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S1 Identifiability analysis

First of all, we note that in model (7) of the main text, for each reaction i, only a subset of
metabolites is involved. That is, only a subset of the entries of vector c.i need to be identified,
while the values of the remaining entries are fixed to 0. Let us call nci with 0 < nci < (n+p)
the effective number of parameters to identify. A straightforward reformulation of the
regression model is the following:

w.i = Y
′ · c′ + ε.i (S1)

with c′ ∈ R
nci a vector collecting the nonzero values of c.i and Y

′ ∈ R
q×nci a matrix com-

posed of the corresponding columns of Y ,i.e., the metabolites involved in reaction i. Bearing
this in mind, for simplicity, we will drop index i in the sequel writing nc in place of nci and
sticking to the usual notation w = Y · c+ ε.

To deal with identifiability issues, we use Principal Component Analysis (PCA) on the
model (S1) [Jolliffe, 1986, Nikerel et al., 2009]. To detect nonidentifiable parameters, we
decompose the data matrix Y using Singular Value Decomposition (SVD):

Y = U · diag(s1, s2, ..., snc
) · V T (S2)

with U ∈ R
q×q and V ∈ R

nc×nc orthonormal matrices and s1 ≥ · · · ≥ snc
≥ 0 the singular

values of Y . Note that the sum of squared singular values is equal to the square of the
Frobenius norm of Y , ‖Y ‖2 =

∑
k

∑
j Y

2
j,k, that is, in an equivalent statistical interpretation,

to q times the sum of the variances of all metabolite concentrations over q experiments (recall
that each column of Y has zero mean by definition).

In presence of dependencies among data, there exists an index r with 1 ≤ r < nc such
that sr+1 = · · · = snc

= 0. Then Y is of rank r. As a consequence, for any two vectors w
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and c such that w = Y · c, there exists an (nc − r)-dimensional vector space KY ⊆ R
n−r

(the kernel of Y ) such that w = Y · (c+ kY ) also holds for any kY ∈ KY . For the purpose
of identification, this implies that c cannot be uniquely reconstructed from the data. (The
case where (sr+1, · · · , snc

) are only approximately 0 will be discussed later in this section.)
We rely on the observation that KY = range(Vr+1:nc

), the vector space generated by the
last nc − r columns of V . In order to formulate a regression problem with a well-defined
solution, we rewrite model (S1) in terms of a reduced data matrix Y ∗ ∈ R

q×r and a reduced
parameter vector c∗ ∈ R

r as follows:

{
w = Y ∗ · c∗ + ε
Y ∗ = Y · V1:r

(S3)

where V1:r ∈ R
nc×r is the matrix obtained by extracting the first r columns of V . Since Y ∗

is full-column rank, Y ∗ · c∗ is a linear combination in c∗ of independent data vectors. This
ensures that the solution to the regression (S3) is unique, hence we call c∗ ‘identifiable’.

Given a unique solution c∗ to the regression (S3), the space of undistinguishable solutions
for the original parameter vector c in (S1) can then be defined as follows:

c ∈ {V1:r · c∗ + kY , kY ∈ KY } (S4)

Depending on the structure of the orthonormal matrix V , we may be able to isolate
some entries of c that can be uniquely determined from the reduced model, that is, from
the estimates of c∗. This happens when all elements of at least one row of Vr+1:nc

are equal
to 0. Indeed, this is the criterion we used in Sec. 5 to isolate identifiable parameters in
nonidentifiable reactions, such as reactions 10 and 11 in Table 1.

In practice, singular values are rarely exactly 0, even in presence of data dependencies.
This can be due to several causes, including measurement noise, numerical roundoffs, etc.
Still, for some r < nc, values of (sr+1, · · · , snc

) sufficiently close to 0 can make the estimates
of c solving regression poorly determined. Thus a criterion to discard those singular values
needs to be defined.

In this paper, we approximate by zero all singular values whose total contribution to
the variance of Y , i.e., to the ‘informativity’ of the metabolite data, is under some suitable
threshold λ, that is, we define

r = min



t ∈ [1..(nc − 1)] ,

√∑t
k=1 s

2
k∑nc

k=1 s
2
k

≥ λ



 (S5)

and set sr+1 = · · · = snc
= 0. By this approximation, from (S2) we obtain a data matrix Y

of rank r < nc. The PCA method described before then applies. The results discussed in
Sec. 4 and Sec. 5 were obtained with λ = 0.99.

S2 Likelihood-based identification of linlog models

We rely on the notation of Sec. 3 of the main section, i.e., we focus on a single reaction and
drop index i from the notation. The loglikelihood of the model is:

logL (c) = log

∫
fW |y̆,ỹ,c(w)fỸ |y̆,c(ỹ)dỹ. (S6)
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For convenience, we rewrite (S6) in terms of the random variable Z = Ỹ · c introduced
in Sec. 3 so that it becomes:

logL (c) = log

∫
fW |y̆,z,c(w)fZ|y̆,c(z)dz. (S7)

Here fW |y̆,z,c(·) is the Gaussian likelihood function of model (7), equivalently rewritten

as W = Y̆ · c+ Z + ε, given Y̆ = y̆ and Z = z, with z varying over all possible values of Z,
and fZ|y̆,c is the Gaussian prior of Z = Ỹ · c following from (10). The expressions of fW |y̆,z,c

and fZ|y̆,c are thus





fW |y̆,z,c(w) =
1√

det(2πΣε)
exp(− 1

2 [w − Y̆ · c− z]TΣ−1
ε [w − Y̆ · c− z]),

fZ|y̆,c(z) =
1√

det(2πΣy̆,c)
exp(− 1

2 [z − µy̆,c]
TΣ−1

y̆,c[z − µy̆,c]),
(S8)

with µy̆,c = M · c, where the entry Mj,k of matrix M is the mean µj,k of the distribution

of Ỹj,k, and Σy̆,c is the variance matrix of the random variable Z. By the independence

assumptions on Ỹ , it turns out that

Σy̆,c = diag

(
nc∑

k=1

c2k · [σ2
1,k · · ·σ2

q,k]
T

)
(S9)

where σj,k is defined in (10).
Assume for the moment that Σy̆,c is invertible. Defining

fpc
(z) = fW |y̆,z,c(w) · fZ|y̆,c(z), (S10)

after simple but tedious calculations, we obtain

fpc
(z) = κfc · fc(z) (S11)

with fc the density function of a Gaussian distribution N (µfc ,Σfc) and





Σfc = [Σ−1
ε +Σ−1

y̆,c]
−1,

µfc = Σfc · [Σ−1
ε · (w − Y̆ · c) + Σ−1

y̆,c · µy̆,c],

κfc =
exp(− 1

2
[w−Y̆ ·c−µy̆,c]

T ·[Σε+Σy̆,c]
−1·[w−Y̆ ·c−µy̆,c])√

det(2π[Σε+Σy̆,c])
.

(S12)

The proportionality factor κfc does not depend on the integration variable z, so it can
be taken out of the integral and (S7) can be rewritten as follows:

logL (c) = log(κfc) + log

(∫
fc(z)dz

)
. (S13)

The integral of a normalized Gaussian density function being 1, we finally have an ana-
lytical expression for the loglikelihood: logL (c) = log(κfc).

The above results are used in the expectation step of the EM algorithm. Recall the
definition

Q(c|ĉℓ−1) =

∫
log(fZ,W |y̆,c(z, w))fZ|y̆,ĉℓ−1,w(z)dz. (S14)

The Bayes theorem allows us to rewrite (S14) as follows:
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Q(c|ĉℓ−1) =

∫
log(fW |y̆,z,c(w)fZ|y̆,c(z))

fW |y̆,z,ĉℓ−1(w)fZ|y̆,ĉℓ−1(z)

fW |y̆,ĉℓ−1(w)
dz. (S15)

Function fW |y̆,ĉℓ−1(w) does not depend on z so it can be taken out of the integral.
Moreover, this function does not depend on c so it will have no impact on the maximization
step of EM. Thus, we can ignore this function from the computation of the expectation
function above.

Using definitions (S10) and (S11), we can rewrite (S15) in the following way:

Q(c|ĉℓ−1) ∝
∫

κf
ĉℓ−1

fĉℓ−1(z) log(κfcfc(z))dz

∝
∫

fĉℓ−1(z) log(κfcfc(z))dz.

(S16)

We have dropped the constant factor κf
ĉℓ−1

as it does not depend on c and thus does not
influence the maximization step of EM. By replacing log(κfcfc(z)) by log(κfcfc(z)fĉℓ−1(z)/
fĉℓ−1(z)) and separating the integrand in a sum of terms, we can rewrite (S16) as

−Q(c|ĉℓ−1) ∝
∫

fĉℓ−1(z) log

(
fĉℓ−1(z)

fc(z)

)
dz −

∫
fĉℓ−1(z) log(fĉℓ−1(z))dz − log(κfc). (S17)

We recognize in the first term the definition of the Kullback-Leibler divergence KL(fc||
fĉℓ−1) between the two probability distributions fc and fĉℓ−1 and in the second term the
entropy H(fĉℓ−1) of fĉℓ−1 [Cover and Thomas, 2006, Stoorvogel and van Schuppen, 1996].
For Gaussian distributions, these can be written explicitely as

KL(fc||fĉℓ−1) =
1

2
(log

(
det(Σfc)

det(Σf
ĉℓ−1

)

)
+ Tr(Σ−1

fc
Σf

ĉℓ−1
)

+ [µfc − µf
ĉℓ−1

]TΣ−1
fc

[µfc − µf
ĉℓ−1

]), (S18)

where Tr(. . .) stands for trace and

H(fĉℓ−1) = log
(√

det(2πeΣf
ĉℓ−1

)
)
. (S19)

To summarize, together with (S12), this gives us the explicit formula

Q(c|ĉℓ−1) ∝ −KL(fc||fĉℓ−1)−H(fĉℓ−1) + log(κfc), (S20)

which we employ in our implementation of EM.
In more generality, for some values of c, Σy̆,c may be singular or poorly conditioned. To

avoid this circumstance, we can adapt our procedure as follows. We consider a decomposition

W = Y̆ · c+ Z + (ε′ + ε′′) = Y̆ · c+ (Z + ε′) + ε′′ (S21)

where ε′ and ε′′ are independent zero-mean Gaussian random vectors such that Σε′ ,

V ar(ε′) = αΣε and Σε′′ , V ar(ε′′) = (1−α)Σε, with α ∈ (0, 1) a tunable parameter. Since
Σε > 0 by assumption, it follows that Σε′ > 0 and Σε′′ > 0. Moreover, Σε = Σε′ +Σε′′ , i.e.,
the statistics of ε and of ε′ + ε′′ are identical. Since V ar(Z + ε′) = Σy̆,c + Σε′ > 0, if we
interpret Z + ε′ as the unknown observations (in place of Z) and ε′′ as the model noise (in
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place of ε), we ensure that the variance of the ‘missing data’ is invertible. Thus, in practice,
we apply all formulas developed above with Σy̆,c + Σε′ in place of Σy̆,c and Σε′′ in place of
Σε.

The effect of the specific choice of α is under investigation. In this work, we took α = 0.2,
a value that leads to good results in practice.

S3 Validation on synthetic data

The model used for comparing peformance of the identification algorithms is a reduced
synthetic linlog model of the E. coli central carbon metabolism network (Fig. S1 of the main
text). This network contains 17 variables, describing internal and external metabolites, and
25 reactions, summarized in Table S1 and Table S2, respectively. The linlog model has the
form of Eq. (1)-(2) of the main text.

Figure S1: Network for the synthetic model, a reduced version of the E. coli central carbon
metabolism network.

A dataset was generated from the synthetic linlog model by setting all enzyme concen-
trations to 1 and choosing plausible values for the parameter vector a and matrices Bx,
Bu, that is, values consistent with existing kinetic models of carbon metabolism in E. coli

[Bettenbrock et al., 2005]. Then q = 30 different experimental conditions were simulated
by randomly changing enzyme concentrations. For each condition j ∈ {1, ..., q}, vectors
ln(x(j)), ln(u(j)) and v(j) were determined by the equations resulting from the formulation
of the linlog model and the (quasi-)steady-state equation N · v = 0:
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Index Name Symbol

1 Pyruvate Pyr
2 Phosphoenol-pyruvate PEP
3 Glyceraldehyde-3-phosphate G3P
4 Fructose-6-phosphate F6P
5 Glucose-6-phosphate G6P
6 3-phosphoglycerate 3PG
7 Dihydroxyacetonephosphate DHAP
8 Ribulose-5-phosphate Ru5P
9 Ribose-5-phosphate R5P
10 6-phosphogluconate 6PG
11 Erythrose-4-phosphate E4P
12 Xylulose-5-phosphate X5P
13 2-phosphoglycerate 2PG
14 1,3-diphosphosphoglycerate 1,3DP
15 Fructose-1,6-bisphosphate FBP
16 2-keto-3-deoxy-6-phosphogluconate 2KDPG
17 Sedoheptulose-7-phosphate S7P

Table S1: Metabolites included in the synthetic linlog model.





[
ln(x(j))
ln(u(j))

]
= −

[
N · diag(e(j)) · [Bx Bu]

]−1
N · diag(e(j)) · a,

v(j) = diag(e(j)) ·
(
a+Bx · ln(x(j)) +Bu · ln(u(j))

)
.

(S22)

For this dataset, four scenarios were considered, corresponding to more or less favorable
conditions for identification: 40 % and 75 % missing entries and 10% and 20% noise. For
each column of Y , i.e., each metabolite of the model, the 40% or 75% missing data were
distributed randomly over the q measurements. Randomly generated noise was added to
the same incomplete dataset in each of 100 Monte-Carlo repetitions.

Identifiability analysis was performed following the approach described in Sec S1, with
λ = 0.99. 10 reactions were found to be nonidentifiable (reactions 2, 5, 6, 7, 8, 12, 14, 15,
20 and 21). Among these reactions only 3 identifiable parameters could be isolated (one in
reaction 2, one in reaction 7 and one in reaction 12).

Results from all identification methods on identifiable reactions are summarized in
Fig. S2 for the most favorable scenario with 40% missing data and 10% noise, and in Fig. S3
for the least favorable scenario with 75% missing data and 20% error. The results for the
other scenarios fall between those shown in Fig. S2 and Fig. S3, and are not shown here.

S4 Application to central metabolism in E. coli

Fig. 3 shows a (simplified) representation of central carbon metabolism in E. coli. The net-
work could not be directly transformed into a linlog model of the form (1)-(2), since metabo-
lites G3P, E4P, X5P, 2KDPG, OAA, IsoCit, SuccoA, Acp and Glyox were not measured
by Ishii et al. [2007]. This prevents the estimation of elasticities for the above metabolites
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Index Name

1 Phosphotransferase system
2 Glucose-6-phosphate isomerase
3 Glucose-6-phosphate dehydrogenase
4 Phosphofructokinase
5 Transaldolase
6 Transketolase a
7 Transketolase b
8 Aldolase
9 Glyceraldehyde-3-phosphate dehydrogenase
10 Triosephosphate isomerase
11 Glycerol-3-phosphate dehydrogenase
12 Phosphoglycerate kinase
13 Serine synthesis
14 Phosphoglycerate mutase
15 Enolase
16 Pyruvate kinase
17 PEP carboxylase
18 Pyruvate synthesis
19 6-Phosphogluconate dehydrogenase
20 Ribose-phosphate isomerase
21 Ribulose-phosphate epimerase
22 Ribose-phosphate pyrophosphokinase
23 Phosphogluconate dehydratase
24 KDPG aldolase
25 Fructose bisphosphatase

Table S2: Reactions included in the synthetic linlog model.

7



Figure S2: Statistics of estimated parameter values in identifiable reactions for datasets with
40% of missing data and 10% noise. The graphical notations are the same as for Fig. 1.
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Figure S3: Statistics of estimated parameter values in identifiable reactions for datasets with
75% of missing data and 20% noise. The graphical notations are the same as for Fig. 1.
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and their inclusion in the model. We overcome this limitation by lumping reactions not
measured by Ishii et al. [2007].

In addition to the above model simplification imposed by the available dataset, we added
a phenomenological reaction µ to model biomass production. The reaction involves 11
metabolites, the reaction flux is equal to the dilution rate under the experimental conditions
of Ishii et al. [2007] and the enzyme concentration is set to 1.

The linlog model thus obtained contains 16 internal metabolites and 7 external metabo-
lites or cofactors, listed in Table S3, as well as 31 reactions, listed in Table S4.

Internal metabolites
Index Symbol Index Symbol

1 PEP 9 Ru5P
2 G6P 10 R5P
3 Pyr 11 S7P
4 F6P 12 2KG
5 FBP 13 Suc
6 DHAP 14 Fum
7 3PG 15 Mal
8 6PG 16 Cit

Index
External metabolites

or cofactors

17 Glc
18 AcoA/coA
19 ATP/ADP
20 NADPH/NADP
21 NADH/NAD
22 FAD
23 Ace

Table S3: Internal and external metabolites and cofactors of the linlog model of carbon
metabolism in E. coli. Some of the cofactors are modeled as ratios of metabolite concentra-
tions, e.g., ATP/ADP.
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Index Reaction

1 Glc + PEP
ptsG
←−−→ Pyr+G6P

2 G6P
pgi
←→ F6P

3 F6P + ATP/ADP
pfkA,pfkB
←−−−−−−→ FBP [PEP]in

4 FBP
fbaA,fbaB
←−−−−−−→ DHAP

5 DHAP
tpiA
←−→ 3PG

6 FBP + ATP/ADP
gapA;pgk
←−−−−−→ 3PG + NADH/NAD

7 3PG
gpmA,gpmB;eno
←−−−−−−−−−→ PEP

8 PEP + ATP/ADP
pykA,pykF
←−−−−−−→ Pyr [FBP]act

9 Pyr
aceE:aceF :lpdA
←−−−−−−−−−→ AcoA/coA + NADH/NAD

10 G6P
zwf ;pgl
←−−−→ 6PG + NADPH/NADP

11 6PG
gnd
←−→ Ru5P + NADPH/NADP

12 Ru5P
rpe
←−→ S7P

13 Ru5P
rpiA,rpiB
←−−−−−→ R5P [G6P]in

14 R5P
tktA
←−→ S7P

15 S7P
talA,talB
←−−−−−→ F6P

16 Ru5P
tktB
←−−→ F6P

17 AcoA/coA
gltA,prpC
←−−−−−→ Cit [2KG]in [NADH/NAD]act

18 Cit
acnA,acnB
←−−−−−−→ 2KG

19 AcoA/coA
icdA
←−→ 2KG + NADPH/NADP

20 2KG
sucA:sucB:lpdA;sucC:sucD
←−−−−−−−−−−−−−−−−→ Suc + NADH/NAD

21 Suc + FAD
sdhA:sdhB:sdhC:sdhD
←−−−−−−−−−−−−−→ Fum

22 Fum
fumA,fumB,fumC
←−−−−−−−−−−−−→ Mal

23 Mal + PEP
mdh
←−→ Cit +NADH/NAD

24 PEP
ppc;pckA
←−−−−→ Mal + Cit + ATP/ADP [FBP]act

25 Mal
maeB,sfcA
←−−−−−−→ Pyr + NADPH/NADP [AcoA/coA]in [NADH/NAD]act

26 AcoA/coA
aceA;aceB
←−−−−−→ Suc + Mal

27
PEP+G6P+Pyr+F6P+3PG+AcoA/coA+R5P+2KG+ATP/ADP
µ
−→NADPH/NADP+NADH/NAD

28 6PG
edd;eda
←−−−→ Pyr

29
AcoA/coA

pta;ackA,ackB
←−−−−−−−−→ Ace+ATP/ADP

[Pyr]act [NADPH/NADP]in [NADH/NAD]in

30 Pyr + NADH/NAD
ldhA
−−−→

31 AcoA/coA
adhE
−−−→

Table S4: Reactions of the linlog model of carbon metabolism in E. coli. Activators and
inhibitors of the reaction are shown with [·]act and [·]in, respectively. Reaction 27, labeled
µ, is a phenomenological reaction for biomass production. The enzyme names are separated
by a comma in the case of isoenzymes, by a colon for enzyme complexes, and by a semi-
colon when the enzymes catalyze reactions that have been lumped together in the model.
Reactions 20, 26, 28 and 29 result from the merging of reactions due to the absence of
measurements of SuccoA, Glyox, 2KDPG and Acp, respectively, in the dataset of Ishii et al.
[2007].
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