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1 Derivation of strain field induced by striated fiber – equation (2)

A localized point force Fjδ(x
′) acting tangential to an elastic half-space generates a displacement field

ui(x) = Gij(x− x
′)Fj with a corresponding strain field uij = (∂iuj + ∂iuj)/2 where

Gij = (1 + ν)/(πEm)
[
(1− ν)δij/|x|+ ν xixj/|x|3

]
(S1)

is the Boussinesq Green’s function for the elastic half space. By differentiation, we obtain the strain
field due to a single point force dipole Pijδ(x

′) as uij = −∂l(∂jGik+∂iGjk)Pkl/2. This is the “building
block” for the total strain field of a striated fiber: the parallel component of the strain field induced
by the dipole density Πij is given by a convolution of the density with this Green’s function as
u11(x, y) = −

∫
∞

−∞
dx′ ∂2

x′G11(x − x′, y)ρ(x′). In Fourier space, this relation becomes a multiplication

ũ11(q, y) = −(iq)2G̃11(q, y)ρ̃(q) where G̃11(q, y) is the Fourier transform of the Green’s function with
respect to the x-coordinate

G̃11(q, y) =

∫
G11(x, y) exp(−iqx) dx

= 2(1 + ν)/(πEm)
[
(1− ν)K0(q|y|) + ν(i∂q)

2(q/|y|)K1(q|y|)
]
.

(S2)

We find G̃11(0, y) = 0, hence the q = 0 Fourier component of the strain field is always zero irrespective
of the mean dipole density ρ0. Note 2ρ̃(q) = ρ0δ(q) + ρ1δ(q − q0). Now eq. 2 follows with a response
factor Φ that is essentially given by the Fourier transform of the Green’s function evaluated at the
principal wave length q0 = 2π/a of a striated fiber, Φ(y/a) = 2π2EmG̃11(q0y). More explicitely,

Φ(Y ) = 2π(1 + ν)
[
(1− ν)K0(2πY )− ν∂2

Y Y K1(2πY )/(2π)
]
. (S3)

Here Y = y/a and Kn denote the modified (hyperbolic) Bessel functions of the second kind.
For sake of completeness, we also report the result for the case that the dipole density ρ(x) is act-
ing inside the bulk of an extended elastic material (as a minimal model of a compliant cytoskeleton
surrounding the fiber) instead of on the surface of an elastic half space (the substrate). In this case,
eq. 2 holds with a modified propagation factor, Φ3d(Y ) = (2π/8)(1 + ν)/(1 − ν)[(3 − 4ν)K0(2πY ) −
∂2
y Y K1(2πY )/(2π)], that shows similar functional dependence on Y and ν as Φ(Y ).
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2 Variable Z-body size

For pedagogical reasons, we presented our theory only for the principal Fourier mode of the force
dipole density induced by a striated fiber, assuming ρ(x) = ρ0 + ρ1 cos(2πx/a). This simplification
corresponds to the assumption of an effective size of the crosslinking band of about half a sarcomer
size a/2. Our theory can be generalized in a straight-forward manner to the case of variable Z-body
sizes. To be more specific, we can write the dipole density ρ(x) as a periodic series of peaks of width
σ

ρ(x) =
∑

n

1√
2πσ2

exp

[
−(x− na)2

2σ2

]
. (S4)

The corresponding Fourier transformed force dipole density reads ρ̃(q) =
∑

n exp[−q2σ2/2] δ(q−nq0),
and the strain field is given by a superposition of harmonic contributions,

u11(x, y) =
2

Ema2

∑

n

Φ(ny/a) exp[−(2πnσ/a)2/2] cos(2πnx/a). (S5)

A similar formula is then derived for the elastic interaction energy Wint =
∫

u11(x, d)ρ(x+∆x) (using
the orthogonality relation for the cosine), which thus generalizes eq. 6. For values σ > 0.2a, this
interaction energy is almost indistinguishable from the simple case studied in the main text. For
smaller values of sigma (i.e. if Z-bodies are more localized), simulations show that elastic interactions
drive smectic order even more effectively. Additionally, the minimal lateral fiber spacing d∗(σ), above
which inter-fiber registry is favored by elastic interactions, decreases, if smaller values for σ are chosen.
In the limiting case σ → 0, inter-fiber registry is favorable for all fiber spacings d, see also (25).
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