
%%%
%%%

%%% Supplementary Material to:

%%% Calderon, C. P., Martinez, J. G., Carroll, R. J . and Sorensen, D.
%%% C. (2010). P-splines using derivative informati on. Multiscale
%%% Modeling and Simulation, 8, 1562-1580.

%%%
%%%

NOTE: for users without access to MATLAB, this pro gram can generate
executables that can be run on most platforms witho ut requiring this
program. A free "mcrinstaller" program made availa ble through
Mathworks is needed to launch the executable and it is available
online: http://www.mathworks.com/matlabcentral/fileexchange /5268
(check for newest version)

If you require this, email the Chris Calderon and p rovide information
about the operating system you are usign and an att empt to generate
the executable you need will be made.

The driver for the MATLAB script demonstrating meth ods in the paper
are below:

PuDI_demo.m (shows how to construct design matrix)

PSQR_DpEqI_demo.m (solver for Pspline with any des ign matrix and
ridge penalty similar to one used in text)

PSQR_demo.m (solver for general Pspline with any d esign matrix and
penalty matrix)

To run, copy the code below and make *.m text files . Place these in
a folder, launch matlab and add the aforementioned folder to path (or
cd to this location) and execute scripts.

e.g. type "[F,Fhat]=PuDI_demo(1);" to generate scat terplot data F,
fit P-spline using GCV and output Fhat and plot (u se argument "0" to
turn plot off).

%%%
%%%

%%% Start PuDI_demo.m

%%%
%%%

function [F,Fhat]=PuDI_demo(plotflag);

%function [F,Fhat]=PuDI_demo(plotflag);

%function illustrating how to setup PuDI design mat rix and
efficiently find smoothing parameter.

%input: plotflag; set = 1 to plot and any other val ue to not
(function of interest is internally coded; modifica tions are easy to
implement)

%output: F vector contaiing the true value of (f,df) and Fhat are the
PuDI estimates.

%%%
%%%%%%%%%%%%%

%Obtain scatterplot data of function and its deriva tive

%%%
%%%%%%%%%%%%%

n=40;

x=[0:15/(n-1):15]'; %set design grid

[f,df]=pudiegfunc(x);F=[f;df];

%contaminate obserations with N(0,WW') noise.

sigma2=1;c=4;

W=diag([ones(1,n)*sqrt(sigma2) ones(1,n)*sqrt(sigma 2*c)]);

noise=W*randn(2*n,1);

zOBS=[f+noise(1:n);df+noise(n+1:end)];

%use noise covariance to construct GLS observation vector "y"

y=W\zOBS; %this implementation assumes W is not il l-conditioned.

%%%
%%%%%%%%%%%%%

%Setup Design Matrix

%%%
%%%%%%%%%%%%%

K=20;p=2; %pick number of knots

kknots=[15/K:15/K:15]; %use uniform grid or let qu antiles determine
knot location.

%create a vector of the design grid and knot sequen ce for use in
design matrices

knotVEC=repmat(kknots,size(x,1),1);

xVEC=repmat(x,1,size(knotVEC,2));

X=[ones(size(x)) x x.^2 ;zeros(size(x)) ones(size(x)) 2*x]; %hard
code in X consistent with "p" selected

Z=[((xVEC-knotVEC).*(xVEC-knotVEC>0)).^p; (((xVEC-k notVEC).^(p-
1)).*(xVEC-knotVEC>0))*p];

%construct design matrix using GLS weight

C=W\[X Z];%this implementation assumes W is not ill -conditioned.

%%%
%%%%%%%%%%%%%

%Factor the Design Matrix to Form where GCV Search is Fast

%%%
%%%%%%%%%%%%%

[Q,R,V,s] = PSQR_matfac_DpEqI(C,K);

%%%
%%%%%%%%%%%%%

%Select Smoothing Parameter via GCV and Vectorized Solves
Facilitating Brute Force Grid Search

%%%
%%%%%%%%%%%%%

alphaV=logspace(-14,14,1000); %select candidate smo othing parameters

[RSS] = PSQR_RSS(y,Q,R,V,s,K,sqrt(alphaV));

[GCV]=PSQR_GCV(RSS,Q,R,V,s,C,sqrt(alphaV),K,y);

%find the optimal smoothing parameter

[mv mi]=min(GCV);

alphaHAT=alphaV(mi);

%find the solution corresponding to alphahat

[RSS,beta] = PSQR_SolSteps_DpEqI(y,Q,R,V,s,K,sqrt(a lphaHAT));

Fhat=[X Z]*beta; %multiply the estimated vector by the mixed model in
the original coordinates

if(plotflag==1)

%plot results

figure;hold on;

plot(x,zOBS(1:n),'ko');plot(x,Fhat(1:n),'r--');plot (x,F(1:n));

xlabel('x','fontsize',18),ylabel('f(x)','fontsize', 18);legend('Scatte
rPlot','P-Spline Estimate','True Function')

set(gca,'fontsize',14)

figure;hold on;

plot(x,zOBS(1+n:end),'ko');plot(x,Fhat(1+n:end),'r- -
');plot(x,F(1+n:end));

xlabel('x','fontsize',18),ylabel('\partial
f(x)','fontsize',18);legend('ScatterPlot','P-Spline Estimate','True
Function')

set(gca,'fontsize',14)

end

%%%
%%%%%%%%%%%%%

function [y,dy]=pudiegfunc(x)

y= -(2.5*sin(2*pi*x*1/15*6)+exp(-(x-3).^2/1/2)*9.0+ exp(-(x-
10).^2/1/2)*5.0-2)/3;

dy= -(2.5*cos(2*pi*x*1/15*6)*2*pi*1/15*6 ...

 +exp(-(x-3).^2/1/2)*9.0.*-(x-3) +...

 -exp(-(x-
10).^2/1/2)*5.0.*(x-10))/3;

y=y(end:-1:1);

dy=-dy(end:-1:1); %the function is being reflected about 0, so
account for trivial transform y=-x

%%%
%%%

%%% End PuDI_demo.m

%%%
%%%

%%%
%%%

%%% Start PSQR_DpEqI_demo.m

%%%
%%%

%PSQR_DpEqI_demo.m
%example illustrating how to use and test scripts f or special case
where
%the penalty matrix D^P=I

%obtain design matrix and observation vector
m=10;n=5;
C=randn(m,n);
y=randn(m,1);

nP=3;
Dp=eye(nP);
alphaV=[2 4]; %specify a vector containing the sm oothing parameter
values to be computed.

% do the matrix factorization once
[Q,R,V,s] = PSQR_matfac_DpEqI(C,nP);
% now obtain the vectorized solve (most application s only require
RSS,
% comment out "x solve" to speed up code below).
 [RSS,x] = PSQR_SolSteps_DpEqI(y,Q,R,V,s,nP,sqrt(al phaV));
% do a vectorized solve for various statistical qu antites.
[GCV,AICc,dfres,sigma2HAT,SmootherTrace]=PSQR_STATS _DpEqI(RSS,Q,R,V,s
,C,sqrt(alphaV),nP,y);
%%%
%%%%%%%%%%%
%Compare Solution to standard Algorithm
%%%
%%%%%%%%%%%%
%now find the same parameter beta using unmodified PSQR Algorithm
%first do matrix factorizations that only need to b e carried out once
for given C.
[Q,R,V] = PSQR_matfac(C,nP);

%now solve using different candidate Dp or alpha
for i=1:max(size(alphaV))
[betaPSQR] = PSQR_SolSteps(y,Q,R,V,nP,sqrt(alphaV(i)),Dp);
%compare differences
 diff(i)=norm(x(:,i)-betaPSQR);
end
mess='check workspace in matlab [type "whos"] to se e various
quantites compted'

%%%
%%%
%%% End PSQR_DpEqI_demo.m
%%%
%%%

%%%
%%%
%%% Start PSQR_demo.m
%%%
%%%

%PSQR_demo.m
%example illustrating how to use and test scripts
%%%
%%%%%%%%%%%%%%%
%Define Design and Penalty Matrix
%%%
%%%%%%%%%%%%%%%
%obtain design matrix and observation vector
m=10;n=5;
C=randn(m,n);
y=randn(m,1);

nP=3;
Dp=randn(nP,nP);Dp=sqrtm(Dp'*Dp); %construct a ran dom positive
semidefinite matrix
alpha=4; %specify the smoothing parameter.

%%%
%%%%%%%%%%%%%%%
%Execute PSQR Algorithm for two different \alpha va lues
%%%
%%%%%%%%%%%%%%%
%now find the same parameter beta using PSQR Algori thm

%first do matrix factorizations that only need to b e carried out once
for given C.
[Q,R,V] = PSQR_matfac(C,nP);
%now solve using different candidate Dp or alpha
[betaPSQR] = PSQR_SolSteps(y,Q,R,V,nP,sqrt(alpha),D p);

%solve using existing matrix factorizations using new candidate Dp
or alpha
[betaPSQR_smooth2] = PSQR_SolSteps(y,Q,R,V,nP,sqrt(alpha*2),Dp);

%%%
%%%%%%%%%%%%%%%

%%%
%%%%%%%%%%%%%%%
%%%
%%%%%%%%%%%%%%%
%Diagnostic Checks

%find the least squares solution using standard QR and compare result
in order compare to
%PSQR
D=[zeros(n,n-nP) [zeros(n-nP,nP) ; Dp]]; %add the zero columns to
penalty matrix
[Q R]=qr([C; sqrt(alpha)*D],0);
b=Q(1:m,:)'*y;betaQR_REF=R\b;
%find with normal equations
betaNORMALEQN=(C'*C+alpha*D'*D)\(C'*y);
%compare differences
 diff1=norm(betaQR_REF-betaPSQR)
 diff2=norm(betaNORMALEQN-betaPSQR)

%%%
%%%%%%%%%%%%%%%

%%%
%%%
%%% End PSQR_demo.m
%%%
%%%

%%%
%%%
%%% Start PSQR_GCV.m
%%%
%%%

function [GCV]=PSQR_GCV(RSS,Q,R,V,s,wC,muVEC,k,wy)
%
%function [costfuncVEC]=QR_pudi_COSTFUNC(Q,R,V,wC,m uVEC)
%the wC and wy denote the weighted versions of the design mat and
observation vector (respectively). it
%is assumed that [Q,R,V] come from "PSQR_matfac_DpE qId.m" where the
weighted design mat was used.
%
%

m=size(Q,1);

[trVEC, tr2VEC] = traceVEC_DpEqI(s,size(wC,2),muVEC);

% NOTE:GCV bekiw yses RSS instead of RSS/m
GCV=((RSS)./((1-trVEC/m).^2));

%%%
%%%
%%% End PSQR_GCV.m
%%%
%%%

%%%
%%%
%%% Start PSQR_matfac.m
%%%
%%%

function [Q,R,V] = PSQR_matfac(C,k);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%function [Q,R,V] = PSQR_matfac(C,k);
%
% Input: C an m by n matrix
%
% k a pos integer between 0 and n. th e first penalized
term should be in column n-k+1 of C.
%
% Output: Q an m by n orthogonal matrix
%
% R an n by n upper triangular matrix
% with lower right k by k block
% non-negative diagonal
%
% V k by k orthogonal vector
%
% Results in C = Q R V_1' where V_1 = [[I 0];
% [0 V]]
%

 [Q,R] = qr(C,0);
 [m,n] = size(C);

 p = n-k+1;

 [U,S,V] = svd(R(p:n,p:n));

 Q(:,p:n) = Q(:,p:n)*U;
 R(:,p:n) = R(:,p:n)*V;
 R(p:n,p:n) = S;

%%%
%%%
%%% End PSQR_matfac.m
%%%
%%%

%%%
%%%
%%% Start PSQR_matfac_DpEqI.m
%%%
%%%

function [Q,R,V,s] = PSQR_matfac_DpEqI(C,k);
%function [Q,R,V,s] = PSQR_matfac_DpEqI(C,k);
%%Carries out matrix factorization for special case D^P=I.
% Input: C an m by n matrix
%
% k a pos integer between 0 and n
%
% Output: Q an m by n orthogonal matrix
%
% R the first n-k rows of an n by n up per triangular
matrix
% with lower right k by k block
% non-negative diagonal
%
% s the diagonal of the kxk block ment ioned above
%
% V k by k orthogonal
%
%
% Results in C = Q R V_1' where V1 = [I 0]
% [0 V]
%
 [Q,R] = qr(C,0);
 [m,n] = size(C);

 p = n-k+1;

 Repstol=1/eps/10;
 condCHECK=cond(R(1:p-1,1:p-1));
 if(condCHECK>Repstol)
 message='WARNING: Poor design matrix used . Problem is not
with Z^P, but with the "free"/unpenalized portion o f the matrix.'
 message=['Results obtained likely meaningl ess due to
roundoff errors / log(condition number) = ' num2str (log(condCHECK))]
 message='Hit any key to proceed anyway (o r CNTRL-C to
quit)'
 pause
 end

 [U,S,V] = svd(R(p:n,p:n),0);

 Q(:,p:n) = Q(:,p:n)*U;
 R(1:n-k,p:n) = R(1:n-k,p:n)*V;
 R = R(1:n-k,:);
 s = diag(S);

%%%
%%%
%%% End PSQR_matfac_DpEqI.m
%%%
%%%

%%%
%%%
%%% Start PSQR_RSS.m
%%%
%%%

function [RSS] = PSQR_RSS(b,Q,R,V,s,k,mu1);
%function [RSS] = PSQR_RSS(b,Q,R,V,s,k,mu1);
%Finds vector of RSS corresponding vector of smooth ing parameters mu1
for special case D^P=I.
%
%
% Input: Q an m by n orthogonal matrix
%
% R the first n-k rows of an
% n by n upper triangular matrix
% with lower right k by k block
% a non-negative diagonal matrix
% stored in the vector s
%
%
% V k by k orthogonal SVD factor (or I dentity)
%
% s a k-vector with diag(s) the lower
% k by k block of R
%
% b an m vector
%
% k a pos integer between 0 and n
%
% mu1 a positive scalar (or column vecto r in vectorized
version)
%
% Assumes these quantities computed by P SQR_matfac_DpEqI.m

 [m,n] = size(Q);
 z = zeros(k,1);

 nmk = n-k;
 p = nmk+1;

 nrep=size(mu1,2);
 mu1=repmat(mu1,size(s,1),1);
 s=repmat(s,1,nrep);

 rho = s.*s + (mu1.*mu1);
%
% Note: this could potentially overflow
% unnecessarily. see literature on Givens rotations for
methods dealing with this case
%
 x=0;
 c = [Q'*b; z];
 c=repmat(c,1,nrep);

 c(p:n,:) = (s.*c(p:n,:) + c(n+1:n+k,:).*mu1)./ rho;

 %vectorized solve is not necessary in most app lications, e.g.
often
 %just many RSS values are needed
 % (keep lines below to show how batch solve is possible...others
apps may utilize this)
 %x = [R(1:nmk, 1:nmk)\(c(1:nmk,:) - R(1:nmk,p: n)*c(p:n,:));
V*c(p:n,:)];

% Compute RSS in a "vectorized" fashion
% using orthogonality of [C ; mu1*D] to [b;0] -[C; mu1*D]*x
%
%
% simple relation xx:=[C;mu1*D]; yy:=[b-Cx; 0 - mu1*D*x]....then
inner product <xx,yy> is zero by definition at mini mizer \hat{x}.
% i.e. setting the cost function gradient equal to zero
%
% norm(b)^2 - (norm([C ; mu1*D])^2 + norm(mu1 *D*x)^2) = norm(b
- Cx)^2
%
% beta^2 - beta1^2
%

%bottom of b1 contains constraint informaton.
 b1 = [c(1:nmk,:); s.*c(p:n,:); c(p:n,:)*sqrt(2).*mu1];

 beta = norm(b);

 beta1 = sqrt(sum(b1.^2));
 RSS=((beta + beta1).*(beta - beta1)); %re sidual sum of
squares

%%%
%%%
%%% End PSQR_RSS.m
%%%
%%%

%%%
%%%
%%% Start PSQR_SolSteps.m
%%%
%%%

function [x] = PSQR_SolSteps(y,Q,R,V,k,mu1,sqrtD);

%%
%function [x] = PSQR_SolSteps(b,Q,R,V,k,mu1);
% Input: Q an m by n orthogonal matrix
%
% R an n by n upper triangular matrix
% with lower right k by k block
% non-negative diagonal
%
% V k by k orthogonal
%
% y obervation vector
%
% k a pos integer between 0 and n
%
% mu1 a vector containing positive scala r smoothing
parameters
%
% sqrtD is the Cholesky factor of the penalty ter m =
mu1^2*(sqrtD)'sqrtD
%
% x is a matrix of P-spline coefficients corres ponding to
the mu1 vector and the proposed sqrtD
%
% Assumes these quantities computed by P SQR_matfac.m

 [m,n] = size(Q);
 z = zeros(k,1);

 nmk = n-k;
 p = nmk+1;
 ck = [Q'*y; z];

 nvec=size(mu1,2); %assumes each column of mu1 is a new problem
(in general vector mu case, store as kxnvec)
 x=[];
 for i=1:nvec
 c=ck;

 [W,Rw] = qr([R(p:n,p:n) ; sqrtD*V*mu1(i)],0); %mu1 must be a k
vector corresponding to sqrt(D(\lambda))

 %debug=diag(mu1(:,i))*V

 c(p:n) = Rw\W'*c(p:n+k);

 xi = [R(1:nmk, 1:nmk)\(c(1:nmk) - R(1:nmk,p:n) *c(p:n));
V*c(p:n)];
 x=[x xi];
 end
%%%
%%%
%%% End PSQR_SolSteps.m
%%%
%%%

%%%
%%%
%%% Start PSQR_SolSteps_DpEqI.m
%%%
%%%

function [RSS,x] = PSQR_SolSteps_DpEqI(b,Q,R,V,s,k, mu1);
%function [RSS] = PSQR_matfac_DpEqI(b,Q,R,V,s,k,mu1);
%Carries out matrix factorization for special case D^P=I.
%
%
% Input: Q an m by n orthogonal matrix
%
% R the first n-k rows of an
% n by n upper triangular matrix
% with lower right k by k block
% a non-negative diagonal matrix
% stored in the vector s
%
%
% V k by k orthogonal SVD factor (or I dentity)
%
% s a k-vector with diag(s) the lower
% k by k block of R
%
% b an m vector
%
% k a pos integer between 0 and n
%
% mu1 a positive scalar (or column vecto r in vectorized
version)
%
% Assumes these quantities computed by P SQR_matfac_DpEqI.m

 [m,n] = size(Q);

 z = zeros(k,1);

 nmk = n-k;
 p = nmk+1;

 nrep=size(mu1,2);
 mu1=repmat(mu1,size(s,1),1);
 s=repmat(s,1,nrep);

 rho = s.*s + (mu1.*mu1);
%
% Note: this could potentially overflow
% unnecessarily. see literature on Givens rotations for
methods dealing with this case
%

 x=0;
 c = [Q'*b; z];
 c=repmat(c,1,nrep);

 c(p:n,:) = (s.*c(p:n,:) + c(n+1:n+k,:).*mu1)./ rho;

 %vectorized solve is not necessary in most app lications, e.g.
often
 %just many RSS values are needed
 % (keep lines below to show how batch solve is possible...others
apps may utilize this)
 x = [R(1:nmk, 1:nmk)\(c(1:nmk,:) - R(1:nmk,p:n)*c(p:n,:));
V*c(p:n,:)];

% Compute RSS in a "vectorized" fashion
% using orthogonality of [C ; mu1*D] to [b;0] -[C; mu1*D]*x
%
%
% simple relation xx:=[C;mu1*D]; yy:=[b-Cx; 0 - mu1*D*x]....then
inner product <xx,yy> is zero by definition at mini mizer \hat{x}.
% i.e. setting the cost function gradient equal to zero
%
% norm(b)^2 - (norm([C ; mu1*D])^2 + norm(mu1 *D*x)^2) = norm(b
- Cx)^2
%
% beta^2 - beta1^2
%

%bottom of b1 contains constraint informaton.
 b1 = [c(1:nmk,:); s.*c(p:n,:); c(p:n,:)*sqrt(2).*mu1];

 beta = norm(b);

 beta1 = sqrt(sum(b1.^2));
 RSS=((beta + beta1).*(beta - beta1)); %re sidual sum of
squares

%%%
%%%
%%% End PSQR_SolSteps_DpEqI.m
%%%
%%%

%%%
%%%
%%% Start PSQR_STATS_DpEqI.m
%%%
%%%

function
[GCV,AICc,dfres,sigma2HAT,SmootherTrace]=PSQR_STATS _DpEqI(RSS,Q,R,V,s
,wC,muVEC,k,wy)
%
%function [costfuncVEC]=QR_pudi_COSTFUNC(Q,R,V,wC,m uVEC)
%the wC and wy denote the weighted versions of the design mat and
observation vector (respectively). it
%is assumed that [Q,R,V] come from "PSQR_matfac_DpE qId.m" where the
weighted design mat was used.
%
%

m=size(Q,1);

[trVEC, tr2VEC] = traceVEC_DpEqI(s,size(wC,2),muVEC);
SmootherTrace=trVEC;

% NOTE:GCV bekiw yses RSS instead of RSS/m

GCV=((RSS)./((1-trVEC/m).^2));

AICc =log(RSS)+2*(trVEC+1)./(m-trVEC-2);

dfres=m-2*trVEC+tr2VEC;

sigma2HAT=RSS./dfres;

%%%
%%%
%%% End PSQR_STATS_DpEqI.m
%%%
%%%

%%%
%%%
%%% Start traceVec_DpEqI.m
%%%
%%%

function [tr, tr2] = traceVEC_DpEqI(s,n,mu1);
%function [tr, tr2] = traceVEC_DpEqI(s,n,mu1);
%
%Returns the trace of the smoother matrix and the t race of the
"square" of smoother
% Input: s the diagonal (non-negative) of
% the lower right k by k block
% an n by n upper triangular matrix
% R obtained from qrfacR(C,k)
%
% n the number of columns of C
%
% mu1 a positive scalar (or column vecto r in vectorized
version)
%
% Assumes these quantities computed by q rfacR.m
%
% Output: tr=trace(SM_mu1) ;tr2=trace(SM_mu1'*S M_mu1)
%
% where SM_mu1=C*((C'*C + mu1*mu1*D)\C') ;C = QRV'

 [k] = length(s);

 s = s.*s;

 if(size(mu1,1)==1)
 nvec=size(mu1,2);
 s=repmat(s,1,nvec);
 muV=repmat(mu1,size(s,1),1);
 else
 muV=mu1; %in case where mu1 is a scalar, repmat step above
isn't needed
 end

 z = s./(muV.^2 + s);

 tr = sum(z); %contribution from penalizd terms to trace of
"smoothing matrix"
 tr = n-k + tr; %trace of "smoothing matrix" wi th all terms
included
 tr2= n-k + sum(z.^2); %trace of "square of smo other matrix"

%%%
%%%
%%% End traceVec_DpEqI.m
%%%
%%%

