1 Decomposability of NIPD score

Our score for structure learning is based on the pseudo-likelihood of the data given model and
requires us to compute the conditional probability distribution of each variable in a condition c.
We require that the parameters of this conditional distribution be dependent such that we can pool
the data from the different conditions to estimate the parameters. The conditional distribution,
P(X;|M,;) in condition c is defined as a product:

P(Xi = 2ig|M¢; = meia) o 11 P(X; = z4;|Mg; = mg;), (1)
Ecpowerset(C) : c€EE

where d is the data point index and My, is the Markov blanket (MB) of X; exclusively in condition
set E. The proportionality sign can be eliminated by dividing the product by a normalization
constant. Assuming a conditional Gaussian for the form of the conditional probability distribution,
this normalization constant can be obtained by writing out the complete RHS of Eq 1, which has

the form:
2 2
H1id03; * 13id01; 01i03; 2 2
N | z144] 5 N (pialpsias ) o1; * 03;)

)
S \/ O1; * 03;

The first Gaussian gives the normalized conditional probability distribution and the normalization

term is ﬁ = N (p1idlp3ia; 03; * 02;)), where o2, is the standard deviation from the condition set

{1,2}, pyiq = wlTimL.d, is the mean of the conditional Gaussian using the d** data point in condition
1.

However, we work directly with the product of conditionals, that is, the un-normalized condi-
tional probability distribution for two reasons: (a) the score improvement can be computed very
efficiently, and (b) the second Gaussian acts as a smoothing term over the parameter py;4. In par-
ticular, if we were estimating a new parameter pq;4, the second Gaussian specifies the probability
of the new py;9 using a Gaussian centered around the mean computed from the pooled dataset
preferring network structures with means p;9 closer to the shared mean usz;q. Our preliminary
experiments showed that this score has better performance than if we were to subtract out the
normalization term.

2 Per-variable structure comparison

We compared the structure of the networks inferred by a pair of methods (e.g. INDEP vs NIPD)

using a per-variable neighborhood comparison. Let Mj; and MIITF denote the neighborhood of

X, in a true and inferred network, respectively. For each variable, X;, we compare My; to MllljF
: oo p o MM : C_ IMunMEE . 2P;Ry;
to obtain a precision: Py; = IMINF| recall: Ry; = ML and F-score match: PR

We obtain F-scores for ¢ equal-sized partitions of the data, where ¢ € {3,4,5,6,7,8,9,10}, and
networks learned for each partition. The training data size decreased with increasing gq. We then
obtain the number of variables on which one method has a significantly higher F-score than another,
as a function of training data size.
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Figure 1: Probability of observing an edge with a particular confidence 7 as a function of confidence.
The left graph is for quiescent population and the right is for non-quiescent. Probability is estimated
by the number of edges that have a confidence of > 7 divided by the total number of possible edges
subject to the constraint that non-deletion genes can have no more than 8 neighbors.
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Figure 2: F-score of INDEP, NIPD and GeneNet as a function of decreasing training data for three
networks, one per condition. Higher is better.
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Figure 3: F-score of INDEP, NIPD and GeneNet as a function of decreasing training data for four

networks. Higher is better.
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Figure 4: F-score of INDEP, NIPD and GeneNet as a function of decreasing training data for five

networks. Higher is better.
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Figure 5: Number of variables on which one algorithm is significantly better than another using
datasets for two networks from the HIGHSIM dataset. Comparison for NIPD and GENENET are
shown. An algorithm is assessed on the quality of the Markov blanket it identifies for each gene.
Specifically, for each fold, we infer a network from which we obtain a collection of Markov blanket
match scores, one for each fold and ask if the scores of a variable are significantly better than the
scores from another algorithm. The y-axis shows the number of variables with a higher score in
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Figure 6: Number of variables on which one algorithm is significantly better than another using
datasets for two networks from the LOWSIM dataset. Comparison for NIPD and GENENET are
shown. Legend same as Fig 5
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Figure 7: Number of variables on which one algorithm is significantly better than another using
datasets for two networks from the HIGHSIM dataset. Comparison for NIPD and INDEP are
shown. Legend same as Fig 5
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Figure 8: Number of variables on which one algorithm is significantly better than another using
datasets for two networks from the LOWSIM dataset. Comparison for NIPD and INDEP are
shown. Legend same as Fig 5
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Figure 9: Left: Runtime of NIPD and INDEP as a function of the number of conditions where the
dataset per condition was split into three parts and the average runtime per part was measured.
Right: Each subplot shows the run time of NIPD and INDEP for different number of conditions
(2-6) as a function of the size of training dataset size. The training dataset size decreases as we go
to the right.
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Figure 10: GO Processes (rows) affected by individual deletion mutants (columns). Colors indicate
shared (yellow) affects, quiescent-specific affect (red) and non-quiescent-specific affect (green).



Population | A mutant pair

Overlap targets

ATP1*, SDH4*
ATP3*, COX6*
ETR1*, PST2*
RIP1*, KGD1*

SDH1,HST2
COX4,COX12
ARA1,PDA1,AYRI
ATP16,COX5A

SDH4*, ATP2* MIR1,NDI1
AGX1, ATP2* MIR1,NDI1
CTA1*, ADH2 ATO3,POX1
ETR1*, OM14 ARA1,FMP37
ETR1*, POT1 FAA2,PDA1

Q FMP45%, YDR262W COQ4,ADRI1
QCRT7*, ATP18 ILV1,ECM32
QCRT*, QCRS YEL076C-A,QCR6
QCRS8, COXT7* QCR6,COX13
SDH4*, AGX1 MIR1,NDI1
CTT1, FBP1 DLD1,ACP1
HXK1, HSP104 HSP42,STI1
RTN2, ALD3 SOL4,YJLO16W
YDL218W, HSP12  TKL2,GND2
ATP3*, COX6* COX4,COX12

ETR1*, PST2*
RIP1*, KGD1*
ADY?2*, ADH2
AGX1, ATP2*
COX6*, YLR312C
CTA1*, POT1
HBT1*, YDR262W
HXT5, KGD1*
OM45*, ALD4
QCRT7*, QCR10
RTN2, GTT1*
ADH2, ALD4
COR1, YDR262W
HSP30, SPI1
HXK1, HSP104
NGR1, SPS100
OM14, FBP1
OM14, XBP1
QCR10, QCRS
XBP1, FBP1

NQ

ARA1,PDA1,YFR044C,SBP1
YLLO29W,COX5A
ATO3,HMG1

MIR1,NDI1

PSP1,GPX1

FOX2,CAT2

COQ4,8SD1

SYG1,KNS1

MDH3,GDH?2
YELO76C-A,ILV1
YFL043C,BCY1
ATO3,POX1,CAT2,LSC1
ADRI,YNL190W
SPT2,CPR6

HSP42,STI1

ALT2,AMS1
YGRO79W,PUT4
YGRO79W,PUT4
YELO076C-A,COX13,QCR9
YGRO79W,PUT4

Table 1: NIPD predictions for double deletions (A mutant pair) and their common targets for
quiescent and non-quiescent cells *Single gene deletions shown to have a phenotype using viability
assays in stationary phase, or in quiescent and non-quiescent cells in Martinez et al. 2004, and

Aragon et al. 2008



