
Supporting Material

Robust entrainment of circadian oscillators requires specific

phase response curves

Benjamin Pfeuty, Quentin Thommen and Marc Lefranc

April 26, 2011

This supplementary material presents the calculations and the procedures used to derive
robustness quantities that measure how sensitive are circadian oscillators to daylight fluc-
tuations. It contains three sections: (1) general expression of robustness quantities, (2)
robustness quantities in the weak forcing limit, (3) robustness analysis of experimental
PRCs.

1 General expression of robustness quantities

Let assume a non-linear oscillator subjected to a periodic and temporally-restricted forcing.
If the forcing is not too strong or the limit cycle attracts nearby orbits sufficiently quickly,
the dynamics of a periodically forced non-linear oscillator can be approximated by an
unidimensional first-return map (Rand et al, 2006):

φn+1 = F (φn) = φn − γ + V (φn) (1)

where φn is the phase of the oscillator at dawn and the function V (φ) is equivalent to a
phase response curve (PRC). A stable fixed point φ∗ of the map satisfies V (φ∗) = γ and
−2 < χ < 0 with χ ≡ V ′(φ∗) (we use in the following prime notation for derivative of
V with respect to the phase). We consider that forcing properties vary slightly among
individuals with respect to some average daylight forcing ǫ0L0(u):

ǫL(u) = ǫ0(L0(u) + η L̃(u)) (2)

where L and L0 are normalized with 1/τD
∫ τD
0 L(t)dt = 1. This normalization must be

preserved by an appropriate normalization of L̃ which depends on the type of fluctuations
(amplitude or profile) considered (appendix B). We can now expand φ∗ and χ up to first
order in η :

{

φ∗(η) = φ∗(0) + η dφ
∗(0)
dη

+ 0(η2)

χ(η) = χ(0) + η dχ(0)
dη

+ 0(η2)
(3)
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We introduce the sensitivity quantities Π and Σ that correspond to the squares of the linear
variation of φ∗ and of the relative variation of χ in response to small fluctuations η:

{

Π = [dφ
∗(0)
dη

]2

Σ = [ 1
χ(0)

dχ(0)
dη

]2
(4)

2 Robustness quantities in the weak forcing limit

2.1 Phase reduction method

Let us consider a forced circadian oscillator described by the deterministic differential
equation:

dX/dt = F(X,p0 + ǫL(t)dp) (5)

where the light modulates the parameters with a T-periodic temporal profile L(t). For
small enough value of ǫ, Eq. 5 can be expanded and phase reduction method can be
applied in the neighborhood of the free-running limit cycle trajectory Xγ of period T0. If
T and T0 differ with an order of ǫ, the following differential equation for the evolution of
the oscillator’s phase at the leading order applies:

dφ/dt = 1 + ǫL(φ)Z(φ) + 0(ǫ2) (6)

where φ is the phase in time unit and Z(φ) is the infinitesimal impulse phase response
curve (IPRC):

Z(φ) ≡

(

∂φ(Xγ(φ))

∂X

)T (

∂F(Xγ(φ),p0)

∂p

)

dp (7)

which indicates the steady-state phase-shift that results from an infinitesimal delta-impulse
light stimulus and can be derived from the parametric or state impulse phase response
function (Taylor et al, 2008). Using an averaging method (Kuramoto, 1984), one can
predict the phase change V (φ) (defined by Eq. 1) induced by light during the day when
the oscillator phase at dawn is φ:

V (φ) = ǫ

∫ T0

0
L(u)Z(u+ φ)du (8)

2.2 Π and Σ in the weak forcing limit

Decomposing the light temporal profile into an average and a fluctuating component (Eq.
2), Eq. 8 gives:

V (φ) = V0(φ) + ηṼ (φ) (9)

where V0(φ) and Ṽ (φ) are the convolution of Z with ǫ0L0 and ǫ0L̃ respectively.

2



Expanding Eq. 9 up to first order in η using the expression of φ∗(η) in Eq. 3 and the
property that V (φ∗(η)) = V0(φ

∗(0)) = γ leads to:

η
[

V ′

0(φ
∗(0))

dφ∗(0)

dη
+ Ṽ (φ∗(0))

]

+0(η2) = 0 (10)

In the following we use φ∗0 ≡ φ∗(0). By neglecting higher-order terms and introducing the
quantity Π (Eq. 4), we obtain:

Π =

[

Ṽ (φ∗0)

V ′

0(φ
∗

0)

]2

(11)

To compute Σ in the weak forcing limit, we begin with the expression derived from Eq. 4
and Eq. 3 in term of the first derivative of V:

Σ =

[

V ′(φ∗(η)) − V ′

0(φ
∗

0)

ηV ′

0(φ∗0)

]2

(12)

By inserting Eq. 9 into Eq. 12 and expanding for η small using Eq. 3, we obtain at the
leading order:

Σ =

[

Ṽ ′(φ∗0)

V ′

0(φ∗)
−

Ṽ (φ∗0)V
′′

0 (φ∗0)

V ′

0(φ
∗

0)
2

]2

(13)

2.3 Fluctuations in the daylight intensities

The simplest example of fluctuation in the light driving cycle is when L̃(u) = L0(u), such
that Ṽ = V0. The general expression for Π and Σ in Eq. 11 and 13 becomes:

Π =

[

V0(φ
∗

0)

V ′

0(φ∗0)

]2

=

[

γ

χ

]2

(14)

and

Σ =

[

1 −

V0(φ
∗

0)V
′′

0 (φ∗0)

V ′

0(φ
∗

0)
2

]2

=

[

1 −

V ′′

0 (φ∗0) γ

χ2

]2

(15)

2.4 Fluctuations in daylight profiles

Alternatively, one can also consider the case where only the temporal profile changes while
the daily light intensity average remains unchanged:

∫ τD

0
L̃(u) du = 0.

We assume that the variance of the perturbation is normalized with 1/τD
∫ τD
0 L̃(u)2 du = 1

so as to preserve the normalization of L(u) given by 1/τD
∫ τD
0 L(t)dt = 1.
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For such type of fluctuations that is likely to vary from day to day, we only focus on the
sensitivity Π. Rewritting Eq. 11 in term of the IPRC by using Eq. 8 leads to:

Π =

[

∫ τD
0 Z(u+ φ∗0) L̃(u) du

∫ τD
0 Z ′(u+ φ∗0)L0(u) du

]2

(16)

One can also estimate the Π sensitivity in response to sinusoidal daylight fluctuations of
period τD/k and phase ψk. Decomposing L̃(u) as a Fourier series:

L̃(u, k, ψ) =
∑

k

l̃k cos(k u/τD + ψk) (17)

and substituting Eq. 17 in Eq. 16 leads to:

Π(ψ) =

[∑

k l̃k(ak cos(ψk) + bk sin(ψk))
∫ τD
0 Z ′(u+ φ∗0)L0(u) du

]2

(18)

where ak and bk as the kth cosine and sine Fourier coefficients of the IPRC truncated on
the subinterval in which daylight perturbs the clock (usually daytime). Summing over ψk
between 0 and 2π gives the averaged phase associated with a arbitrary fluctuations of zero
mean (δl0 = 0) and unitary norm (

∑

k l̃
2
k = 1):

Π =< Π(ψ) >ψ= 1/2π

∫ 2π

0
Π(ψ)dψ =

∑

k

l̃2k Πk (19)

where Πk are the phase-shift variances associated with sinusoidal fluctuations of period
τD/k :

Πk =
ǫ20(a

2
k + b2k)

2χ2
(20)

Such quantities can be computed for instance in the case where Z is a decreasing linear
function on the interval of coupling which leads to Πk = τ2

D/8 k
2 π2 for L(u) = 1 during

daytime.

3 Robustness analysis of experimental PRCs

In this section, we briefly describe the procedure used to analyse the experimental PRCs.
First, the fitting procedure adjusts the discrete experimental data tj, yj with j = 1,N by
a continuous function f(t). It is based on the minimization of both the fitting error and
the second derivative of f :

S1 =
k1

N

∑

j=1,N

(yj − f(xj))
2 +

k2

T

∫ T

0
[f ′′(t)]2 dt (21)
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The ratio k2/k1 is adjusted typically between 5 and 15 according to the data.
For experimental PRCs that are measured using relatively short light pulses of less

than one hour, the estimated IPRC, z, is assumed to be roughly equal to f . Otherwise
we perform a deconvolution operation to extract the estimated IPRCs, using a genetic
algorithm to find the function, z, that minimizes the error:

S2 =

∫ T

0

[

f(t) −

∫ t+τD

t

z(u)du

]2

dt (22)

To estimate Π-values associated with experimental PRCs, we use Eq. 20 using the esti-
mated IPRCs, z.

References

Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. Springer, Berlin.

Rand DA, Shulgin BV, Salazar D, Millar AJ. (2006) Uncovering the design principles of
circadian clocks: mathematical analysis of flexibility and evolutionary goals. J Theor Biol,
238: 616-635.

Taylor SR, Gunawan R, Petzold LR, Doyle FJ 3rd (2008) Sensitivity Measures for Oscillat-
ing Systems: Application to Mammalian Circadian Gene Network. IEEE Trans Automat
Contr, 53: 177-188.

5


