
1 Decomposability of NIPD score

Our score for structure learning is based on the pseudo-likelihood of the data given model and
requires us to compute the conditional probability distribution of each variable in a condition c.
We require that the parameters of this conditional distribution be dependent such that we can pool
the data from the different conditions to estimate the parameters. The conditional distribution,
P (Xi|Mci) in condition c is defined as a product:

P (Xi = xid|Mci = mcid) ∝
∏

E∈powerset(C) : c∈E

P (Xi = xdi|M∗
Ei = m∗Ei), (1)

where d is the data point index and M∗
E is the Markov blanket (MB) of Xi exclusively in condition

set E. The proportionality sign can be eliminated by dividing the product by a normalization
constant. Assuming a conditional Gaussian for the form of the conditional probability distribution,
this normalization constant can be obtained by writing out the complete RHS of Eq 1, which has
the form:
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The first Gaussian gives the normalized conditional probability distribution and the normalization
term is 1

Z1id
= N (µ1id|µ3id, σ

2
1i ∗ σ2

3i)), where σ2
3i is the standard deviation from the condition set

{1, 2}, µ1id = wT
1im

∗
1id, is the mean of the conditional Gaussian using the dth data point in condition

1.
However, we work directly with the product of conditionals, that is, the un-normalized condi-

tional probability distribution for two reasons: (a) the score improvement can be computed very
efficiently, and (b) the second Gaussian acts as a smoothing term over the parameter µ1id. In par-
ticular, if we were estimating a new parameter µ1id, the second Gaussian specifies the probability
of the new µ1id using a Gaussian centered around the mean computed from the pooled dataset
preferring network structures with means µ1id closer to the shared mean µ3id. Our preliminary
experiments showed that this score has better performance than if we were to subtract out the
normalization term.

2 Per-variable structure comparison

We compared the structure of the networks inferred by a pair of methods (e.g. INDEP vs NIPD)
using a per-variable neighborhood comparison. Let M1i and MINF

1i denote the neighborhood of
Xi in a true and inferred network, respectively. For each variable, Xi, we compare M1i to MINF

1i

to obtain a precision: P1i = |M1i∩MINF
1i |

|MINF
1i |

, recall : R1i = |M1i∩MINF
1i |

|M1i| , and F-score match: 2P1iR1i
P1i∗R1i

.
We obtain F-scores for q equal-sized partitions of the data, where q ∈ {3, 4, 5, 6, 7, 8, 9, 10}, and
networks learned for each partition. The training data size decreased with increasing q. We then
obtain the number of variables on which one method has a significantly higher F-score than another,
as a function of training data size.
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Figure 1: Probability of observing an edge with a particular confidence τ as a function of confidence.
The left graph is for quiescent population and the right is for non-quiescent. Probability is estimated
by the number of edges that have a confidence of ≥ τ divided by the total number of possible edges
subject to the constraint that non-deletion genes can have no more than 8 neighbors.
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Figure 2: F-score of INDEP, NIPD and GeneNet as a function of decreasing training data for three
networks, one per condition. Higher is better.
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Figure 3: F-score of INDEP, NIPD and GeneNet as a function of decreasing training data for four
networks. Higher is better.

1/3 1/5 1/7 1/9
0.2

0.3

0.4

0.5

0.6

0.7

Training datasize

Fs
co

re

Net1

1/3 1/5 1/7 1/9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Training datasize

Fs
co

re

Net2

1/3 1/5 1/7 1/9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Training datasize

Fs
co

re

Net3

1/3 1/5 1/7 1/9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Training datasize

Fs
co

re

Net4

1/3 1/5 1/7 1/9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Training datasize

Fs
co

re

Net5

 

 
GENENET
INDEP
NIPD

Figure 4: F-score of INDEP, NIPD and GeneNet as a function of decreasing training data for five
networks. Higher is better.
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Figure 5: Number of variables on which one algorithm is significantly better than another using
datasets for two networks from the HIGHSIM dataset. Comparison for NIPD and GENENET are
shown. An algorithm is assessed on the quality of the Markov blanket it identifies for each gene.
Specifically, for each fold, we infer a network from which we obtain a collection of Markov blanket
match scores, one for each fold and ask if the scores of a variable are significantly better than the
scores from another algorithm. The y-axis shows the number of variables with a higher score in
one algorithm versus the other.
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Figure 6: Number of variables on which one algorithm is significantly better than another using
datasets for two networks from the LOWSIM dataset. Comparison for NIPD and GENENET are
shown. Legend same as Fig 5
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Figure 7: Number of variables on which one algorithm is significantly better than another using
datasets for two networks from the HIGHSIM dataset. Comparison for NIPD and INDEP are
shown. Legend same as Fig 5
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Figure 8: Number of variables on which one algorithm is significantly better than another using
datasets for two networks from the LOWSIM dataset. Comparison for NIPD and INDEP are
shown. Legend same as Fig 5
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Figure 9: Left: Runtime of NIPD and INDEP as a function of the number of conditions where the
dataset per condition was split into three parts and the average runtime per part was measured.
Right: Each subplot shows the run time of NIPD and INDEP for different number of conditions
(2-6) as a function of the size of training dataset size. The training dataset size decreases as we go
to the right.
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Figure 10: GO Processes (rows) affected by individual deletion mutants (columns). Colors indicate
shared (yellow) affects, quiescent-specific affect (red) and non-quiescent-specific affect (green).
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Population ∆ mutant pair Overlap targets

Q

ATP1∗, SDH4∗ SDH1,HST2
ATP3∗, COX6∗ COX4,COX12
ETR1∗, PST2∗ ARA1,PDA1,AYR1
RIP1∗, KGD1∗ ATP16,COX5A
SDH4∗, ATP2∗ MIR1,NDI1
AGX1, ATP2∗ MIR1,NDI1
CTA1∗, ADH2 ATO3,POX1
ETR1∗, OM14 ARA1,FMP37
ETR1∗, POT1 FAA2,PDA1
FMP45∗, YDR262W COQ4,ADR1
QCR7∗, ATP18 ILV1,ECM32
QCR7∗, QCR8 YEL076C-A,QCR6
QCR8, COX7∗ QCR6,COX13
SDH4∗, AGX1 MIR1,NDI1
CTT1, FBP1 DLD1,ACP1
HXK1, HSP104 HSP42,STI1
RTN2, ALD3 SOL4,YJL016W
YDL218W, HSP12 TKL2,GND2

NQ

ATP3∗, COX6∗ COX4,COX12
ETR1∗, PST2∗ ARA1,PDA1,YFR044C,SBP1
RIP1∗, KGD1∗ YLL029W,COX5A
ADY2∗, ADH2 ATO3,HMG1
AGX1, ATP2∗ MIR1,NDI1
COX6∗, YLR312C PSP1,GPX1
CTA1∗, POT1 FOX2,CAT2
HBT1∗, YDR262W COQ4,SSD1
HXT5, KGD1∗ SYG1,KNS1
OM45∗, ALD4 MDH3,GDH2
QCR7∗, QCR10 YEL076C-A,ILV1
RTN2, GTT1∗ YFL043C,BCY1
ADH2, ALD4 ATO3,POX1,CAT2,LSC1
COR1, YDR262W ADR1,YNL190W
HSP30, SPI1 SPT2,CPR6
HXK1, HSP104 HSP42,STI1
NGR1, SPS100 ALT2,AMS1
OM14, FBP1 YGR079W,PUT4
OM14, XBP1 YGR079W,PUT4
QCR10, QCR8 YEL076C-A,COX13,QCR9
XBP1, FBP1 YGR079W,PUT4

Table 1: NIPD predictions for double deletions (∆ mutant pair) and their common targets for
quiescent and non-quiescent cells ∗Single gene deletions shown to have a phenotype using viability
assays in stationary phase, or in quiescent and non-quiescent cells in Martinez et al. 2004, and
Aragon et al. 2008
.
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