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0.1 Preprocessing expression data Based on the KKT conditiong;;W;; = 0 ande/;(H;):; = 0, we
We removed the gene expression profiles with overall smabilake  get the following equations fdW;;, (H1):; and(Hz);:

values less than a percentile cutoff (60% is used here).héurt
we removed the gene expression profiles with a variance less

2 2
T T
than the percentile specified by another cutoff (30% is used_2Z(XfHI )iiWij + [QZ(WH1H1)+271W]iJWiJ =0,

here). The procedure was done using the standard functions =1 =1
(genelowvalfilter(Data,‘Percentile’,60) and geneveefilData, \
‘Percentile’,30)) in the Matlab software. (—WTXl—%HQBT)ijWij—F(WTWHl“"YQekkal)ijWij =0,

0.2 The SNMNMF algorithm and the discussion of its
convergence

The SNMNMF algorithm minimizes the following objective Then we can get the following updating rules:
function:

A
(—WTX2—AlHQA—ngB)ijWiﬁ(WTWHQﬂzekka2)ijWij =0.

(X1 HT + XoHT),;

FOW,Hi, Ho) = S || X1 — WH||% W T W HLHT + W HRHT + W)y
1=1,2 T A T
. . gl WX+ ZHB )y 3
— MTr(HAHT) — \oTr(HBHT) Rl S r—Y ®)
+ W% + 72(2 13115 + Z 1 117) B2 R (WTXs + M H2A+ 22 H1B);j
J 3’ O Yo [(WTW 4 yeenxr)Haliy
with the copstraint's/W >0, Hr > 0andl = 1,2, whereh; and  \ye have the following theorem to guarantee the convergefiteo
hj. are thejth and;j’th column of H; and H, respectively. above updating rules to a local optimum.

We expand the popular multiplicative updating algorithm  Theorem 1 The objective functiot of the SNMNMF problem
developed for NMF and its variants to SNMNMF. For the NMF ;o nonincreasing under the above updating rules. The oivject

problem, although the objective function of NMF is convexi?n  fnction is finite and invariant under these updates if andy dh
only or H only, it is not convex in both variables together. Therefore W, Hy and H are at a stationary point.
it is unrealistic to expect an algorithm to find the global mmam. The principle of convergence proof of NMF can be easily
The same applies to the SNMNMF problem. Below we detail thegypanded to prove this theorem. A difference to NMF is that
multiplicative updating algorithm for SNMNMF toidentifpé local  the objective functionF here can be unbounded below. Only the
minimum of 7. . ~_ objective is finite, the SNMNMF can get a stable local solutio
Based on the simple knowledge of linear algebra, the obfecti ere, we show thaf is nonincreasing under the updating rules.
function 7 can be reformulated as follows: In particular, here we prove that tif€ is nonincreasing under the
updating rule forH;, and same feature under the updating rule
F :Z [TT(X,)(}F) —2Tr(X Hf W) + Tr(WHIH}FWT)] for W can be similarly proved. We will adopt the same strategy
=1 used in (Lee and Seung, 2001) that introduced an auxiliargtion
in the Expectation-Maximization algorithm. The followirg the

T T
—MTr(HeAHy ) — AoTr(H\BH; ) definition of the auxiliary function.

. 2 - Definition G(h,h’) is an auxiliary function forF'(h) if the
+nTr(WWT) + 92> erk HiHi el conditionsG (h, h’) > F(h), G(h, h) = F(h) are satisfied.
I=1 Due to the following property, the auxiliary function is yarseful

@
g I - . or the proof.
. Let ¢;; and ¢;; be the Lagrange multipliers for the constraints Lemma 1 If G is an auxiliary function of ', then F is

Wi; 2 0 and(Hy):; = 0, respectively. The Lagrang@is nonincreasing under the updabé ™) = argminG (h, h")).

5 With a proper auxiliary function, the updating rule féf; is
LW, Hy) = F + Tr(sw7) + Z Tr(®HY). exactly _the update in this Lemma. Taking into account a_nmem
1 (H1)ab in Hr, we use thef,, to denote the part of that is only

relevant to( H1)q». It is easy to see that
whereV = [¢;;] and®; = [4/;]. The partial derivatives of with

respect tdV andH; are: o (83;) (oW Xy 2W W Hy— Ao Ha BT 426k Hy s
ab
oL _ i [—QXIH,T +2WHHT | + 27 W + U
ow =1 Fo, = (WTW + Y2€kxk)aa
oL Because the update is essentially element-wise, it is mirffito

o = —2WT X1 +2WTWHy — Ao HaBY +722ekx1Hi+®1,  show that eact,, is nonincreasing under the updating rule foy.




Lemma 2 Function the robustness of our result with respect to the initial peaters, we
ran our method using several different combinations. Wedahat

G(h, (Hl)ffb) :Fab((Hl)ffb)) + F;b((Hl)gt,,))(h - (H1)gt,,)) more than 60% of the genes were consistently grouped tageatide
[(WTW + vaenrr) Hilus s mqst of the enriched terms are the same for these (_:IifferaingE

+ o) 2 (h—(Hi)gy) (Figure S1B). Here the consistency measure is defined astioe r

(H1)4p of gene pairs present in the same modules across differsuitse

. - . “) under different settings.
is an auxiliary function forF ;.

Proof Obviously, G(h,h) = F,,(h). Here we only show that
G(h, (Hl)ffb)) > Fuu(h). To achieve this, we compare the Taylor A
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Obviously, we have ﬂ’\ 3 s . . Ay
((WTW“”YQeka)Hl)ab = Z(WTW+’Y2€kxk)ak(H1)§:b) % =00 270 500 O s Bk g5 15
& Iteration number Current setting Current setting

> (H1)Ez)b)(WTW+’Y2ekxk)aa- . L . :
(6) Fig. S1. A. The objective value for current setting. B. Comparison of

ThusG(h, (Hl)(t)) > Fou(h) holds. current parame_ter setting with other thre_e baseq on enenhEmaIyS|_s. The
ab . . —log(p-value) is shown on x- and y-axis for different parametetirsgs.
Proof of Theorem 1We can get the the following updating rule /e three setting ards( = 50, A, = 0.0001, Aa = 0.01, v, = 10, and
based on the auxiliary functio@(h, (Hl)fflf): ~2 = 10), (K = 50, A\; = 0.0001, A2 = 0.01, y1 = 10, andv = 5) and
(K =60, A1 = 0.0001, A2 = 0.01,v1 = 10, andvy2 = 5), respectively.
Fo(H1)g)
H (t+1) —(H (t) _ H (t) ab ab
( 1)ab ( 1)ab ( 1)ab 2((WTW+’Y2€kxk)Hl)ab

= )y

We have run the programs with different initializations hwit
) other fixed parameters, we found that the 90% of the genes were
(WTW + y2exxk) H1)ab consistently grouped together, indicating the robustresshe

» ) ® @) method to different initializations.
Due to the property of the auxiliary functid@fi(h, (H1),,, ) for Fus, To select the proper thresholfl, we assess the enrichment
Fay is nonincreasing under this updating rule. rate of gene modules with respect to GO biological process.
o ) For comparison, the mean rate of functional enrichment a0 1

0.3 Initialization of the algorithm corresponding random runs was also calculated. In Figurevg2
We initialize thelV/, H, andH» matrices by assigning the uniformly show the ratio of real enrichment rate against the mean of 100
distributed values ranging from 0 to 1 to their entries. Weentbat, ~ random ones for different cutoff’. The highest peak shows that
under different runs of the algorithm, the objective fuantionly  the7" = 7 is a good threshold.
have minor changes.

0.5 Permutation test for between correlations

) ) We show the sum of Pearson’s correlation coefficients (PREZS)
The method proposed here requires setting of several p&eme  {he miRNA-gene modules 32 and 40 and their distributions060L

Given that 41 miRNAs in the data sets have been previoustyrtep  random chosen miRNA-gene modules respectively (Figure S3)
to be related with ovarian cancer (Koturbatal., 2010), and which

can have multiple regulatory combination with other miR Nl ] o

the 57 mIRNA clusters contained in the data sets (miRNA elust 0-6 Module size distribution

data from the miRBase website [http://www.mirbase.orgithva We run the proposed method on the ovarian cancer dataset and
genomic cutoff distance of 50kb, see Materials and Methods)  obtained 50 ‘co-modules’ which are composed by a set of mIRNA
set the number of co-module to 50. As to the parameiersi., and a set of genes which are denoted as miRNAs modules and
1, 2, they were empirically determined by relative size of eachgene modules respectively. We show the module size disoibin
corresponding term of the objective function (Figure SIR).test  Figure S4 and each co-module contains 3.8 miRNAs and 78 genes

0.4 Parameter selection
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Fig. S4. Module size distribution for miRNA modules and gene modules
respectively.

0.9 |lllustration of the signals of W basis vectors

Fig. S2. The distribution of the enrichment ratio of gene modulesirgia  Based on the basis matri¥/, we can divide the samples into
the mean of that for modules of 100 random runs under differetoff 7. three groups. We show the signals of co-module 39 and 40 with
corresponding dividing lines (Figure S5).
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0.10 The EBC method

The EBC method integrated two types of information to idgnti
Fig. S3. Distribution of the sum of PCCs of randomly chosen miRNA@en miRNA-gene regulatory module. The method has the following
module_s estimated by 1000 random samplings for co-modulargl40 major steps (Figure S6): (1) Calculate miRNA-gene coriatat
respectively. matrix based on the (inverse) correlations in the exprassio

across samples, and convert the correlation matrix intoRINAF

. gene correlation network. (2) Construct a miRNA-gene raguy
on average. Note that three miRNAs and one genes modules af&,.ork by combining the constructed miRNA-gene correlati

empty. network and the corresponding predicted miRNA-gene régrja
network. (3) Enumerate all maximal bicliques as candidate
0.7 The literature review support for the overlapping regulatory modules, remove the ones with genes less thamunen
mMiRNAs postprocess candidate modules.

We search any two miRNAs of the overlapping miRNAs for each co 1 he maximal bicliques in a bipartite network can have quig b
module and see if they are related with the same biologicalgmses ~ ©verlap. For example, the maximal biclique 1 and 2 have alarg

uncovered by other studies. The ones supported by literaguiew ~ NUmber of overlapping genes, and their combinations andmadx
were listed in Table S1. bicliqgue 3 only have two genes difference (Figure S7).

0.8 The co-modules are highly enriched with cancer
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Table S1. Summary of collected function roles of the enriched ovegiag miRNAs based on literature search.

No Function description according to literature abstract Reference

10 Tumor suppressor function through regulating Rb/E2Fftinc(miR-449a/449b) Yanget al. (2009)
Targets of p53 and control of cell proliferation and adhesimependent growth (mir-34b/34c) Cornetyal. (2007)

14 Repression of the (miR-143/145 cluster) by oncogenicifitistes a tumor-promoting feed-forward pathway Kenal. (2010)
Smooth muscle cell (SMC) differentiation and vascular pgénesis (miR-143/145 cluster) Eé&aal. (2009)
(miR-143/145) modulate cytoskeletal dynamics and respensss of smooth muscle cells to injury. Xénal. (2009)

16 Might be important biomarkers for the early detection prajnostic assessment of prostate cancer eYal. (2010)
Repress FOXOL1 expression, affect cell cycle control anght@pic responses in endometrial cancer Mytal. (2010)
Expression depending on mismatch repair status and chasgict of undifferentiated proliferative states Sareeal. (2009)
Upregulated in prostate cancer and useful diagnostic avghpstic indicators Schaefet al. (2010)
Differential expressed, related with peculiar tumourgt@pathways and be potential biomarkers @hal. (2009)
The development of the cochlea (from the patterning to tfierdntiation of the cochlear structures) Sacletlal. (2009)

17 Both partners of the (miR-144/451 cluster) confer pitiecagainst simulated I/R-induced Zhaetal. (2010)
cardiomyocyte death via targeting CUGBP2-COX-2 pathway
(miR-144/451 cluster) tunes gene expression to impart astoless to erythropoiesis Rasmusseal. (2010)

19 Amplification and overexpression of (miR-30b, miR-30d &HDRBS3) at 8q24.22-g24.23 in medulloblastoma dtal. (2009)

20 Seel6 See 16

42 Deffiential expressed signature associated with Recladiaia reperfusion injury (IRI) Godwiet al. (2010)
miR-199a/miR-214 cluster is down-regulated in both muend human cytomegalovirus infection and Santhakuehat. (2010)
Manifests similar antiviral properties in mouse and humglisc
Through mir-199a/214, TWISTing stemness, inflammation @nadiferation of epithelial ovarian cancer cells Yéh al. (2010)
Altered microRNA Expression Patterns in Hepatoblastontefa Magrelli et al. (2009)
Deregulation of miRNAs is a recurrent event in human ovacamcer and that miR-214 induces cell survival Yangl. (2008)
and cisplatin resistance primarily through targeting tli&R/Akt pathway

46 See 17 See 17

Table S2. Summary of gene modules that are enriched with ovarian cagierees based on the IPA systejrvalue, the B-H multiple test correctedvalue.

No. Ovarian cancer genes genes g-value

2 FN1, INHBA, MMP3, MMP1, POSTN, PTGS2, SERPINE1, VCAN 8 2.87e-02
4 C110RF9, EFNB2, FGF18, KLK6, KLK8, KLK10, KLK11, SCGB2A1 8 6.06E-02
6 DACH1, EEF1A2, MMP3, S100P, SLIT2, WT1 6 5.73E-02
14 ABCAS8, DIRAS3, GSTM5, HSD11B1, ITLN1, MUM1L1 6 4.89E-03
22 DACH1, FAM54A, KPNA2, RRM2, S100P, TOP2A, TYMS 7 5.75E-03
23 CALB2, CFH, CXCL14, FABP4, FGF1, INHBA, PDGFRB, PEG3, PID§ SLIT2, TIMP3, VCAM1, VCAN 13 1.62E-03
28 DUSP4, EYA2, IFI27, IGFBP1, KLK5, KLK7, KLK8, MMP3, MMP7RRKCB, S100P, SCGB2A1, VTCN1, WFDC2, WT1 15 4.49E-07
34 CCL4, CSF1R, GPR65, IGFBP1, KLK7, LCN2, MMP7, SCGB2A1 8 2.29E-02
39 FOLR1, HMGA2, HOXB6, KLK11, PROM1, S100A2, TACSTD2, VAV3 8 5.66E-02
40 FAMb54A, HIST2H2AA3, KRT23, PAEP, SLPI, TIMP1, TOP2A, VIO 8 4.88E-02
42  FLRT2, HOXA4, IGFBP4, KIT, PDGFRA, PEG3, SEMA3C, SERPISIAUBB2A 9 3.32E-02
48 CXCL14, FLT1, IL6, INHBA, PLAU, POSTN, TIMP3, VCAN 8 2.20E-03
49 CEACAMG6, GPX3, LCN2, PEG3, S100A2, VAV3 6 4.34E-02




