### Nucleotide sequences of the gal E gene and the gal T gene of E.coli

Hans-Georg Lemaire and Benno Müller-Hill

Institut für Genetik der Universität zu Köln, Weyertal 121, D-5000 Köln 41, FRG

Received 5 August 1986; Accepted 12 September 1986

#### ABSTRACT

The nucleotide sequences of the <u>gal</u> E gene coding for UDPgalactose-4-epimerase and the <u>gal</u> T gene coding for galactose-1-P uridyltransferase of <u>Escherichia coli</u> have been determined. UDP-galactose-4-epimerase and galactose-1-P uridyltransferase are predicted to consist of 338 and 347 residues, respectively, NH<sub>2</sub>-terminal methionines included.

### INTRODUCTION

The first three reactions of galactose metabolism in **E.coli** are catalysed by galactokinase, galactose-1-P uridyltransferase, and UDP-galactose-4-epimerase (1). The structural genes of these enzymes, gal E, gal T and gal K, lie adjacent to one another to form the galactose operon, which is negatively controlled by a repressor (2,3). The genes of the gal operon are expressed from a polycistronic mRNA in the order E, T, K (4,5).

Here we show the nucleotide sequence of the structural genes of the <u>gal</u> operon. The DNA sequences of the <u>gal</u> K gene and 171 nucleotides preceding it have been published previously (6,7,8) and were confirmed by this work.

## MATERIALS AND METHODS

## Source of gal operon DNA

Starting point of this study was the plasmid <u>pKS</u>100 (9,10), which was constructed and kindly provided by P. Starlinger. It is a derivative of <u>pBR</u>322 (11) containing the wild-type galactose operon of E.coli on a 3.8 kb <u>Eco</u>RI / <u>Hinc</u> II fragment. This fragment was obtained from a partial digest with <u>Hinc</u> II of DNA from  $\lambda$  <u>pgal</u> 8 (12), subsequently digested

# completely with <u>Eco</u>RI. DNA <u>sequencing</u>

The DNA sequence of the gal operon was completely determined by the dideoxy chain termination method of Sanger (13). Restriction fragments for sequencing were ligated into the appropriately linearized <u>M13</u> vectors <u>M13</u>mp8 and <u>M13</u>mp9 of Messing and Vieira (14). As host was used <u>E.coli</u> K-12 BMH

71-18 (lac-pro) del F' pro lac I<sup>q</sup> ZM 15 (15). Recombinant phages were identified by the <u>lac</u> complementation assay of Gronenborn and Messing (16). Bacteriophage isolation and DNA extraction were carried out as described by Sanger et al. (17). The sequencing of the cloned restriction fragments was performed with  $[ \measuredangle - 32 P ]$  dATP (400 Ci/mmol) using a commercially available 17-mer M13 primer. All of the synthetic primer oligomers mentioned in the legend of figure 1 were synthesized in our laboratory using a DNA synthesizer (Applied Biosystems). All molecular cloning techniques were performed according to standard procedures (18).

Three different methods were applied to accumulate sequence data: (I) the <u>M13</u>mp9 clone containing the 2.8 kb <u>Hind</u> III -<u>Hinc</u> II fragment of <u>pKS100</u> was partially digested with <u>Sau</u> 3A, completely digested with <u>Bam</u> HI and religated. The <u>Sau</u> 3A concentration was adjusted to approximate one cut per molecule. In this way deletion mutants should be generated which position different regions of the <u>gal</u> fragment next to the priming site of the <u>M13</u> vector. (II) Sequence data were accumulated by 'shotgun' cloning of the <u>M13</u> clones containing the 2.8 kb <u>Hind</u> III - <u>Hinc</u> II fragment of <u>pKS100</u>. The enzymes used for this procedure were <u>Sau</u> 3A and <u>Tag</u> I - <u>Hpa</u> II, respectively. (III) Parts of the sequence where appropriate subclones were missing were deduced with the help of synthetic primer oligomers synthesized by our laboratory. The overall sequencing strategy is shown in figure 1.

# Enzymes and chemicals

The enzymes and chemicals were obtained from the following sources:  $\begin{bmatrix} -3^2P \end{bmatrix}$  dATP (400 Ci/mmol), <u>M13mp8(9)</u> RF-DNA and the <u>M13</u> sequencing primer (17-mer) from Amersham-Buchler (Braunschweig, FRG), DNA-Polymerse I (large fragment) and the

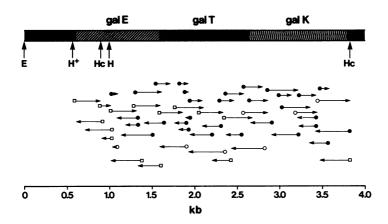



Figure 1. DNA sequencing strategy. The top line represents the 3.8 kb EcoRI - HincII fragment of the gal operon of pKS100. Position of the major restriction sites are indicated: E, EcoRI; Hc, HincII; H, H', HindIII. These restriction sites were used to generate five DNA fragments: a 0,97 kb EcoRI-HincII fragment, a 1,07 kb EcoRI-HindIII fragment, a 0,1 kb HincII-HindIII fragment, a 2.9 kb HincII-HincII fragment and a 2.8 kb HindIII-HincII fragment.

A 0.32 kb HindIII-HincII (H<sup>+</sup>-Hc) fragment was obtained from the plasmid pLF001 (10). This plasmid differs from the parent pKS100 by the absence of the single HindIII site in gal E and a single point mutation (G/C to A/T) which causes the generation of a unique HindIII (H<sup>+</sup>) site located within the untranslated 'leader' sequence of the gal operon. All the fragments were cloned into the M13 vectors M13mp8 and M13mp9 of Messing and Vieira (14). Below the thick line the strategy for sequencing for M13 clones is shown and indicates that all of the sequence was determined on both strands. The arrows are marked with circles, filled circles and squares, corresponding to the three different methods used to accumulate sequencing data as described in the text. o: Sau 3A (partial) / BamHI; • : Sau 3A and TagI/HpaII,  $\Box$ : fragments and synthetic primer oligomers.

restriction endonucleases <u>Eco</u>RI, <u>Hind</u>III, <u>Sau</u>3A from Boehringer (Mannheim, FRG), restriction endonucleases <u>Tag</u>I, <u>Hpa</u>II, <u>Hinc</u>II, and agarose and urea from BRL (Neu-Isenburg, FRG), <u>T4</u>-DNA-Ligase from New England Biolabs (Bad Schwalbach, FRG), nucleotides from PL Biochemicals (Milwaukee, Wisc., USA), 'Trizma Base', dithiothreitol, EDTA, Brij 58, polyethylene glycol 6000, ethidium bromide, sodium deoxycholate from Sigma Chemie (München, FRG), substances for polyacrylamide gel electrophoresis from Serva Feinbiochemie (Heidelberg, FRG),

| 000 | 1 ATTAGAGETTÉ TEST TACCESTE STAGCEST TACAT TEGAIST CATACCT STETE CAATTÁCTE CAMACÉST CATE AT STÉ CATE AT CONTRET<br>Ret Arginal Leuval Thréige I y Ser Givyr 11 seil y Ser Hist Thr Cystai Gin Leu Leugindsnéi y Histospitai I tel te Leu | 0090 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 009 | 1 GATAACCTCTETAACAGTAÄGCGCAGOGTÁCTGCCTGTTÄTCGAGCGTTÄAGGCGGCAAÄCATCCAACGTTTGTTGAAGGCGATATTCGT<br>AspAsnLeuCysAsnSerLysArgSerVe1LeuProVe111eG1uArgLeuG1yG1yLysHtsProThrPheVe1G1uG1yAsp11eArg                                               | 0180 |
| 018 | 1 ACCAMBOBITERTER/CERER/ERER/ERER/ERER/ERER/ERER/ER                                                                                                                                                                                      | 0270 |
| 027 | 1 CAMAACCBCTBBAATATTACBACAACAATTACAACBCACTCTBCSCCTBATTAGCSCCATBCGCSCCCAACGTCAAAACTTATT<br>GInLysProLeuGIuTyrTyrAspAsnAsnYa1AsnGIyThrLeuArgLeuI1eSerAlaMetArgAlaAlaAsnYalLysAsnPheI1e                                                     | 0360 |
| 036 | l TITAGCTCCTCCGCCACCGTTTATGGCGATCAGCCCAMATTCCATACGTGAMAGCTTCCGACCGGCACACCGCAMAGCCCTTACGGC<br>PheSerSerSerAlaThrYalTyrGlyAspGlnProLys1leProTyrYalGluSerPheProThrGlyThrProGlnSerProTyrGly                                                  | 0450 |
| 045 | I MANGCANGCTGATGGTGGAACAGATCCTCACCGATCTGCAAAAAGCCCAGCCGGACTGGAGCATTGCCCTGCGCCTACTTCACCCG<br>LysSerLysLeuMetYalGluGlnlleLeuThrAspLeuGlnLysAlaGlnProAspTrpSerlleAlaLeuLeuArgTyrPheAsnPro                                                   | 0540 |
| 054 | 1 GTTGGCGCGCATCCGTCGGCGATATGGCGAGACATCCGCAAGGCATTCCGCATAACCTGATGCCATACÀTGGCCCAGGŤTGCTGTAGGC<br>ValGlyAlaHisProSerGlyAspHetGlyGluAspProGlnGlylleProAsnAsnLeuHetProTyrlleAlaGlnValAlaValGly                                                | 0630 |
| 063 | I CETCECCEACTORCTERCEACTITITICETAACEATTATCCRÁCCEAAGATGÉTACTORCEATTÁCECCACTACÀTCCACETATTERATCTORCE<br>ArgArgAspSerLeuAlalleheeGiyAsaAspTyrProThrGlukspGlyThrGlukaspGlyThrglyAspTyrlleHisYalHetAspLeuAla                                   | 0720 |
| 072 | E GACGETCACÈTCETESCEATESCAATESCEAACAASÉCASSECTACÀCATETACAAÉCTCESCECTÉSCETAGECAÁCASECTECTÉ<br>AspēlyhisvalvalalahetGlulysLevalaAsnLysProGlyvalhisIIeTyrAsnLevGlyAlaGlyValGlyAsnSerValLev                                                  | 0810 |
| 061 | I GACETESTTÄATEICETTEASEAMAGECTESSEGAMACESSÄTTAATTATEÄTTTTECACESSEGGEGAGESGEGETTECSSECTTACTESS<br>AspValValAsnAlaPheSarLysAlaCysSiyLysProValAsniyHiisPheAlaProArgArgGluGiyAlaPheArgProThrGiy                                             | 0900 |
| 090 | l cocacoscicaiscanascicanicistamictreaciscistamoscicaiscitosatisnatesciscaesiacacitescastea<br>ArgThrProAlaLysProThrVaTAsinLeuAsinTrpArgVaTThrArgThrLeuAspG1uHetAlaG1uAspThrTrpHtSTrpG1nSer                                              | 0990 |
| 099 | 1 свесательскаявалатессваття <mark>нева</mark> нскаесальнаявалаттайтесевствательсалескелейсвесталаесевствлей<br>Агунтэргөбтябтутургодар ж Местяготарыдаляргодатарыныргонталарыныргонталарыныргонталарыныргонталарыныргонталарыны         | 1080 |
| 108 | GGGCMTGGÅTTCTGGTTCÅCCGCACCGČCTAGCCCCTGGCAGGGGCGCAGGAACAGCCAACAGCTGTTACTGCCACGAT<br>G1yG1nTrp11eLeu¥alSerProHtsårgLeuSerProTrp61n61yAlaG1n61uThrProAlaLysG1nValLeuProAlaHtsÅsp                                                            | 1170 |
| 117 | I CCAGATTGCTTCTCTGCGZAGETMATGTGCGGGTGACAĞGCGATAAAAACCCCCGATTACACCGGGACTTACGTTTACATTAATGACTT<br>ProAspCysPheLeuCysATaGTyAsnNaTArgVaTThrGTyAspLysAsnProAspTyrThrGTyThrTyrVaTPheThrAsnAspPhe                                                | 1260 |
| 126 | GCGCCTTTGÅTGTCTGACACGCCAGATGCĠCCAGAAGTÅACGATCCGCTGATGCSTTGĆCAGAGCGCGĊGCGCACCAGCGGGGA<br>AlaalaLeuMetSerAspThrProAspAlaProGluSerHisAspProLeuMetArgCysGInSerAlaArgGlyThrSerArgVellie                                                       | 1350 |
| 135 | TGCTTTTCACCGGATCACAGTAAAACGCTGCCAGAGCTCÁGCGSTTGCAGCATTGACGGAÀATCGTCAAAACCTGGCAGGGCAAACCGCÀ<br>CysPhgSerProAspHisSerLysThrLeuProGluleuSerValAlaAlaLeuThrGlulleValLysThrTrgGlnGluGlnThrAla                                                 | 1440 |
| 144 | GAACTGGGGAAAAGGTACCCATGGGTGCAGGTTTTTGAAAACAAGGCCGGCGGCGATGGGCTGCTCTAACCCGCATCCGCACCGGTCAGAT<br>GluLeuGlyLysThrTyrProTrpValG1nValPheGluAsnLysGlyAlaAlaHetGlyCysSerAsnProHisProHisGlyGlnIle                                                | 1530 |
| 153 | тересли тілесттоствосі тлаоваласті са во среда на во состосі дала во состосі дала соста с соста с соста с сост<br>Trpa i a dan ser Pheleu Prodame i un a giudary si uda sparej Lausi i nu ya Phedia etiusi i nu ya Ser Prodetleu Va      | 1620 |
| 162 | GATTATGTTČAGGGGAGCTGGGCAGAGGGTÅGGCGGTAGCGGTAGCGGTAGCGAAACGGAGCAGCGGTGGGCGGTGGGCGGGC                                                                                                                                                      | 1710 |
| 171 | . CCETTCBANACBCTACTGCTGCCCAAABCCCAACBCTTTACGGATCACCGATTTGACCGAGGGCCABCGCABCG                                                                                                                                                             | 1800 |
| 180 | MAMAGETEÁCEAETOSTTÁTEACAMOETÖTTECKAETGETEETTECEETÄETETATEGSÉTGGEAEGGEGEGELATTTÁTGGEGAAGAG<br>LysLysLeuThrSenArgTyrAspAsnLeuPhoG1nEysSenPhoeProTyrSenHetG1JyTpH1sG1yA1aProPhoAsnG1yG1uG1u                                                 | 1890 |
| 189 | AATCAACAT IBBCAGETBC ACCEDELACT IT TATCEBCE CTEEDE TE CECECCACCE TACE TAAL TT AT IS THE TABAAT SET IS<br>As no Thirt is the Dial multisatiant sphety propro Leu Leuarg Serat is the Via Targuys Phote Via Tsi yiyy Si unde Leu           | 1980 |
| 198 | eckenencichecenenctiencoschenicheschenechteriörschetcheigenchteriörschetten<br>AlssluthreinhrghsplauthrAlsslusinhinhinkisSludrglaudrghinvisSerhspiletisPhehrg6luSerGlyvi ₩                                                               | 2070 |

<u>Figure 2.</u> Complete nucleotide sequences of the <u>gal</u> E and the <u>gal</u> T genes and their deduced protein sequences. Bases 1027 and 2070 correspond to bases 1 and 1044 of <u>gal</u> T, respectively. The initiation codons of both genes are underlined, the termination codons are indicated by an asterisk. The ribosome binding site (SD) of <u>gal</u> T is boxed. The restriction sites for <u>Hinc</u>II (301) and <u>Hind</u>III (414) are marked.

isopropyl-&-D-thiogalactopyranoside and 5-bromo-4-chloro-3indolyl-&-D-galactoside from Bachem Fine Chemicals (Torrance, Calif., USA). All other chemicals used were of analytical reagent grade.

|            | Residues p   | er polypeptide | Predicted           | from        |
|------------|--------------|----------------|---------------------|-------------|
| Amino acid | derived from |                | nucleotide sequence |             |
|            | Epimerase    | Transferase    | Epimerase           | Transferase |
| Asx        | 46           | 39             | 41                  | 32          |
| Thr        | 16           | 21             | 18                  | 23          |
| Ser        | 20           | 14             | 18                  | 20          |
| Glx        | 32           | 42             | 26                  | 42          |
| Pro        | 23           | 24             | 23                  | 26          |
| Gly        | 33           | 20             | 31                  | 16          |
| Ala        | 29           | 38             | 24                  | 32          |
| Val        | 31           | 24             | 30                  | 22          |
| Met        | 9            | 7              | 9                   | 8           |
| Ile        | 19           | 8              | 18                  | 6           |
| Leu        | 30           | 31             | 26                  | 31          |
| Tyr        | 14           | 10             | 13                  | 11          |
| Phe        | 10           | 15             | 10                  | 15          |
| Lys        | 15           | 14             | 14                  | 12          |
| His        | 10           | 13             | 13                  | 15          |
| Arg        | 13           | 17             | 17                  | 20          |
| Trp        | 6            | 11             | 4                   | 10          |
| Суз        | 4            |                | 3                   | 6           |
| Total      | 360          | 348 + Cys-     | 338                 | 347         |
|            |              | residues       |                     |             |

Table 1. Amino acid composition of UDP-galactose-4-epimerase and galactose-1-P-uridvltransferase

# RESULTS AND DISCUSSION

Figure 2 shows the DNA sequence of the <u>gal</u> E and <u>gal</u> T genes and the protein sequences deduced from the open reading frames. The proteins encoded by the 1017 bp <u>gal</u> E and the 1044 bp <u>gal</u> T gene consist of 338 and 347 amino acids, respectively. The data are in good agreement with the published size and amino acid composition of the UDP-galactose-4-epimerase and the galactose-1-P uridyltransferase, shown in Table 1 (19).

The amino terminal sequence of the <u>gal</u> T gene product corresponds to the extreme 5' DNA sequence of the <u>gal</u> T gene

(20). Bases 877 to 1044 of gal T have been determined previously (6,7). Bases 964 to 1017 of gal E, 1 to 56 and 131 to 180 of <u>gal</u> T, as well as the region between <u>gal</u> E and <u>gal</u> T have all been determined previously (20). All this data could be confirmed by this study except for bp 131 of gal T, which is an 'A' in the study of Grindley (20) and a 'T' in our study. An 'A' at this site would have resulted in an ochre codon.

There are 9 bases between the gal E termination codon, TAA, and the gal T initiation codon, ATG. The ribosome binding site is part of this intervening sequence and involves the third base of the gal E termination codon.

We looked for sequence homology between the three gal enzymes using computer programms of the University of Wisconsin Genetics Computer Group, and found no significant homologies. It remains to be seen whether X-ray analysis will show similar tertiary structures indicating after all a common origin as proposed by Horowitz (21).

## ACKNOWLEDGEMENTS

We would like to thank U. Stadelmann for excellent technical assistance, and Ramzija Suljic, Claudia Quirini, and Claudia Henkel for typing and editing the manuscript. We thank Fonds der Chemie for Support.

## REFERENCES

- Kalckar, H.M. (1958), Advan. Enzymol. 20, 111 Buttin, G. (1963), J. Mol. Biol. 7, 183-205 1.
- 2.
- v.Wilcken-Bergmann, B. and Müller-Hill, B. (1982), PNAS 3. 79, 2427-2431
- 4. Michaelis, G. and Starlinger, P. (1967) Mol.Gen.Genet. 100, 210-215
- 5. Adhya, S. and Shapiro, J.A. (1968), Genetic 62, 321-247
- McKenney, K., Shimatake, H., Court, D., Schmeissner, U., Brady, C. and Rosenberg, M. (1981), in Gene Amplification and Analysis, Chirikjian, J.S. and Papas, T.S., Eds. Vol II, pp. 383-415, Elsevier/North-Holland, New York 6.
- 7.
- Schümperli, D., Mckenney, K., Sobieski, D.A. and Rosenberg, M. (1982), Cell 30, 865-871. Debouck, C., Riccio, A., Schümperli, D. McKenney, K., Jeffers, J., Hughes, C. and Rosenberg, M. (1985), Nucl. 8. Acids Research, 13, 1841-1853
- 9. Trinks, K., Habermann, P., Beyreuther, K., Starlinger, P. and Ehring, R. (1981), Mol.Gen.Genet. 182, 183-188
- Fritz, H.J., Bicknäse, H., Gleumes, B., Heibach, C., Rosahl, S. and Ehring, R. (1983), EMBO Journal, Vol. 2, No. 12, pp. 2129-2135

- 11. Bolivar, F., Rodriguez, R.L., Greene, P. J., Betlach, M.C., Heyneker, H.L. and Boyer, H.W. (1977) Gene, 2, 95-113
- 12. Echols, H. (1970), J. Mol. Biol., 47, 575-583
- 13. Sanger, F., Nicklen, S., Coulson, A.R. (1977), PNAS 74, 5463-5467
- Messing, J., Vieira, J. (1982), Gene 19, 269-276
  Messing, J., Gronenborn, B., Müller-Hill, B. and schneider, P.H. (1977), PNAS 74, 3642-3646 Hof-
- 16. Gronenborn, B., Messing, J. (1978), Nature 272, 375-377.
- 17. Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H. and Roe, B.A. (1980), J. Mol. Biol., 143, 161-178.
- 18. Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982), J.Eds, Molecular Cloning, Cold Spring Harbor Laboratories, ColdSpring Harbor, New York. 19. Wilson, D.B. and Hogness, D.S. (1969), J. Biol. Chemistry,
- 244, 2137-2142.
- 20. Grindley, N.D.F., (1978), Cell 13, 419-426. 21. Horowitz, N.H., (1965), in: Evolving genes and proteins, ed Bryson, V., Vogel, H., pp 15-23, Academic, New York.