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1 Approach

Our method combines predictive features derived from structure prediction tools,
comparative genomics, and sequence composition analysis (Figure 1). In order to de-
termine whether a given sequence codes for a small protein, we begin with a multiple
genome alignment for our target organism. We then use this alignment to generate
scores for each sequence based on three categories of analysis. The first analysis we
perform is to analyze the observed codon composition for a given sequence according
to a log-odds score. We score each sequence for agreement with its genome’s codon
biases on long protein genes. Second, we analyze each sequence for protein-like con-
servation patterns in the multiple sequence alignment. We score an alignment of a
homologous sequence to the target sequence according to a BLOSUM90 substitution
matrix. We then compare this to the score of the target sequence aligned to itself.
We expect homologous sequences that code for proteins to have a score similar to
the target self-alignment score. Finally, we look for prediction strength and con-
sistency among a set of local structure alphabets. For each sequence we generate
three independent predictions for a given local structure alphabet and measure their
overall agreement. We hypothesize that sequences coding for a protein will generate
more consistent predictions than sequences not coding for a protein. We combine
these scores, for a set of positive and negative training examples, to generate a model
which we use to predict on new sequences.
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Figure 1: Method overview. Our approach combines predictive features derived
from structure prediction, comparative genomics, and sequence analysis to generate
a prediction as to whether a given open reading frame (ORF) encodes for a protein.
Once we have identified candidate ORFs, we can map these coordinates onto the
corresponding genome and visualize the results with the UCSC Microbial Genome
Browser. This allows us to look for other hallmarks of protein encoding genes such
as the presence of a ribosome binding site (Shine-Dalgarno Motif).

2 Local structure alphabets

We generated predictions for a set of 15 local structure alphabets. Included in this set
is the protein blocks alphabet (alphabet composed of 16 average protein fragments
of 5 residues in length) [3], an alphabet of φ-ψ angles developed by Bystroff [2], and
several novel alphabets developed in the Karplus Lab [6, 5, 1]. The set of novel
alphabets includes str2 (an extension of the DSSP [4] secondary structure alphabet
with an expanded beta sheet class); alpha (an 11-letter alphabet based on the torsion
angle, alpha, which is defined for residue i as the angle between Cα atoms of residue
i−1, i, i+1, and i+2); o-sep and n-sep (hydrogen bond type classification based on the
chain separation between hydrogen donor and acceptor); o-notor and n-notor (similar
to o-sep and n-sep, but instead of chain separation looks at the torsion angle between
the peptide planes of the hydrogen donor and acceptor); o-notor2 and n-notor2 (based
on o-notor and n-notor respectively but also requires a minimum chain separation
of 5 and classifies multiple hydrogen bonds into 3 separate categories); strand-sep
(classifies beta strands based on the separation between the beta partners); str4 (a
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combination of several different alphabets including str2, notor2, and alpha); CB8-
sep9, CB-burial-14-7, and near-backbone-11 (burial alphabets designed to classify
based on the number of residues observed to occur within imaginary spheres centered
around points near each residue).
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3 Weights for protein conservation analysis

This section describes and lists the weights used for each homolog genome in the
BLSOUM-loss calculations. Each genome was weighted according to how related the
homologous species was to the target genome, E. coli K12. Weights were calculated
by taking the complete genome alignment between E. coli K12 and each homologous
species genome and calculating the percent identity across all aligned regions. This
percent identity was then subtracted from 1 to generate the weight. According to
this calculation then, species very similar to E. coli K12 were down-weighted while
more distantly related species were given a higher weight. Table 1 lists all the weights
used in the BLOSUM-loss calculation in descending order.
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Species Weight

Blochmannia floridanus 0.425
Buchnera aphidicola 0.421
Yersinia pestis 0.316
Enterobacter 638 0.235
Salmonella enterica ATCC 9150 0.209
Salmonella enterica CT18 0.209
E. coli UTI89 0.039
E. coli APEC O1 0.038
E. coli CFT073 0.038
E. coli 536 0.037
E. coli 0127 H6 E2348 69 0.036
E. coli SECEC SMS-3-5 0.034
E. coli O157H7 EDL933 0.029
E. coli O157H7 EC4115 0.028
E. coli O157H7 0.028
Shigella flexneri 0.025
E. coli E24377A 0.021
E. coli SE11 0.020
E. coli HS 0.016
E. coli C-ATCC-8739 0.014
E. coli DH10B 0.002
E. coli W3110 0.001

Table 1: Table of weights used for BLOSUM-loss score. Each weight was determined
by first calculating the sequence identity in a complete genome alignment between
each homologous species and E. coli K12. The percent identity was then subtracted
from one. Species closely related to E. coli K12 were given a lower weight according
to this calculation and more distantly related organisms were given higher weight.
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4 Distributions of individual scoring features

We looked at how well each individual feature discriminated the two training pop-
ulations by creating a histogram of each set’s scores (Figures 2 through 18). It was
clear that by all measures the set of true protein coding sequences had a very distin-
guishable distribution. This is best evidenced by the scores resulting from our codon
bias and BLOSUM-loss calculations, Figure 2 and Figure 3 respectively.

For the set of all GenBank-annotated genes 1000 bases or longer (Positive training
set), the resulting codon bias scores indicated better agreement with the genome’s
codon bias composition model than with the background model based solely on
GC-content. On the other hand the set of all non-annotated ORFs (Negative train-
ing set) contained a much broader distribution with more ORFs scoring negatively
indicating better agreement with the background codon composition model. The
BLOSUM-loss measure yielded similar resolution between the positive and negative
training examples. As expected the set of true protein codon sequences had, on
average, significantly smaller BLOSUM-loss scores than the set of all non-annotated
sequences. As with the codon bias measure, the negative data set had a much broader
distribution than the positive data set.

Agreement among the local structure predictions also yielded good discrimination
between the positive and negative training data. Shown in Figures 4 through 18 are
the distributions of prediction consistency scores for 15 local structure alphabets. In
14 out of the 15 alphabets, the predictions for the true protein coding sequences were
more consistent than predictions for the set of all non-annotated ORFs.

There was one notable exception: the predictions for the burial alphabet CB-
burial-14-7 were more consistent on average for the negative training data (Figure 8).
Despite this observed behavior the scores for CB-burial-14-7 alphabet still resolved
the negative and positive training data quite well. A possible explanation for the
consistency on the negative training data is that the negative training examples
contained more predictions for exposed residues. Predictions for buried residues
were rare among this set of sequences. We hypothesized that the greater prediction
agreement was due in large part to the higher than normal percentage of residues
predicted to be solvent exposed. Unfortunately for this hypothesis, the other two
burial alphabets (near-backbone-11 and CB8-sep-9) behaved more like the structural
alphabets, being more consistent for the positive training data.
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Figure 2: Distribution curves of codon bias scores for two sets of E. coli K12 ORFs.
Shown are the set of all GenBank-annotated ORFs 1000 bases or longer (GBK-
GT1K, green) and the set of all possible ORFs with no more than 20% of their
sequence overlapping with any GenBank annotations (All-NA, red). The score is a
log-odds metric that looks for selection of high expression amino acids in a given
genome. Positive scores indicate better agreement with a genome’s known codon
bias model. Negative scores indicate better agreement with a model based on GC-
richness.
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Figure 3: Distribution curves of BLOSUM-loss scores for two sets of E. coli K12
ORFs. Shown are the set of all GenBank-annotated ORFs 1000 bases or longer
(GBK-GT1K, green) and the set of all possible ORFs with no more than 20% of their
sequence overlapping with any GenBank annotations (All-NA, red). BLOSUM-loss
is measured by looking at the ratio of target-to-homolog BLOSUM90 score vs the
target-to-self-BLOSUM90 score. The ratio is averaged across all codons with at least
1 DNA mutation in 1 homologous sequence. The final score is subtracted from 1.01
for plotting purposes. A score of 0.01 represents perfect amino acid conservation
while large scores represent little conservation of the amino acids.
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Figure 4: Distribution curves for prediction agreement among the str4 alphabet
predictions for ORFs in the E. coli K12 genome. Shown are the set of all GenBank-
annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of all possible
ORFs with no more than 20% of their sequence overlapping with any GenBank anno-
tations (ALL-NA, Red). Higher scores indicate greater agreement among predictions.
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Figure 5: Distribution curves for prediction agreement among the strand-sep al-
phabet predictions for ORFs in the E. coli K12 genome. Shown are the set of all
GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of
all possible ORFs with no more than 20% of their sequence overlapping with any
GenBank annotations (ALL-NA, Red). Higher scores indicate greater agreement
among predictions.
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Figure 6: Distribution curves for prediction agreement among the alpha alphabet
predictions for ORFs in the E. coli K12 genome. Shown are the set of all GenBank-
annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of all possible
ORFs with no more than 20% of their sequence overlapping with any GenBank anno-
tations (ALL-NA, Red). Higher scores indicate greater agreement among predictions.
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Figure 7: Distribution curves for prediction agreement among Bystroff alphabet
predictions for ORFs in the E. coli K12 genome. Shown are the set of all GenBank-
annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of all possible
ORFs with no more than 20% of their sequence overlapping with any GenBank anno-
tations (ALL-NA, Red). Higher scores indicate greater agreement among predictions.
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Figure 8: Distribution curves for prediction agreement among CB-burial-14-7 al-
phabet predictions for ORFs in the E. coli K12 genome. Shown are the set of all
GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of
all possible ORFs with no more than 20% of their sequence overlapping with any
GenBank annotations (ALL-NA, Red). Higher scores indicate greater agreement
among predictions. Surprisingly, the set of true proteins has lower prediction agree-
ment scores than the small ORFs, unlike other local structure alphabets. Even the
other burial alphabets, near-backbone-11 in Figure 13 and CB8-sep-9 in Figure 15
do not have this anomalous behavior.
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Figure 9: Distribution curves for prediction agreement among the str2 alphabet
predictions for ORFs in the E. coli K12 genome. Shown are the set of all GenBank-
annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of all possible
ORFs with no more than 20% of their sequence overlapping with any GenBank anno-
tations (ALL-NA, Red). Higher scores indicate greater agreement among predictions.
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Figure 10: Distribution curves for prediction agreement among the protein blocks
alphabet predictions for ORFs in the E. coli K12 genome. Shown are the set of all
GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of
all possible ORFs with no more than 20% of their sequence overlapping with any
GenBank annotations (ALL-NA, Red). Higher scores indicate greater agreement
among predictions.
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Figure 11: Distribution curves for prediction agreement among the n-notor2 alpha-
bet predictions for ORFs in the E. coli K12 genome. Shown are the set of all
GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of
all possible ORFs with no more than 20% of their sequence overlapping with any
GenBank annotations (ALL-NA, Red). Higher scores indicate greater agreement
among predictions.
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Figure 12: Distribution curves for prediction agreement among the n-notor alpha-
bet predictions for ORFs in the E. coli K12 genome. Shown are the set of all
GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of
all possible ORFs with no more than 20% of their sequence overlapping with any
GenBank annotations (ALL-NA, Red). Higher scores indicate greater agreement
among predictions.
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Figure 13: Distribution curves for prediction agreement among near-backbone-11 hy-
drogen bond alphabet predictions for ORFs in the E. coli K12 genome. Shown are
the set of all GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green)
and the set of all possible ORFs with no more than 20% of their sequence overlap-
ping with any GenBank annotations (ALL-NA, Red). Higher scores indicate greater
agreement among predictions.
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Figure 14: Distribution curves for prediction agreement among the n-sep alphabet
predictions for ORFs in the E. coli K12 genome. Shown are the set of all GenBank-
annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of all possible
ORFs with no more than 20% of their sequence overlapping with any GenBank anno-
tations (ALL-NA, Red). Higher scores indicate greater agreement among predictions.
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Figure 15: Distribution curves for prediction agreement among CB8-sep9 burial al-
phabet predictions for ORFs in the E. coli K12 genome. Shown are the set of all
GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the set of
all possible ORFs with no more than 20% of their sequence overlapping with any
GenBank annotations (ALL-NA, Red). Higher scores indicate greater agreement
among predictions.
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Figure 16: Distribution curves for prediction agreement among o-notor hydrogen
bond alphabet predictions for ORFs in the E. coli K12 genome. Shown are the set
of all GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the
set of all possible ORFs with no more than 20% of their sequence overlapping with
any GenBank annotations (ALL-NA, Red). Higher scores indicate greater agreement
among predictions.
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Figure 17: Distribution curves for prediction agreement among o-notor2 hydrogen
bond alphabet predictions for ORFs in the E. coli K12 genome. Shown are the set
of all GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the
set of all possible ORFs with no more than 20% of their sequence overlapping with
any GenBank annotations (ALL-NA, Red). Higher scores indicate greater agreement
among predictions.
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Figure 18: Distribution curves for prediction agreement among o-sep hydrogen bond
alphabet predictions for ORFs in the E. coli K12 genome. Shown are the set of
all GenBank-annotated ORFs 1000 bases or longer (GBK-GT1K, green) and the
set of all possible ORFs with no more than 20% of their sequence overlapping with
any GenBank annotations (All-NA, red). Higher scores indicate greater agreement
among predictions.
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Feature 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp
Codon Bias 13.21 14.43 11.62 10.54 10.43 10.56 10.63
CB-burial-14-7 -74.47 -59.76 -105.29 -100.94 -110.73 -113.39
BLOSUM-loss -5.54 -4.81 -4.56 -4.55 -4.59
CB8-sep-9 247.19 230.57 250.96 254.30
n-notor2 4.51 11.91 1.02
Bystroff -7.53 -8.05
n-notor 12.07

Table 2: Weights for features from three fold cross validation experiments with mul-
tiple genome data. Table of logistic regression coefficients for each component in
the optimal 1-, 2-, 3-, 4-, 5-, 6-, and 7-feature model. The final model consisted of
codon bias score, CB-burial-14-7, BLOSUM-loss, CB8-sep-9, n-notor2, Bystroff, and
n-notor added in that order.

5 Cross training results

The results from the systematic analysis of all 17 features was that the codon bias
calculation was the best single feature. We generated true-positive-vs-false-positive
curves for each feature. At 800 TPs, roughly half of positive training examples,
the codon bias calculation has only 85 FPs. The next best single feature was the
BLOSUM-loss score with 394 FPs after the first 800 TPs, a significant drop-off in
performance. It seems that selection for efficient expression is stronger than selec-
tion to preserve the identities of the amino acids. Figure 19 shows the TP vs. FP
curves for the cross-validation tests of the 7 models. We can clearly see the im-
proved performance as we move from one to two, three, four, and even five features.
After this point, however, we seem to have saturated our performance. The best 7-
feature combination included codon bias, CB-burial-14-7, BLOSUM-loss, CB8-sep9,
n-notor2, Bystroff, and n-notor, added in that order. Figure 20 shows the curves for
each individual component of the best 7-feature model.

Table 2 lists the regression coefficients for each of the parameters in the optimal 1-,
2-, 3-, 4-, 5-, 6-, and 7-feature logistic regression models. Higher values indicate more
emphasis placed on a particular feature. Positive values indicate a direct correlation
between outcome and a given feature. Conversely, negative values indicate an inverse
relationship between outcome and a given feature. The negative value was expected
for BLOSUM-loss, which is minimized for true proteins, but was somewhat surprising
for the local structure alphabet CB-burial-14-7
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Figure 20: Average cross-validation results for single feature logistic regression mod-
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Figure 21: Plot of prediction’s rank versus the gene length in number of amino acids. This
ensemble consists of all un-annotated ORFs plus the validated small proteins set from E. coli K12.
There was correlation between rank and ORF size, Spearman’s ρ = −0.71 and Kendall’s τ = −0.52.
This was especially true for very small ORFs, i.e. very small ORFs scored poorly.

6 Length bias

We investigated how prediction accuracy correlated with sequence length. ORF
length is typically a good predictor of whether or not a given gene is real or an artifact
of random chance. The longer the ORF, the less likely it is to have occurred randomly.
For this reason we took great care to avoid any length bias. Figure 21 shows the rank
of all test predictions (i.e., all un-annotated ORFs plus the validated small proteins
set) against the length of each sequence. There is a strong correlation between length
and prediction ranks, Spearman’s ρ = −0.71 and Kendall’s τ = −0.52. Specifically,
very small ORFs tend to rank poorly. However, if we focus on the top prediction
ranks, the area we are most interested in, the correlation goes away. Within the top
1000 predictions, the Spearman’s ρ = 0.02 and Kendall’s τ = 0.02 as well. Looking
at the top 200 predictions the Spearman’s ρ = −0.05 and Kendall’s τ = −0.03.
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7 Comparison to Glimmer

The default Glimmer protocol correctly identified 16 of the experimentally validated
small proteins within the top 200 predictions but was unable to perform better than
our method overall. For example, we found that 5 of the top 10, 10 of the top
20, 11 of the top 30, 13 of the top 40, and 26 of the top 100 were from the set of
experimentally validated small proteins. Glimmer found 2 of the top 10, 5 of the
top 20, 8 of the top 30, 8 of the top 40, and 14 of the top 100 were from the set of
experimentally validated small proteins. Our method found a total of 35 validated
small proteins within the top 200 predictions compared to only 16 validated small
proteins within the top 200 predictions for the default Glimmer protocol (Table 3)
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8 Identification of novel small proteins

Several small ORFs not previously annotated as protein encoding were among the
highest scoring in the validation experiment. Supplementary table “novel predictions.txt”
lists the chromosome ID, plus strand starting coordinate, plus strand ending coor-
dinate, amino acid length, unique ID, coding strand, prediction rank in validation
experiment, and the score of the best match to a Shine-Dalgarno motif within the 15
bp immediately upstream of the ORF’s start codon for each ORF with no more than
20% of its sequence overlapping a GenBank annotation in the validation experiment.
This represents an ensemble of 11,185 sequences.
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