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Table 6.1

Supporting Table 1. Average AMSE 〈‖f − ̂f‖22/m〉 and measured standard deviation in paren-
theses for several estimators of f in the Monte Carlo study described in section 5.1. The subscript
corresponds to the design matrix used, and the “noise ratio” refers to the ratio of σ2f/σ

2
df . The

correlation coefficient ρ was set here to 0.5 (this parameter is needed to specify R).

Noise ratio f1 f2 f3 f4 f5
1/16 0.28(0.10) 0.27(0.10) 0.29(0.10) 1.05(0.36) 0.47(0.18)
1/4 0.21(0.08) 0.21(0.08) 0.22(0.08) 0.36(0.13) 0.47(0.18)
1/2 0.18(0.07) 0.18(0.07) 0.19(0.07) 0.24(0.09) 0.47(0.19)
2 0.22(0.11) 0.22(0.11) 0.23(0.11) 0.29(0.14) 0.86(0.26)
4 0.33(0.19) 0.33(0.19) 0.36(0.20) 0.51(0.26) 1.31(0.46)
16 0.80(0.63) 0.80(0.63) 0.86(0.68) 1.95(0.92) 3.00(2.06)

Table 6.2

Supporting Table 2. Average AMSE 〈‖f − ̂f‖22/m〉 and measured standard deviation in paren-
theses for several estimators of f in the Monte Carlo study described in section 5.1. The subscript
corresponds to the design matrix used, and the “noise ratio” refers to the ratio of σ2f/σ

2
df . The

correlation coefficient ρ was set here to 0 (this parameter is needed to specify R).

Noise ratio f1 f2 f3 f4 f5
1/16 0.36(0.14) 0.36(0.14) 0.39(0.15) 1.06(0.36) 0.47(0.18)
1/4 0.27(0.10) 0.27(0.10) 0.29(0.10) 0.36(0.13) 0.46(0.18)
1/2 0.22(0.09) 0.22(0.09) 0.24(0.09) 0.24(0.09) 0.47(0.18)
2 0.27(0.13) 0.27(0.13) 0.29(0.14) 0.29(0.13) 0.86(0.26)
4 0.41(0.22) 0.41(0.22) 0.43(0.24) 0.51(0.25) 1.30(0.44)
16 0.93(0.69) 0.93(0.69) 0.98(0.72) 1.94(0.91) 2.98(2.03)

6. Conclusions and outlook. We demonstrated how a single-molecule time se-
ries can be transformed, via local maximum likelihood-type methods, into scatterplot
data approximating pointwise function and derivative information associated with an
SDE. The functions needed by an SDE approximating the global dynamics of the
time series were obtained using P-spline techniques. The PuDI design matrix was
shown to be useful in this context. The PuDI design matrix exploited some of the
advantageous properties of the TPF basis; numerical difficulties were overcome with
a recent algorithm [20]. The use of GLS along with P-splines was shown to influence
the estimated curves, and the difference was shown to be relevant in regards to pre-
dicting/simulating physical quantities of interest. For example, the work computation
associated with the ion-channel system studied benefited substantially from the GLS
implementation. When this procedure was repeated for different time series, it was
shown that the global SDE functions estimated from different time series exhibited
variation in part due to a latent process; i.e., our data consisted of “subject specific
curves.” We briefly discussed why this is relevant information to modern biophysics
applications [4, 26].

Although we focused on simulation data, the methodology is also applicable to
experimental data [6, 8, 15]. Applications making fuller use of pointwise function
estimates and derivative proxies calibrated from time series, as the PuDI method was
demonstrated to do, show promise as tools that can be used for understanding the
rich amount of information contained in recent single-molecule experiments and com-
puter simulations. Other areas where function and derivative scatterplot information
is available and a PuDI might be helpful include geosciences [14] and finance [13].
MATLAB scripts illustrating the PuDI method can be found in the Supporting Ma-
terial which is available online from http://www.caam.rice.edu/tech reports/2009/


