	C(25) - C(30) - C(35)	120.8(3)
C(3) - C(4) - C(6)	122.8(3)	C(29) - C(30) - C(35)	120.7(3)
C(5)-C(4)-C(6)	119.1(3)	C(32)-C(31)-C(28)	120.9(3)
N(1)-C(5)-C(4)	121.6(3)	C(31)-C(32)-C(33)	119.7(3)
N(1) - C(5) - C(9)	118.1(3)	C(34) - C(33) - C(32)	121.2(3)
C(4) - C(5) - C(9)	120.3(3)	C(33) - C(34) - C(29)	120.8(3)
C(5) - C(6) - C(4)	120.0(3) 121.2(3)	C(36) - C(35) - C(40) C(36) - C(35) - C(30)	118.7(3) 120.0(3)
C(10) - C(8) - C(9)	117.4(3)	C(40) = C(35) = C(30)	120.0(3) 121.3(3)
C(10) - C(8) - C(7)	122.8(3)	C(35) - C(36) - C(37)	122.5(3)
C(9)-C(8)-C(7)	119.7(3)	C(38)-C(37)-C(36)	119.7(3)
N(2)-C(9)-C(8)	122.4(3)	C(37)-C(38)-C(39)	120.3(3)
N(2) - C(9) - C(5)	118.6(3)	C(38) - C(39) - C(40)	120.0(3)
C(8) - C(9) - C(5)	119.0(3)	C(38) - C(39) - C(41)	121.0(3)
C(11) - C(10) - C(8) C(10) - C(11) - C(12)	121.0(3) 117.6(3)	C(44) - C(39) - C(41) C(44) - C(40) - C(39)	119.0(3) 118 5(3)
C(10) - C(11) - C(12)	119.1(3)	C(44) - C(40) - C(35)	122.6(3)
C(12) - C(11) - C(13)	123.2(3)	C(39) - C(40) - C(35)	118.8(3)
N(2) - C(12) - C(11)	122.9(3)	C(42) - C(41) - C(39)	120.8(3)
N(2)-C(12)-C(25)	117.0(3)	C(41)-C(42)-C(43)	120.0(3)
C(11) - C(12) - C(25)	120.1(3)	C(44)-C(43)-C(42)	121.0(3)
C(14) - C(13) - C(18)	119.1(3)	C(43) - C(44) - C(40)	120.7(3)
C(14) - C(13) - C(11)	120.4(3)	N(3) - C(45) - C(46)	124.2(3)
C(15) - C(13) - C(11) C(15) - C(14) - C(13)	120.3(3) 120 1(3)	C(47) - C(46) - C(45) C(47) - C(46) - C(83)	1225(3)
C(16) - C(15) - C(14)	120.4(3)	C(45) - C(46) - C(83)	122.3(3) 120.7(3)
C(15) - C(16) - C(17)	119.9(3)	C(46) - C(47) - C(48)	121.3(3)
C(16)-C(17)-C(18)	119.8(3)	C(47)-C(48)-C(49)	117.6(3)
C(17)-C(18)-C(13)	120.6(3)	C(47)-C(48)-C(53)	123.0(3)
C(20) - C(19) - C(24)	118.6(3)	C(49) - C(48) - C(53)	119.4(3)
C(20) - C(19) - C(2)	120.7(3)	N(3) - C(49) - C(48)	121.8(3)
C(24) - C(19) - C(2) C(21) - C(20) - C(19)	120.7(3) 119.9(3)	N(3) - C(49) - C(50) C(48) - C(49) - C(50)	118.5(3) 119.7(3)
C(22) - C(21) - C(20)	121.2(3)	N(4) - C(50) - C(51)	122.4(3)
C(21) - C(22) - C(23)	119.0(3)	N(4) - C(50) - C(49)	118.6(3)
C(24)-C(23)-C(22)	120.4(3)	C(51)-C(50)-C(49)	119.0(3)
C(23) - C(24) - C(19)	120.7(3)	C(50) - C(51) - C(54)	117.8(3)
C(30) - C(25) - C(26)	121.1(3)	C(50) - C(51) - C(52)	120.1(3)
C(30) - C(25) - C(12) C(26) - C(25) - C(12)	116 9(3)	C(54) - C(51) - C(52) C(53) - C(52) - C(51)	122.U(3)
C(27) - C(26) - C(25)	120.7(3)	C(52) - C(53) - C(48)	121.0(3)
C(26) - C(27) - C(28)	120.2(3)	C(55) - C(54) - C(51)	120.9(3)
C(27)-C(28)-C(31)	121.2(3)	C(54) - C(55) - C(56)	117.7(3)
C(27)-C(28)-C(29)	119.4(3)	C(54)-C(55)-C(57)	119.1(3)

C(56) - C(55) - C(57)	123.2(3)	F(1) - C(91) - F(3)	109.1(3)
N(4) - C(56) - C(55)	122 8(3)	F(1) - C(91) - F(2)	106 5(3)
N(4) - C(56) - C(63)	118 2(3)	F(3) = C(91) = F(2)	108.0(3)
C(55) - C(56) - C(63)	1190(3)	F(1) = C(91) = C(1)	$111 \ 4(3)$
C(52) - C(57) - C(58)	119.0(3)	F(1) = C(91) = C(1)	$110 \ 9(3)$
C(02) - C(37) - C(38)	1100(2)	F(3) = C(31) = S(1)	110.9(3)
C(62) - C(57) - C(55)	119.8(3)	F(2) = C(91) = S(1)	110.0(3)
C(58) - C(57) - C(55)	120.6(3)	N(6) - C(92) - C(93)	160.4(19)
C(59) - C(58) - C(57)	120.0(3)	F(6) - C(94) - F(4)	106.9(5)
C(60) - C(59) - C(58)	120.5(3)	F(6) - C(94) - F(5)	105.2(5)
C(59) - C(60) - C(61)	119.9(3)	F(4) - C(94) - F(5)	103.3(5)
C(60) - C(61) - C(62)	120.1(3)	F(6)-C(94)-S(2)	113.6(3)
C(61) - C(62) - C(57)	120.1(3)	F(4)-C(94)-S(2)	113.4(4)
C(68)-C(63)-C(64)	121.2(3)	F(5)-C(94)-S(2)	113.6(4)
C(68)-C(63)-C(56)	120.1(3)	N(3) - Fe(1) - N(1)	171.91(10)
C(64)-C(63)-C(56)	118.6(3)	N(3) - Fe(1) - O(1)	87.68(9)
C(65)-C(64)-C(63)	119.9(3)	N(1) - Fe(1) - O(1)	85.36(9)
C(64) - C(65) - C(66)	121.1(3)	N(3) - Fe(1) - N(5)	92.12(10)
C(65)-C(66)-C(67)	119.6(3)	N(1) - Fe(1) - N(5)	82.84(9)
C(65) - C(66) - C(69)	121.7(3)	O(1) - Fe(1) - N(5)	81.89(9)
C(67) - C(66) - C(69)	118.7(3)	N(3) - Fe(1) - N(2)	108.77(9)
C(72) - C(67) - C(66)	118 6(3)	N(1) - Fe(1) - N(2)	77 22(9)
C(72) - C(67) - C(68)	122 3(3)	O(1) - Fe(1) - N(2)	159 52(9)
C(66) - C(67) - C(68)	119 1(3)	N(5) - Fe(1) - N(2)	85 29(9)
C(63) - C(68) - C(67)	1190(3)	$N(3) - F_0(1) - N(4)$	77 36(9)
C(63) - C(68) - C(67)	121 6(2)	N(3) - F = (1) - N(4) $N(1) = F_0(1) - N(4)$	107 10(9)
C(03) - C(00) - C(73)	121.0(3)	N(1) - Fe(1) - N(4)	107.10(9)
C(07) - C(08) - C(73)	119.2(3)	O(1) - Fe(1) - N(4)	95.64(9)
C(70) - C(69) - C(66)	120.7(4)	N(5) - Fe(1) - N(4)	108.85(9)
C(69) - C(70) - C(71)	120.4(3)	N(2) - Fe(1) - N(4)	101.48(9)
C(72) - C(71) - C(70)	120.5(4)	C(1) - N(1) - C(5)	118.6(3)
C(71) - C(72) - C(67)	121.1(4)	C(1) - N(1) - Fe(1)	127.4(2)
C(74) - C(73) - C(78)	118.8(3)	C(5) - N(1) - Fe(1)	113.26(19)
C(74)-C(73)-C(68)	119.6(3)	C(12) - N(2) - C(9)	118.6(3)
C(78)-C(73)-C(68)	121.5(3)	C(12) - N(2) - Fe(1)	130.7(2)
C(73)-C(74)-C(75)	122.3(3)	C(9) - N(2) - Fe(1)	109.65(19)
C(76)-C(75)-C(74)	119.6(3)	C(45)-N(3)-C(49)	118.3(3)
C(75)-C(76)-C(77)	120.6(3)	C(45)-N(3)-Fe(1)	126.7(2)
C(76)-C(77)-C(82)	120.9(3)	C(49)-N(3)-Fe(1)	114.84(19)
C(76) - C(77) - C(78)	120.4(3)	C(56) - N(4) - C(50)	118.1(3)
C(82) - C(77) - C(78)	118.8(3)	C(56)-N(4)-Fe(1)	131.3(2)
C(79) - C(78) - C(77)	118.7(3)	C(50)-N(4)-Fe(1)	110.65(19)
C(79) - C(78) - C(73)	123.1(3)	C(89) - N(5) - Fe(1)	155.7(3)
C(77) - C(78) - C(73)	118.2(3)	S(1) - O(1) - Fe(1)	136.65(13)
C(80) - C(79) - C(78)	121.1(3)	O(2) - S(1) - O(3)	116.29(15)
C(79) - C(80) - C(81)	120.0(3)	O(2) - S(1) - O(1)	113.14(15)
C(82) - C(81) - C(80)	120.5(3)	O(3) - S(1) - O(1)	$115 \ 37(14)$
C(81) - C(82) - C(77)	120.9(3)	O(2) - S(1) - C(91)	103 77(17)
C(88) - C(83) - C(84)	117 5(3)	O(3) - S(1) - C(91)	103.51(17)
C(88) - C(83) - C(46)	$121 \ 1(3)$	O(1) - S(1) - C(91)	102.35(15)
C(84) - C(83) - C(46)	120.9(3)	O(6) - G(2) = O(5)	113 0(2)
C(97) - C(93) - C(40) C(95) - C(94) - C(92)	120.9(3)	O(6) - G(2) = O(3)	115 6(4)
C(03) = C(04) = C(03)	1107(4)	O(0) - S(2) - O(4)	114 0(4)
C(0+) = C(0) = C(0)	110 0(1)	O(5) = S(2) = O(4)	$\pm \pm \pm \cdot \angle (\pm)$ 102 $\epsilon / 2 \rangle$
C(0) = C(0) = C(0)	$\pm \pm 9.0(4)$	O(0) - S(2) - C(94)	105.0(3)
$C(\delta \delta) - C(\delta I) - C(\delta \delta)$	$\perp 20.5(4)$	U(5) - S(2) - U(94)	105.5(2)
$C(\delta /) - C(\delta \delta) - C(\delta 3)$	$\perp \angle \perp \cdot b(4)$	U(4) - S(2) - C(94)	103.2(2)
N(5) - C(89) - C(90)	177.4(4)		

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(1)	21(2)	17(2)	22(2)	8(1)	2(1)	4(1)
C(2)	19(2)	19(2)	25(2)	11(1)	3(1)	6(1)
C(3)	25(2)	23(2)	27(2)	14(1)	2(1)	12(1)
C(4)	22(2)	19(2)	24(2)	9(1)	0(1)	7(1)
C(5)	20(2)	19(2)	22(2)	11(1)	3(1)	7(1)
C(6)	30(2)	27(2)	23(2)	11(1)	-3(1)	10(2)
C(7)	30(2)	22(2)	22(2)	6(1)	-1(1)	10(1)
C(8)	21(2)	22(2)	24(2)	10(1)	3(1)	7(1)
C(9)	21(2)	18(2)	22(2)	9(1)	4(1)	7(1)
C(10)	25(2)	19(2)	20(2)	6(1)	1(1)	6(1)
C(11)	22(2)	16(2)	21(2)	8(1)	6(1)	5(1)
C(12)	20(2)	19(2)	23(2)	11(1)	4(1)	8(1)
C(13)	39(2)	22(2)	19(2)	10(1)	7(1)	14(2)
C(14)	38(2)	25(2)	21(2)	10(1)	5(1)	14(2)
C(15)	52(2)	36(2)	24(2)	15(2)	11(2)	28(2)
C(16)	69(3)	24(2)	28(2)	12(2)	13(2)	26(2)
C(17)	57(3)	22(2)	23(2)	8(2)	2(2)	10(2)
C(18)	39(2)	23(2)	22(2)	9(1)	1(2)	10(2)
C(19)	18(2)	18(2)	30(2)	12(1)	4(1)	7(1)
C(20)	22(2)	23(2)	30(2)	13(1)	2(1)	10(1)
C(21)	28(2)	25(2)	38(2)	19(2)	3(2)	11(2)
C(22)	38(2)	16(2)	46(2)	12(2)	1(2)	11(2)
C(23)	42(2)	24(2)	34(2)	8(2)	1(2)	14(2)
C(24)	31(2)	22(2)	33(2)	14(2)	5(2)	12(2)
C(25)	26(2)	$\pm 4(\pm)$	18(2)	4(1)	2(1)	7(1)
C(26)	24(2)	18(2)	23(2)	7(1)	2(1)	6(1)
C(27)	23(2)	19(2)	31(2)	8(1)	$-\perp(\perp)$	8(1) 10(1)
C(28)	28(2)	10(2)	26(2)	/(_)	-2(1)	10(1)
C(29)	26(2)	$\perp \angle (\perp)$ 12(1)	$Z \perp (Z)$	4(1) F(1)	-2(1)	6(1)
C(30)	24(2)	13(1)	20(2)	5(1) 10(2)	$Z(\perp)$	5(I) 0(2)
C(31)	33(2)	20(2)	30(2)	$\pm U(2)$	-0(2)	9(2)
C(32)	44(2)	19(2)	20(2)	7(1) 10(1)	-8(2)	$\perp \perp (2)$
C(33)	$\frac{1}{2}(2)$	15(2)	24(2)	10(1)	$\frac{4}{2}$	5(1)
C(34)	32(2) 25(2)	19(2)	19(2)	9(1) 10(1)	(1)	5(1)
C(35)	25(2)	20(2)	23(2)	T(1)	2(1)	5(1)
C(30)	23(2) 27(2)	30(2)	23(2)	14(2)	5(2)	13(2)
C(38)	21(2)	32(2)	30(2)	13(2)	1(1)	7(2)
C(30)	28(2)	21(2)	18(2)	7(1)	3(1)	5(1)
C(40)	20(2)	21(2)	18(2)	9(1)	4(1)	5(1) 6(1)
C(41)	25(2)	28(2)	24(2)	11(2)	2(1)	1(2)
C(42)	33(2)	16(2)	29(2)	5(1)	1(2)	2(1)
C(43)	31(2)	18(2)	28(2)	7(1)	1(1)	7(1)
C(44)	27(2)	23(2)	23(2)	11(1)	2(1)	7(1)
C(45)	24(2)	20(2)	25(2)	11(1)	1(1)	6(1)
C(46)	28(2)	21(2)	25(2)	11(1)	3(1)	4(1)
C(47)	31(2)	22(2)	26(2)	15(1)	6(1)	10(1)
C(48)	30(2)	17(2)	22(2)	8(1)	2(1)	10(1)

Table 4. Anisotropic displacement parameters $[\text{\AA}^2 \times 10^3]$ for Nish02. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{h}^2a^{*2}U_{11}+\ldots+2\text{hka}^*b^*U_{12}]$

C(49)	28(2)	14(2)	21(2)	6(1)	4(1)	8(1)
C(50)	27(2)	15(2)	20(2)	6(1)	2(1)	8(1)
C(51)	28(2)	19(2)	24(2)	9(1)	2(1)	10(1)
C(52)	27(2)	25(2)	26(2)	12(1)	0(1)	9(1)
C(53)	32(2)	25(2)	25(2)	13(1)	1(1)	12(2)
C(54)	22(2)	23(2)	29(2)	10(1)	0(1)	7(1)
C(55)	24(2)	17(2)	27(2)	9(1)	2(1)	7(1)
C(56)	25(2)	17(2)	20(2)	7(1)	2(1)	5(1)
C(57)	25(2)	26(2)	32(2)	17(2)	4(1)	10(1)
C(58)	26(2)	38(2)	35(2)	19(2)	6(2)	16(2)
C(59)	33(2)	56(3)	37(2)	27(2)	11(2)	23(2)
C(60)	24(2)	53(2)	53(2)	38(2)	12(2)	15(2)
C(61)	19(2)	38(2)	50(2)	23(2)	1(2)	4(2)
C(62)	28(2)	34(2)	36(2)	18(2)	4(2)	10(2)
C(63)	17(2)	25(2)	24(2)	14(1)	4(1)	4(1)
C(64)	22(2)	29(2)	25(2)	10(2)	4(1)	6(1)
C(65)	22(2)	44(2)	20(2)	13(2)	3(1)	11(2)
C(66)	23(2)	47(2)	27(2)	22(2)	9(1)	15(2)
C(67)	17(2)	32(2)	30(2)	20(2)	4(1)	7(1)
C(68)	15(2)	24(2)	26(2)	15(1)	4(1)	2(1)
C(69)	34(2)	72(3)	27(2)	30(2)	14(2)	29(2)
C(70)	41(2)	71(3)	52(3)	49(2)	26(2)	37(2)
C(71)	29(2)	47(2)	56(3)	37(2)	15(2)	19(2)
C(72)	23(2)	33(2)	44(2)	26(2)	7(2)	9(2)
C(73)	22(2)	19(2)	26(2)	12(1)	1(1)	5(1)
C(74)	20(2)	22(2)	31(2)	14(1)	3(1)	4(1)
C(75)	31(2)	28(2)	27(2)	13(2)	9(2)	6(2)
C(76)	38(2)	33(2)	23(2)	6(2)	3(2)	5(2)
C(77)	32(2)	28(2)	29(2)	11(2)	1(2)	1(2)
C(78)	27(2)	23(2)	26(2)	14(1)	1(1)	6(1)
C(79)	28(2)	24(2)	27(2)	13(2)	1(1)	3(1)
C(80)	30(2)	36(2)	33(2)	16(2)	3(2)	-1(2)
C(81)	35(2)	38(2)	39(2)	15(2)	-3(2)	-16(2)
C(82)	42(2)	37(2)	27(2)	6(2)	1(2)	-7(2)
C(83)	29(2)	38(2)	31(2)	20(2)	3(2)	4(2)
C(84)	34(2)	93(4)	66(3)	60(3)	8(2)	12(2)
C(85)	30(2)	126(5)	75(3)	66(4)	7(2)	16(3)
C(86)	32(2)	91(4)	57(3)	48(3)	7(2)	2(2)
C(87)	44(2)	28(2)	26(2)	11(2)	7(2)	2(2)
C(88)	37(2)	23(2)	29(2)	11(2)	6(2)	5(2)
C(89)	49(3)	33(2)	36(2)	6(2)	-2(2)	16(2)
C(90)	79(4)	146(6)	87(4)	4(4)	6(3)	79(4)
C(91)	43(Z)	42(2)	35(2)	16(2)	6(2)	19(2)
C(92)	56(5)	560(30)	22(3)	40(8)	9(3)	122(10)
C(93)	2/3(1/)	252(14)	102(8)	-15(9)	43(8)	62(12) 10(2)
C(94)	51(3)	62(3)	61(3)	36(3)	-3(2)	10(2) 10(1)
F(1)	65(2)	31(1)	58(2)	25(1) 20(1)	$\pm 4(\pm)$	19(1)
F(Z)	63(2)	74(2)	62(2)	29(1) 16(1)	$\angle (\perp)$	44(2)
F(3)	70(2)	52(2)	44(⊥) 1⊑2(4)	10(1)	24(1) 70(2)	40(1) 20(2)
F(4)	99(3)	113(3)	152(4)	-11(3)	70(3)	-39(2)
г() г()	03(3) 117/2)	$\Delta \Delta \Im (5)$	507(0)	∠UU(5) EE(2)	40(3)	3(3) 142(4)
F(0) F(1)	$\perp \perp / (3)$	311(6) 16(1)	53(∠) 10(1)	55(3) 0(1)	Z/(Z) 1/1)	143(4) 6(1)
ге(1) м(1)	∠4(⊥) 10/1)	10(1)	エラ(エ) 01 (1)	ン(上) 10(1)	エ(エ)	0(⊥) Е(1)
M(T)	10(1) 20(1)	⊥8(⊥) 1⊑(1)	∠⊥(⊥) 22(1)	LU(L) 10(1)	∠(⊥) ⊃(1)	5(L) 4(1)
M(Z)	$\angle \cup (\perp)$	⊥⊃(⊥) 10/1\	∠>(⊥) >1/1)	⊥∪(⊥) 11/1\	ン(上) E(1)	4(1) 6(1)
м (З) м (З)	∠4(⊥) 22/1)	10(1) 10(1)	∠4(⊥) 20(1)	上上(上) の(1)	ン(工) ン(1)	О(⊥) 4/1)
м(4)	∠∠(⊥)	1) C 1	∠∪(⊥)	8(⊥)	∠(⊥)	4(⊥)

S(2)	47(1)	40(1)	57(1)	25(1)	4(1)	5(1)
S(1)	31(1)	26(1)	28(1)	13(1)	5(1)	10(1)
O(8)	55(6)	141(10)	134(9)	65(7)	35(5)	48(6)
0(7)	92(4)	104(5)	129(5)	67(4)	32(4)	61(4)
0(6)	47(2)	33(2)	385(9)	-15(3)	27(4)	12(2)
0(5)	128(4)	93(3)	169(4)	90(3)	76(3)	79(3)
0(4)	61(3)	424(10)	101(4)	152(5)	25(3)	43(4)
0(3)	34(1)	33(1)	46(2)	21(1)	11(1)	4(1)
0(2)	39(2)	41(2)	30(1)	17(1)	-2(1)	15(1)
0(1)	32(1)	22(1)	23(1)	9(1)	8(1)	8(1)
N(6)	333(18)	520(20)	500(30)	340(20)	266(18)	348(19)
N(5)	23(2)	21(1)	28(2)	12(1)	5(1)	9(1)
(-)	00(0)	01(1)		10(1)	E (1)	

	x	У	Z	U(eq)		
H(1)	5921	-1981	7444	25		
H(3)	7381	-1557	9275	28		
Н(б)	8070	41	10136	32		
H(7)	8300	1545	10412	30		
H(10)	7999	2780	10091	27		
H(14)	5405	3088	9115	32		
H(15)	5338	4537	9540	40		
H(16)	7010	5836	10095	45		
H(17)	8763	5690	10238	43		
H(18)	8833	4239	9829	34		
H(20)	6465	-3015	9046	28		
H(21)	5921	-4604	8699	34		
H(22)	5494	-5497	7570	39		
Н(23)	5634	-4783	6773	40		
H(24)	6174	-3201	7107	32		
Н(26)	4489	1383	8100	27		
н(27)	3596	1772	7362	30		
н(31)	3734	2462	6479	34		
H(32)	4849	3273	5850	37		
н(33)	6875	3872	6076	35		
H(34)	7792	3682	6925	29		
н(36)	8390	2054	7736	2.9		
H(37)	10394	2718	8071	35		
н(38)	11377	4310	8478	33		
H(41)	11347	5860	8804	33		
н(42)	10325	6786	8950	35		
H(43)	8309	6125	8659	32		
н(13)	7311	4547	8219	30		
н(45) н(45)	7853	1129	6570	28		
н(45) н(47)	5811	1359	5234	20		
ц(ч/) ц(52)	21.21	1335	5699	31		
II(52)	2660	752	5055	21		
II(55)	1220	000	5257	20		
H(34)	1047	-000	0490	30 27		
п(30) ц(50)	1947	-020	0427	57		
H(59)	300	-1260	0091	45		
H(60)	-1320	-2500	0210 7060	40		
H(61)	-1301	-3008	7062	43		
H(6Z)	255	-2411	0585	38		
H(64)	4244	-122	8642	32		
H(65)	4486	- / 60	9422	35		
H(69) H(70)	44//	-2104	9695	46		
H(/U)	4038	-3664	9366	52		
H(71)	3354	-4605	8248	45		
H(72)	3076	-3995	/463	37		
н(74)	4303	-2201	6558	29		
н(75)	3753	-3178	5438	35		
н(76)	2025	-4469	5116	42		
H(79)	1175	-3425	7611	33		
H(80)	-555	-4713	7265	44		

Table 5. Hydrogen coordinates [$x~10^4$] and isotropic displacement parameters [Å $^2~x~10^3$] for Nish02.

H(81)	-1019	-5737	6150	56
H(82)	210	-5440	5388	53
H(84)	9017	1124	5833	72
H(85)	10596	1697	5302	89
H(86)	10567	2646	4697	74
H(87)	8944	2948	4585	44
H(88)	7372	2377	5104	37
H(90A)	9984	-386	7460	155
H(90B)	10717	705	7709	155
H(90C)	10280	131	6929	155
H(93A)	1085	3675	6674	362
H(93B)	2330	3773	6461	362
H(93C)	2186	4070	7235	362

N(1) - C(1) - C(2) - C(3)	-0.7(5)	C(31) = C(28) = C(29) = C(30)	-179 9(3)
N(1) C(1) C(2) C(3)	176 9(2)	C(31) C(20) C(20) C(30)	£ 7(4)
N(1) - C(1) - C(2) - C(19)	1 0 (4)	C(20) - C(25) - C(30) - C(29)	-0.7(4)
C(1) - C(2) - C(3) - C(4)	1.0(4)	C(12) - C(25) - C(30) - C(29)	1/6.4(3)
C(19) - C(2) - C(3) - C(4)	-176.4(3)	C(26)-C(25)-C(30)-C(35)	174.7(3)
C(2) - C(3) - C(4) - C(5)	0.1(5)	C(12)-C(25)-C(30)-C(35)	-2.1(4)
C(2) - C(3) - C(4) - C(6)	177.9(3)	C(28)-C(29)-C(30)-C(25)	7.5(4)
C(3) - C(4) - C(5) - N(1)	-1.7(4)	C(34)-C(29)-C(30)-C(25)	-171.4(3)
C(6) - C(4) - C(5) - N(1)	-179.6(3)	C(28) - C(29) - C(30) - C(35)	-173.9(3)
C(3) - C(4) - C(5) - C(9)	177 3(3)	C(34) - C(29) - C(30) - C(35)	7 2 (4)
C(5) - C(4) - C(5) - C(9)	-0.6(5)	C(27) = C(28) = C(31) = C(32)	-175 7(3)
Q(3) Q(4) Q(5) Q(7)	170 E(2)	C(27) C(20) C(31) C(32)	1 6(E)
C(3) - C(4) - C(6) - C(7)	-1/8.5(3)	C(29) - C(28) - C(31) - C(32)	1.0(5)
C(5) - C(4) - C(6) - C(7)	-0.7(5)	C(28) - C(31) - C(32) - C(33)	-0.9(5)
C(4) - C(6) - C(7) - C(8)	1.0(5)	C(31)-C(32)-C(33)-C(34)	-0.4(5)
C(6) - C(7) - C(8) - C(10)	176.5(3)	C(32)-C(33)-C(34)-C(29)	1.0(5)
C(6) - C(7) - C(8) - C(9)	-0.1(5)	C(28) - C(29) - C(34) - C(33)	-0.3(4)
C(10) - C(8) - C(9) - N(2)	0.7(4)	C(30) - C(29) - C(34) - C(33)	178.6(3)
C(7) - C(8) - C(9) - N(2)	177.5(3)	C(25) - C(30) - C(35) - C(36)	57.9(4)
C(10) - C(8) - C(9) - C(5)	-178 0(3)	C(29) - C(30) - C(35) - C(36)	-1207(3)
C(10) C(0) C(0) C(0)	1 2(4)	C(25) $C(30)$ $C(35)$ $C(30)$	110 0(2)
C(7) - C(8) - C(9) - C(3)	-1.2(4)	C(25) - C(30) - C(35) - C(40)	-119.9(3)
N(1) - C(5) - C(9) - N(2)	1.8(4)	C(29) - C(30) - C(35) - C(40)	61.6(4)
C(4) - C(5) - C(9) - N(2)	-177.2(3)	C(40) - C(35) - C(36) - C(37)	-1.0(5)
N(1)-C(5)-C(9)-C(8)	-179.5(3)	C(30)-C(35)-C(36)-C(37)	-178.8(3)
C(4) - C(5) - C(9) - C(8)	1.5(4)	C(35)-C(36)-C(37)-C(38)	-0.5(5)
C(9)-C(8)-C(10)-C(11)	2.5(5)	C(36)-C(37)-C(38)-C(39)	1.2(5)
C(7) - C(8) - C(10) - C(11)	-174.2(3)	C(37) - C(38) - C(39) - C(40)	-0.4(5)
C(8) - C(10) - C(11) - C(12)	-3.9(4)	C(37) - C(38) - C(39) - C(41)	178.7(3)
C(8) - C(10) - C(11) - C(13)	173.3(3)	C(38) - C(39) - C(40) - C(44)	176.7(3)
C(10) = C(11) = C(12) = N(2)	2,3,3(3)	C(41) - C(39) - C(40) - C(44)	-2 4(4)
C(12) $C(11)$ $C(12)$ $N(2)$	174 7(2)	C(11) C(30) C(10) C(11)	1 1 (1)
C(13) - C(11) - C(12) - N(2)	-174.7(3)	C(38) - C(39) - C(40) - C(35)	-1.1(4)
C(10) - C(11) - C(12) - C(25)	-1/8./(3)	C(41) - C(39) - C(40) - C(35)	1/9.8(3)
C(13) - C(11) - C(12) - C(25)	4.2(4)	C(36) - C(35) - C(40) - C(44)	-175.9(3)
C(10)-C(11)-C(13)-C(14)	-125.6(3)	C(30)-C(35)-C(40)-C(44)	1.9(4)
C(12)-C(11)-C(13)-C(14)	51.5(4)	C(36)-C(35)-C(40)-C(39)	1.8(4)
C(10)-C(11)-C(13)-C(18)	49.1(4)	C(30)-C(35)-C(40)-C(39)	179.6(3)
C(12)-C(11)-C(13)-C(18)	-133.8(3)	C(38) - C(39) - C(41) - C(42)	-177.5(3)
C(18) - C(13) - C(14) - C(15)	0.1(5)	C(40) - C(39) - C(41) - C(42)	1.6(5)
C(11) - C(13) - C(14) - C(15)	174,9(3)	C(39) - C(41) - C(42) - C(43)	-0.1(5)
C(13) - C(14) - C(15) - C(16)	0 3 (5)	C(41) - C(42) - C(43) - C(44)	-0.4(5)
Q(14) = Q(15) = Q(15) = Q(17)	0.3(5)	C(11) $C(12)$ $C(13)$ $C(11)$	0.1(5)
C(14) - C(15) - C(16) - C(17)	-0.3(5)	C(42) - C(43) - C(44) - C(40)	-0.5(5)
C(15) - C(16) - C(17) - C(18)	-0.2(5)	C(39) - C(40) - C(44) - C(43)	2.0(4)
C(16) - C(17) - C(18) - C(13)	0.6(5)	C(35) - C(40) - C(44) - C(43)	179.6(3)
C(14) - C(13) - C(18) - C(17)	-0.6(5)	N(3) - C(45) - C(46) - C(47)	2.1(5)
C(11)-C(13)-C(18)-C(17)	-175.4(3)	N(3) - C(45) - C(46) - C(83)	-174.8(3)
C(3)-C(2)-C(19)-C(20)	19.4(5)	C(45)-C(46)-C(47)-C(48)	-1.2(5)
C(1)-C(2)-C(19)-C(20)	-158.0(3)	C(83) - C(46) - C(47) - C(48)	175.6(3)
C(3)-C(2)-C(19)-C(24)	-161.9(3)	C(46) - C(47) - C(48) - C(49)	-0.9(5)
C(1) - C(2) - C(19) - C(24)	20.7(4)	C(46) - C(47) - C(48) - C(53)	179.4(3)
C(24) - C(19) - C(20) - C(21)	-25(5)	C(47) - C(48) - C(49) - N(3)	25(4)
C(2) - C(19) - C(20) - C(21)	176 2(3)	C(53) - C(48) - C(49) - N(3)	-177 8(3)
C(2) C(1) C(20) C(21)	1 0(E)	C(33) $C(10)$ $C(10)$ $R(3)$	176 5(3)
C(19) - C(20) - C(21) - C(22)	1.0(5)	C(47) - C(48) - C(49) - C(50)	-1/0.5(3)
C(20) - C(21) - C(22) - C(23)	0.6(5)	C(53) - C(48) - C(49) - C(50)	3.2(4)
C(21) - C(22) - C(23) - C(24)	-0.6(5)	N(3) - C(49) - C(50) - N(4)	-2.2(4)
C(22) - C(23) - C(24) - C(19)	-0.9(5)	C(48) - C(49) - C(50) - N(4)	176.9(3)
C(20)-C(19)-C(24)-C(23)	2.5(5)	N(3) - C(49) - C(50) - C(51)	177.7(3)
C(2)-C(19)-C(24)-C(23)	-176.2(3)	C(48) - C(49) - C(50) - C(51)	-3.3(4)
N(2)-C(12)-C(25)-C(30)	-110.1(3)	N(4) - C(50) - C(51) - C(54)	2.9(5)
C(11) - C(12) - C(25) - C(30)	70.9(4)	C(49) - C(50) - C(51) - C(54)	-176.9(3)
N(2) - C(12) - C(25) - C(26)	72.9(4)	N(4) - C(50) - C(51) - C(52)	-179 2(3)
C(11) - C(12) - C(25) - C(26)	-106 1(2)	C(49) = C(50) = C(51) = C(52)	1 0(4)
C(20) = C(25) = C(25) = C(20)	100.1(3) 0 0/E)	C(50) = C(51) = C(52) C(50) = C(51) = C(52)	1 5/51
a(12) = a(25) - c(20) - c(27)	0.0(5)	C(50) - C(51) - C(52) - C(53)	170 2(2)
C(12) - C(25) - C(26) - C(27)	1/1.8(3)	C(54) - C(51) - C(52) - C(53)	1/9.3(3)
C(25) - C(26) - C(27) - C(28)	4.4(5)	C(51) - C(52) - C(53) - C(48)	-1.6(5)
C(26) - C(27) - C(28) - C(31)	173.9(3)	C(47) - C(48) - C(53) - C(52)	178.9(3)
C(26)-C(27)-C(28)-C(29)	-3.4(5)	C(49)-C(48)-C(53)-C(52)	-0.8(5)
C(27)-C(28)-C(29)-C(34)	176.4(3)	C(50)-C(51)-C(54)-C(55)	-1.4(5)
C(31)-C(28)-C(29)-C(34)	-1.0(4)	C(52)-C(51)-C(54)-C(55)	-179.3(3)
C(27)-C(28)-C(29)-C(30)	-2.6(4)	C(51)-C(54)-C(55)-C(56)	-2.5(5)

Table 6. Torsion angles $[^{\circ}]$ for Nish02.

C(51) - C(54) - C(55) - C(57)	176.7(3)	C(45)-C(46)-C(83)-C(88)	-162.1(3)
C(54)-C(55)-C(56)-N(4)	5.3(5)	C(47)-C(46)-C(83)-C(84)	-150.5(4)
C(57)-C(55)-C(56)-N(4)	-173.8(3)	C(45)-C(46)-C(83)-C(84)	26.2(5)
C(54)-C(55)-C(56)-C(63)	-173.2(3)	C(88)-C(83)-C(84)-C(85)	3.2(7)
C(57)-C(55)-C(56)-C(63)	7.6(5)	C(46)-C(83)-C(84)-C(85)	175.2(4)
C(54)-C(55)-C(57)-C(62)	51.9(4)	C(83)-C(84)-C(85)-C(86)	-0.6(8)
C(56)-C(55)-C(57)-C(62)	-128.9(3)	C(84)-C(85)-C(86)-C(87)	-1.9(8)
C(54)-C(55)-C(57)-C(58)	-122.9(3)	C(85) - C(86) - C(87) - C(88)	1.7(7)
C(56)-C(55)-C(57)-C(58)	56.2(4)	C(86) - C(87) - C(88) - C(83)	1.0(6)
C(62) - C(57) - C(58) - C(59)	0.9(5)	C(84) - C(83) - C(88) - C(87)	-3.5(5)
C(55) - C(57) - C(58) - C(59)	175.8(3)	C(46) - C(83) - C(88) - C(87)	-175.4(3)
C(57)-C(58)-C(59)-C(60)	0.9(5)	C(2) - C(1) - N(1) - C(5)	-0.8(4)
C(58)-C(59)-C(60)-C(61)	-1.7(5)	C(2) - C(1) - N(1) - Fe(1)	168.5(2)
C(59)-C(60)-C(61)-C(62)	0.6(5)	C(4) - C(5) - N(1) - C(1)	2.0(4)
C(60)-C(61)-C(62)-C(57)	1.3(5)	C(9) - C(5) - N(1) - C(1)	-177.0(3)
C(58)-C(57)-C(62)-C(61)	-2.0(5)	C(4) - C(5) - N(1) - Fe(1)	-168.8(2)
C(55)-C(57)-C(62)-C(61)	-176.9(3)	C(9) - C(5) - N(1) - Fe(1)	12.3(3)
N(4)	-C(56) - C(63) - C(68)	-104.1(3)	N(3) - Fe(1) - N(1) - C(1)	-45.8(8)
C(55)-C(56)-C(63)-C(68)	74.5(4)	O(1) - Fe(1) - N(1) - C(1)	-15.2(2)
N(4)	-C(56) - C(63) - C(64)	79.1(4)	N(5)-Fe(1)-N(1)-C(1)	-97.6(3)
C(55)-C(56)-C(63)-C(64)	-102.3(3)	N(2) - Fe(1) - N(1) - C(1)	175.6(3)
C(68)-C(63)-C(64)-C(65)	0.9(5)	N(4) - Fe(1) - N(1) - C(1)	77.4(3)
C(56)-C(63)-C(64)-C(65)	177.6(3)	N(3) - Fe(1) - N(1) - C(5)	124.0(7)
C(63)-C(64)-C(65)-C(66)	1.3(5)	O(1) - Fe(1) - N(1) - C(5)	154.6(2)
C(64) - C(65) - C(66) - C(67)	-1.5(5)	N(5) - Fe(1) - N(1) - C(5)	72.2(2)
C(64) - C(65) - C(66) - C(69)	177.0(3)	N(2) - Fe(1) - N(1) - C(5)	-14.6(2)
C(65)-C(66)-C(67)-C(72)	177.1(3)	N(4) - Fe(1) - N(1) - C(5)	-112.8(2)
C(69) - C(66) - C(67) - C(72)	-1.5(5)	C(11)-C(12)-N(2)-C(9)	0.6(4)
C(65)-C(66)-C(67)-C(68)	-0.4(5)	C(25)-C(12)-N(2)-C(9)	-178.4(3)
C(69)-C(66)-C(67)-C(68)	-178.9(3)	C(11)-C(12)-N(2)-Fe(1)	-166.4(2)
C(64)-C(63)-C(68)-C(67)	-2.8(5)	C(25)-C(12)-N(2)-Fe(1)	14.6(4)
C(56)-C(63)-C(68)-C(67)	-179.5(3)	C(8) - C(9) - N(2) - C(12)	-2.2(4)
C(64)-C(63)-C(68)-C(73)	-178.7(3)	C(5)-C(9)-N(2)-C(12)	176.5(3)
C(56)-C(63)-C(68)-C(73)	4.6(4)	C(8)-C(9)-N(2)-Fe(1)	167.4(2)
C(72)-C(67)-C(68)-C(63)	-174.8(3)	C(5)-C(9)-N(2)-Fe(1)	-13.9(3)
C(66)-C(67)-C(68)-C(63)	2.5(4)	N(3) - Fe(1) - N(2) - C(12)	8.6(3)
C(72)-C(67)-C(68)-C(73)	1.2(4)	N(1) - Fe(1) - N(2) - C(12)	-177.1(3)
C(66)-C(67)-C(68)-C(73)	178.5(3)	O(1)-Fe(1)-N(2)-C(12)	150.5(3)
C(65)-C(66)-C(69)-C(70)	-179.8(3)	N(5)-Fe(1)-N(2)-C(12)	99.2(3)
C(67)-C(66)-C(69)-C(70)	-1.2(5)	N(4) - Fe(1) - N(2) - C(12)	-71.8(3)
C(66)-C(69)-C(70)-C(71)	2.4(5)	N(3) - Fe(1) - N(2) - C(9)	-159.34(19)
C(69)-C(70)-C(71)-C(72)	-0.7(5)	N(1) - Fe(1) - N(2) - C(9)	15.01(19)
C(70)-C(71)-C(72)-C(67)	-2.1(5)	O(1)-Fe(1)-N(2)-C(9)	-17.4(4)
C(66)-C(67)-C(72)-C(71)	3.2(5)	N(5) - Fe(1) - N(2) - C(9)	-68.7(2)
C(68)-C(67)-C(72)-C(71)	-179.5(3)	N(4) - Fe(1) - N(2) - C(9)	120.26(19)
C(63)-C(68)-C(73)-C(74)	60.7(4)	C(46)-C(45)-N(3)-C(49)	-0.5(5)
C(67)-C(68)-C(73)-C(74)	-115.2(3)	C(46)-C(45)-N(3)-Fe(1)	173.8(2)
C(63)-C(68)-C(73)-C(78)	-122.2(3)	C(48) - C(49) - N(3) - C(45)	-1.8(4)
C(67)-C(68)-C(73)-C(78)	61.9(4)	C(50) - C(49) - N(3) - C(45)	177.2(3)
C(78)-C(73)-C(74)-C(75)	-2.2(5)	C(48)-C(49)-N(3)-Fe(1)	-176.8(2)
C(68)-C(73)-C(74)-C(75)	175.0(3)	C(50)-C(49)-N(3)-Fe(1)	2.2(3)
C(73)-C(74)-C(75)-C(76)	-0.6(5)	N(1) - Fe(1) - N(3) - C(45)	-50.8(8)
C(74)-C(75)-C(76)-C(77)	2.0(5)	O(1) - Fe(1) - N(3) - C(45)	-81.3(3)
C(75)-C(76)-C(77)-C(82)	-179.7(4)	N(5) - Fe(1) - N(3) - C(45)	0.5(3)
C(75)-C(76)-C(77)-C(78)	-0.5(6)	N(2) - Fe(1) - N(3) - C(45)	86.3(3)
C(76)-C(77)-C(78)-C(79)	178.2(3)	N(4) - Fe(1) - N(3) - C(45)	-175.7(3)
C(82)-C(77)-C(78)-C(79)	-2.6(5)	N(1) - Fe(1) - N(3) - C(49)	123.8(7)
C(76)-C(77)-C(78)-C(73)	-2.3(5)	O(1) - Fe(1) - N(3) - C(49)	93.2(2)
C(82)-C(77)-C(78)-C(73)	176.9(3)	N(5) - Fe(1) - N(3) - C(49)	175.0(2)
C(74)-C(73)-C(78)-C(79)	-176.9(3)	N(2) - Fe(1) - N(3) - C(49)	-99.2(2)
C(68)-C(73)-C(78)-C(79)	5.9(5)	N(4) - Fe(1) - N(3) - C(49)	-1.2(2)
C(74	(73) - C(78) - C(77)	3.6(5)	C(55) - C(56) - N(4) - C(50)	-4.0(4)
C(68) - C(73) - C(78) - C(77)	-173.5(3)	C(63) - C(56) - N(4) - C(50)	174.6(3)
0(77	(78) - C(79) - C(80)	2.2(5)	C(55) - C(56) - N(4) - Fe(1)	1/4.3(2)
0(73	(10) - C(10) - C(19) - C(80)	-1/1.3(3)	C(03) - C(50) - N(4) - Fe(1)	-1.2(4)
C(78	(100) - C(80) - C(81)	-0.3(5)	C(51) - C(50) - N(4) - C(56)	-0.3(4)
0(19	(82) - C(81) - C(82)	-1.3(b)	C(49) = C(50) = N(4) = C(56)	170 0(3)
	$(01)^{-1}(01)^{-1}(02)^{-1}(1)$	U.9(/) 170 7(4)	C(31) - C(50) - N(4) - Fe(1)	-1 0 (2)
0170	j = C(77) = C(02) = C(01)	-10(4)	$\mathbf{U}(\mathbf{H}) = \mathbf{U}(\mathbf{H}) - \mathbf{U}(\mathbf{H}) = \mathbf{U}(\mathbf{H})$ $\mathbf{U}(\mathbf{H}) = \mathbf{U}(\mathbf{H}) = \mathbf{U}(\mathbf{H})$	178 2(2)
C(18	(A6) = C(02) = C(01)	1.0(0) 21.2(E)	N(3) - Fe(1) - N(4) - C(30) N(1) - Fe(1) - N(4) - C(56)	-1/0.2(3) Q 7/2)
U(4/	$, \cup (\neg \cup) = \cup (\cup) \cup (\cup) = \cup (\cup) \cup (\cup) = \cup (\cup) \cup (\cup) \cup (\cup) $	41.4(3)	102)	0.1(3)
O(1) - Fe(1) - N(4) - C(56)	95.0(3)	Fe(1)-O(1)-S(1)-O(3)	47.1(3)	
-----------------------------	-------------	-----------------------	-----------	
N(5)-Fe(1)-N(4)-C(56)	162.1(4)	Fe(1)-O(1)-S(1)-C(91)	158.8(2)	
N(2)-Fe(1)-N(4)-C(56)	-71.3(3)	F(1)-C(91)-S(1)-O(2)	-60.2(3)	
N(3)-Fe(1)-N(4)-C(50)	0.10(19)	F(3)-C(91)-S(1)-O(2)	61.5(3)	
N(1)-Fe(1)-N(4)-C(50)	-172.97(19)	F(2)-C(91)-S(1)-O(2)	-178.6(3)	
O(1) - Fe(1) - N(4) - C(50)	-86.6(2)	F(1)-C(91)-S(1)-O(3)	178.0(2)	
N(5)-Fe(1)-N(4)-C(50)	-19.6(6)	F(3)-C(91)-S(1)-O(3)	-60.4(3)	
N(2)-Fe(1)-N(4)-C(50)	107.02(19)	F(2)-C(91)-S(1)-O(3)	59.5(3)	
C(90)-C(89)-N(5)-Fe(1)	66(11)	F(1)-C(91)-S(1)-O(1)	57.7(3)	
N(3) - Fe(1) - N(5) - C(89)	-120.9(7)	F(3)-C(91)-S(1)-O(1)	179.4(3)	
N(1)-Fe(1)-N(5)-C(89)	52.7(7)	F(2)-C(91)-S(1)-O(1)	-60.7(3)	
O(1) - Fe(1) - N(5) - C(89)	-33.6(7)	F(6)-C(94)-S(2)-O(6)	-57.3(5)	
N(2)-Fe(1)-N(5)-C(89)	130.4(7)	F(4)-C(94)-S(2)-O(6)	-179.6(5)	
N(4) - Fe(1) - N(5) - C(89)	-101.7(8)	F(5)-C(94)-S(2)-O(6)	62.9(5)	
N(3)-Fe(1)-O(1)-S(1)	17.2(2)	F(6)-C(94)-S(2)-O(5)	61.7(5)	
N(1)-Fe(1)-O(1)-S(1)	-158.6(2)	F(4)-C(94)-S(2)-O(5)	-60.7(5)	
N(5)-Fe(1)-O(1)-S(1)	-75.2(2)	F(5)-C(94)-S(2)-O(5)	-178.2(5)	
N(2)-Fe(1)-O(1)-S(1)	-127.0(2)	F(6)-C(94)-S(2)-O(4)	-178.2(5)	
N(4) - Fe(1) - O(1) - S(1)	94.4(2)	F(4)-C(94)-S(2)-O(4)	59.5(5)	
Fe(1)-O(1)-S(1)-O(2)	-90.2(2)	F(5)-C(94)-S(2)-O(4)	-58.0(6)	

07/10/17, #5, 122.5 mg

S45

Ph

Chiral HPLC analysis of compound 2d

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	49.5796	13.267	0.000	48385256	0.00	BB	18.4
2	50.4204	34.200	0.000	49205740	0.00	BB	49.9
	100.0000		0.000	97590992			

Data File:c:\star\11-11-10 11;51;34 am -1.runRun Mode:AnalysisSample ID:BIP70-1-A 254nmPeak Measurement:Peak AreaOperator (Inj):Calibration Level:N/AInjection Date:11/11/10 11:51:34 AMRun Time (min):40.827

Injection Method:

: c:\star\yasuhiro\temporaly.mth

Me O L.∖Q ∐

2d

rac-2f

rac-2g

S75

49058432

51206056

BB

0.00

18.6

0.000

0.000

95.8059

100.0000

13.267

2

rac-2h

Me ' <u>`</u>Q

2h

0

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	5.0530	12.387	0.000	2156610	0.00	BB	17.7
2	94.9470	29.347	0.000	40523036	0.00	BB	46.3
	100.0000		0.000	42679648			

S78

Chiral HPLC analysis of compound 2i

Data File: Sample ID: Operator (Inj): Injection Date:

01/14/11 02:21:52 PM

BIP76-2-A 254nm

c:\star\1-14-11 2;21;52 pm -1.run

Run Mode: Analysis Peak Measurement: Calibration Level: Run Time (min):

Peak Area N/A 50.880

c:\star\yasuhiro\temporaly.mth

Chiral HPLC analysis of compound 2j

160113312

0.000

100.0000

Chiral HPLC analysis of compound 3a

0.50

0.25

0.00 -0.13

'n

0

3a

							Mi	nutes
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	
1	95.2032	10.387	0.000	117952592	0.00	BB	16.3	
2	4.7968	12.067	0.000	5943005	0.00	BB	16.9	
	100.0000		0.000	123895600				

Chiral HPLC analysis of compound 31

rac-31

		(min)	(min)	()	Time		(sec)
1	4.8491	7.213	0.000	3153613	0.00	BB	10.0
2	95.1509	8.600	0.000	61880960	0.00	BB	12.8
	100.0000		0.000	65034572			

