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Supplementary Notes

Note 1: Time-resolution in Standard FCS

If timings are appropriate, conventional FCS can be used to measure trapping times of a diffusing
tracer molecule (1, 2). Michelman-Ribeiro et al. provided in-depth estimations of the achievable
time-resolution in 3-dimensional FCS (1). In Figure 1 of their paper they distinguished specific
regimes depending on the kinetic parameters k5, = 1/Tfy¢. and korr = 1/T¢rap- Only the regime
with rare trapping events in the focal spot n = TD'/Tfree « 1 provides any access to kinetic
parameters, all other regimes show effective diffusion. The region specified by n « 1 was further
characterized. The reaction-dominant case around Tiyqp/Tfree = 0.5 allows for measuring all
parameters of the model (on- and off-rates and the diffusion constant). In this case, the two-
dimensional ACF is given by (1, 3)
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From the pronounced shoulders, the two characteristic time scales tp" and Ty, and the proportion
B = Ttmp/(rtmp + Tfree) can be easily extracted. A hybrid case with high values of 3, and the full
model case were further discriminated, both providing access to the trapping time T.p.

Note 2: Stop-and-Go Diffusion with Non-Exponential Trapping Times

For the derivation of Eq. 3 we assumed that the penalty due to the first trapping event is identical to
the mean trapping time T4y, Which is justified by the choice of an exponential trapping time
distribution. However, if we assume distributions with memory effects we generally find penalties
deviating from the mean. In the following, we provide formulas for Gamma-distributed and constant
trapping times (both short-tailed distributions), and for the Weibull distribution (long-tailed for
shape-factor k<1) (Fig. 3).

For a general trapping time distribution p(ty.p), the average time penalty t; is given by
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the conditional probability to obtain a penalty t; given a trapping time ty., (Suppl. Fig. S1). We thus
obtain:
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or more generally
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(t1) can therefore deviate from the mean and may take any value above 7,4,/2, depending on the
distribution. The generalization of Eq. 3 then reads

Tp = ﬁ<t1> = ﬁTtrapfdistr,trap

In particular, the conditions (t;) % Trap are equivalent to Std(ttmp) % Mean(ttmp). In other words,
a distribution yields an offset larger (smaller) than an exponential distribution if its standard
deviation is larger (smaller) than its mean.

In the following, we provide calculations for various distributions:

i) Exponentially-distributed trapping time with mean Tty

fdistr,trap =1 Eqg. S1
i) Constant trapping time Ty

faistrerap = 1/2 Eq. S2
iii) Gamma-distributed trapping time with mean ty,, and shape-factor k:

faistrtrap = (% + i) Eq. S3

For k — oo a normal distribution with zero variance is approached, approximating fyistr, trap = 1/2.
k = 1 recovers the exponential distribution with fgistr rrap = 1.

iv) Weibull-distributed trapping time with mean 7, and shape-factor k:
1 1 2
fdistr,trap =3 w I (1 + ;) Eq. S4

Again, for k — oo a normal distribution with zero variance is approached, approximating
faistrtrap = 1/2; k =1 recovers the exponential distribution with fgicy irqp = 1. For k-0

fdistr,trap diverges.

Figure S1. Transition sequence between free diffusion (lower level) and trapped state (upper level). The time
penalty t; specifies the average time a tracer remains in a particular trapped state. Red dashed lines indicate
potential events for catching a molecule in a trapped state.
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Note 3: Stop-and-Go Diffusion with Non-Exponential Free Diffusion Times

The derivation of Eq. 3 was based on the assumption that the diffusion process has no memory; in
particular, release from the trap is followed by an average diffusion time t... However, if the
diffusion time follows a non-exponential distribution pfree(tfree)dtfree, the subsequent number of
stops n within the given time interval will change. For estimating the transit time 1p let us therefore
focus now on the trapped fraction 3, and calculate the number of stops within ty'. The situation is
illustrated in the timeline shown in Suppl. Fig. S2. At an arbitrary position within the timeline the
average number of stops is given by n = TD'/Tfree. By shifting the time interval depicted in red to
the nearest neighboring spot on the left side, n will in general be altered to n’.
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Figure S2. Time sequence of trapping events (vertical lines) separating periods of free diffusion. (a) shows an
arbitrary time interval tp’ (red lines), during which the tracer is supposed to transit the focal area. During this
interval, the tracer experiences an average of n stops. We further introduce a second interval of length tp - T,
which is bounded by the same right border and a new left border (green line); this interval contains on average n-
1 stops. (b) We shift the red interval to the nearest trapped state at the left (red dashed lines); the linked green
interval follows accordingly. For estimating the number of trapped states in the new red interval n’, we sum up
the individual contributions (from right to left): n-1 stops originating from the green interval (i) and (t;)/Tsre.
stops originating from the time period between the former red left border and the new green left border (ii); the
time period (iii) does not contain further stops.

For calculating n’, let us revert to a new time interval of length 7' — 77, Which contains on
average n-1 traps (green in Suppl. Fig. S2). The green interval shall contain the same right border as
the red interval. By shifting the two intervals to the nearest left neighbor, the new green interval still
contains n-1 traps (for this we assumed that two successive intervals are not correlated). No
additional trap is added due to shifting the left border of the red interval. The probability that one
trap is contained in the remaining interval between the left borders of the old red interval and the
new green interval is given by (t;)/7frc. , Where (t;) denotes again the average time from any
arbitrarily chosen position to the next trap. (t;) is specified by Eqs. S1-S4 upon replacing T¢rq, by

Tfree-

Together, we find an average of n’ = (t1)/Tfree + n — 1 stops. The total transit time is thus given by
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With faistr, free = — 1. Using Egs. S1-S4, we obtain the following contributions to the offset

Tfree

(Fig. 3):
fexp,free =0 Eq. S5
fconstant,free =-1/2 Eq. S6

1
fgamma,free =~3 + By Eq.S7
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fweibul,free =3 F(1+%)2 r (1 + ;) -1 Eq. S8
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