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Preliminaries

We consider the following β → ∞ limit for the reaction diffusion equation with the source function
(15)
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where θ(u) = 1 if u ≥ 1 and 0 otherwise. To keep the notation as simple as possible, it will be useful
to renormalize φ and ΓI as

ψ(x) = AIφ(x)/Km (2)

Γ = AIΓI/Km (3)

The source function (15) possesses three zeros, ψ?1,2,3, with ψ?1 = 0 < 1
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at some value of x.

Type 1 and 2 solutions

We derive in this Appendix the condition under which Eq. (1) possesses two families of solutions
φ1,2(x) with the following properties:

1. Case 1 : ψ1(x) > 1
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2kbh(x)2 −

1/β lnK0
e otherwise;

2. Case 2 : ψ2(x) < 1
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e in some interval [−x0, x0] and ψ2(x) > 1
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Type 1 solutions are maximum at x = 0 but type 2 solutions have two symmetric maxima with a
depletion hole centered at x = 0. The condition of existence of type 2 solution is found by matching
the concentration ψ(x) and the current ψ′(x) at x = ±x0.

Finding the solution for case 1 is straightforward. First, let us define the error function (1) :
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with Erf(x) = Erf(0, x). We find in case 1 for x ∈ [−x0, x0] :

ψ1(x) = u(x)ex/λ + v(x)e−x/λ + c cosh(x/λ) (6)

with
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The constant c in (6) is determined by matching Eq. (6) with (12kbh(x)2−1/β lnK0
e ) exp [−(x− x0)/λ]

at the boundary point x = x0. In practice, we can take c = 0 and x0 → ∞ as shown in Fig. 4-a
(dashed curve compared to plain curve).

In the limit of small diffusion length, λ/w � 1, type 1 solutions have the following asymptotic
behavior (1− Erf(x) ' 1/(

√
πx) exp (−x2) when x goes to infinity, see (1))
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Type 2 solution

For type 2 solutions, we have :
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+CAe
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where x0 and B are found by matching both solutions at x = ±x0. Instead of these conditions, we
will use the equivalent conditions at x = ±x0 :
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where the second equation gives x0. Once done, B can be found by using the first equation.

Condition for the existence of type 2 solution

From Eq. (15), one finds that x0 is solution of the following equation :
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In order for (16) to have a solution, we have two conditions :

1. Condition (4) must hold.

2. There exists a minimum value of w0, i.e. wc, such that for w > wc, Eq. (16) has one unique
solution. This condition corresponds to x0 = 0 in (16).

The argument goes as follows for β → ∞. For a given w0, the lefthand side of (16) is a strictly
increasing function of x0. Thus, its is minimum for x0 = 0, since x0 is positive. However,
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decreases with increasing w/λ. Thus, for w < wc defined by
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(16) cannot have a solution, since the lefthand side of (16) is always larger than the righthand side.
Moreover, λ/we−(wc/2λ)2/Erf(wc/2λ) >

√
π/2. The last inequality implies condition (4) for the source

function to have three zeros.
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