Antibacterial Studies of Cationic Polymers

with Alternating, Random and Uniform Backbones

Airong Song,¹ Stephen G. Walker,² Kathlyn A. Parker,^{1,*} Nicole, S. Sampson^{1,*}

¹Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400

²Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY 11794-8700

*corresponding authors: kathlyn.parker@stonybrook.edu; nicole.sampson@stonybrook.edu

Table of Contents

Materials and General Procedures	5
Preparation of CB-CO ₂ C ₄ H ₈ NHBoc, 17b	5
Preparation of CB-CO ₂ C ₂ H ₄ N=C(NHBoc) ₂ , 17c	5
Preparation of N-propyl 3-cyclohexenecarboxamide, 18c	6
Preparation of N-octyl 3-cyclohexenecarboxamide, 18d	6
Preparation of CB-CONHC ₄ H ₈ CI, 19	6
Preparation of (Z)-5-Bromocyclooctene, 21	6
Preparation of (Z)-4-Cyclooctenecarboxylic acid, 22	6
Preparation of (Z)-4-Chlorobutyl 4-cyclooctenecarboxylate, 20	7
Preparation of Intermediate-1 and Acopolymer-1	7
Preparation of Intermediate-2 and Acopolymer-2	7
Preparation of Intermediate-3 and Acopolymer-3	7
Preparation of Intermediate-4 and Acopolymer-4	8
Preparation of Intermediate-6 and Acopolymer-6	8
Preparation of Intermediate-7 and Acopolymer-7	8
Preparation of Intermediate-8 and Rcopolymer-8	9

Preparation of Intermediate-9 a	nd Rcopolymer-9		9
Preparation of Intermediate-10	and Rcopolymer-10		9
Preparation of Intermediate-11	and Homopolymer-11		9
Preparation of Intermediate-12	and Homopolymer-12	1	0
Preparation of Intermediate-13	and Homopolymer-13	1	0
Preparation of Intermediate-14	and Homopolymer-14	1	0
Polydispersity Index (PDI) deterr	mination	1	0
ClogP calculation		1	1
MIC and Hemolysis Assays		1	1
Thin-section TEM of Bacteria		1	2
Lipid Vesicle Preparation		1	2
Dye Leakage Experiments of Lip	vid Vesicles	1	2
Potassium Release Assay		1	2
Membrane Depolarization Assay	/	1	3
Table S1		1	4
Table S2		1	5
Table S3		1	6
Table S4		1	7
Table S5		1	8
Table S6		1	9
Table S7		2	0
Table S8		2	1
Figure S1		2	2
Figure S2		2	3
Figure S3		2	4
Figure S4		2	5
Figure S5		2	6

Figure S6		27
Figure S7		28
References		29
¹ H-NMR spectrum of 17b		30
¹³ C-NMR spectrum of 17b		31
¹ H-NMR spectrum of 17c		32
¹³ C-NMR spectrum of 17c		33
¹ H-NMR spectrum of 18c		34
¹³ C-NMR spectrum of 18c		35
¹ H-NMR spectrum of 18d		36
¹³ C-NMR spectrum of 18d		37
¹ H-NMR spectrum of 19		38
¹³ C-NMR spectrum of 19		39
¹ H-NMR spectrum of 21		40
¹ H-NMR spectrum of 22		41
¹³ C-NMR spectrum of 22		42
¹ H-NMR spectrum of 20		43
¹³ C-NMR spectrum of 20		44
¹ H-NMR spectrum of Intermedia	te-1	45
¹³ C-NMR spectrum of Intermedia	ate-1	46
¹ H-NMR spectrum of Intermedia	te-2	47
¹ H-NMR spectrum of Intermedia	te-3	48
¹ H-NMR spectrum of Intermedia	te-4	49
¹ H-NMR spectrum of Intermedia	te-6	50
¹ H-NMR spectrum of Intermedia	te-7	51
¹ H-NMR spectrum of Intermedia	te-8	52
¹ H-NMR spectrum of Intermedia	te-9	53

¹ H-NMR spectrum of Intermediate- 10	54
¹¹ H- ¹ H gCOSY NMR spectrum of Intermediate- 10	55
¹³ C-NMR spectrum of Intermediate- 10	56
¹ H-NMR spectrum of Intermediate- 11	57
¹ H-NMR spectrum of Intermediate- 12	58
¹³ C-NMR spectrum of Intermediate- 12	59
¹ H-NMR spectrum of Intermediate- 13	60
¹ H-NMR spectrum of Intermediate- 14	61
¹³ C-NMR spectrum of Intermediate- 14	62
¹ H-NMR spectrum of Acopolymer- 1	63
¹ H-NMR spectrum of Acopolymer- 2	64
¹ H-NMR spectrum of Acopolymer-3	65
¹ H-NMR spectrum of Acopolymer-4	66
¹ H-NMR spectrum of Acopolymer-6	67
¹ H-NMR spectrum of Acopolymer-7	68
¹ H-NMR spectrum of Rcopolymer-8	69
¹ H-NMR spectrum of Rcopolymer-9	70
¹ H-NMR spectrum of Rcopolymer- 10	71
¹ H-NMR spectrum of Homopolymer- 11	72
¹ H-NMR spectrum of Homopolymer- 12	73
¹ H-NMR spectrum of Homopolymer- 13	74
¹ H-NMR spectrum of Homopolymer- 14	75

Materials and General Procedures. Coupling agents used were purchased from Advanced Chem Tech. or PerSeptive Biosystems. Solvents, chemical reagents, cyclohexene 18a, and catalysts were obtained from Fisher Scientific, Inc. or Sigma-Aldrich. (H₂IMes)(3-Brpyr)₂Cl₂Ru=CHPh **15** (1), 1-cyclobutenecarboxylic acid,(2, 3) 1cyclobutenecarboxylic chloride (4), ester 17a (4), Intermediate-5 (4), and Acopolymer-5 (4) were prepared according to the literature. MHBc was used for the culture of all bacteria. CH₂Cl₂, benzene, Et₂O, THF and CH₃OH were dried in a GlassContour solvent pushstill system; pentane was used without further purification. All reactions were carried out under an Ar atmosphere in oven-dried glassware unless otherwise specified. Analytical thin layer chromatography (TLC) was performed on precoated silica gel plates (60F254), flash chromatography on silica gel-60 (230-400 mesh) and Combi-Flash chromatography on RediSep normal phase silica columns (Teledyne Isco, silica gel-60, 230-400 mesh). TLC spots were detected by UV light and by staining with phosphomolybdic acid (PMA). The usual workup for ester or amide coupling reactions was three washes of the CH₂Cl₂ solution with 5% NaHCO₃, followed by three washes with 1 N HCl and drying of the CH₂Cl₂ over Na₂SO₄. After evaporation of solvent, the final product was purified by flash silica chromatography or Combi-Flash chromatography. Inova400, Inova500 and Inova600 MHz NMR Instruments were used to perform NMR analysis. ¹H-NMR spectra are reported as chemical shift in parts per million (multiplicity, coupling constant in Hz, integration) and were acquired in CDCl₃ unless otherwise noted. ¹H-NMR data are assumed to be first order. TEM images were acquired on a FEI BioTwinG² transmission electron microscope. High-resolution mass spectra were obtained on a Thermo Fisher Scientific LTQ Orbitrap XL ETD. For PDI (Polydispersity Index) determination, a Shimadzu HPLC and UV detector coupled to a Brookhaven Instruments RI detector (BI-DNDC) and a multiangle static light scattering detector (BI-MwA) were used.

*CB-CO*₂*C*₄*H*₈*NHBoc, 17b. t*-Butyl 4-hydroxybutylcarbamate (1.22 mmol, 232 mg) and pyridine (2.04 mmol, 164 µL) were dissolved in 1.0 mL dry CH₂Cl₂, and the solution was stirred at 0 °C for 45 min before being added to a vial containing 1-cyclobutenecarboxylic chloride (1.02 mmol). The reaction mixture was stirred for 16 h at rt. The CH₂Cl₂ solution was concentrated by rotary evaporation, and then purified by flash column chromatography (acetone:CH₂Cl₂/5:95) to yield **17b** as a colorless oil (170 mg, 62%). ¹H NMR (400 MHz) δ 8.56 (s, 2H), 6.78 (s, 1H), 4.20 (t, J= 8Hz, 2H), 3.67 (m, 2H), 2.69 (m, 2H), 2.42 (m, 2H), 1.44 (m, 2H). ¹³C NMR (100 MHz) δ 163.6, 161.9, 153.3, 147.5, 138.4, 83.4, 83.3, 79.5, 79.5, 77.5, 77.2, 76.9, 53.6, 39.8, 39.5, 37.3, 31.0, 29.2, 28.4. HRMS (ESI) calcd for C₁₄H₂₄NO₄ [M+H]⁺ 270.1705; found 270.1693.

*CB-CO*₂*C*₂*H*₄*N*=*C*(*NHBoc*)₂, *17c*. HOC₂H₄N=C(NHBoc)₂ (0.51 mmol, 155 mg) and pyridine (2.04 mmol, 164 μ L) were dissolved in 1.0 mL dry CH₂Cl₂, and the solution was stirred at 0 °C for 45 min before being added to a vial containing 1-cyclobutenecarboxylic chloride (1.02 mmol). The reaction mixture was stirred for 16 h at rt. The CH₂Cl₂ solution was concentrated by rotary evaporation, and then purified by flash column chromatography (acetone:CH₂Cl₂/1:9) to yield **17c** as a colorless oil (90 mg, 46%). ¹H NMR (600 MHz) δ 6.76 (s, 1H), 4.13 (t, J= 6 Hz, 2H), 3.15 (m, 2H), 2.71 (m, 2H), 2.46 (m, 2H), 1.68 (m, 2H), 1.55 (m, 2H), 1.43 (s, 9H). ¹³C NMR (100 MHz) δ

162.3, 156.2, 146.7, 138.9, 64.2, 53.7, 40.5, 31.1, 29.3, 28.6, 27.3, 26.2. HRMS (ESI) calcd for $C_{18}H_{30}N_3O_6$ [M+H]⁺ 384.2129; found 384.2128.

N-*propyl 3-cyclohexenecarboxamide, 18c.* 3-Cyclohexenecarboxylic acid (0.71 mmol, 90 mg), NH₂CH₂CH₂CH₂CH₃ (0.86 mmol, 70 μL) and EDC·HCI (0.86 mmol, 164 mg) were dissolved in CH₂Cl₂ (3 mL). DIEA (1.43 mmol, 252 μL) was added at 0 °C, and the reaction was stirred for 16 h at rt. The usual workup and chromatography (acetone/CH₂Cl₂/10:90) yielded N-propylcyclohex-3-enecarboxamide **18c** as a white powder (65 mg, 55%). ¹H NMR (400 MHz) δ 5.64 (m, 3H), 3.17 (dd, J= 8 Hz, J=8 Hz, 2H), 2.30-1.93 (m, 5H), 1.87-1.81 (m, 1H), 1.72-1.59 (m, 1H), 1.43 (m, 2H), 0.87 (t, J= 8 Hz, 3H). ¹³C NMR (100 MHz) δ 175.9, 126.9, 125.6, 41.5, 41.2, 28.4, 26.0, 24.8, 23.1, 11.5. HRMS (ESI) calcd for C₁₀H₁₈NO [M+H]⁺ 168.1383; found 168.1379.

N-octyl 3-cyclohexenecarboxamide, 18d. 3-Cyclohexenecarboxylic acid (1.11 mmol, 140 mg), octylamine (1.33 mmol, 220 μL) and EDC·HCI (1.33 mmol, 255 mg) were dissolved in CH_2Cl_2 (3mL). DIEA (2.22 mmol, 393 μL) was added at 0 °C, and the reaction was stirred for 16 h at rt. The usual workup and chromatography (acetone/ $CH_2Cl_2/10:90$) yielded N-octylcyclohex-3-enecarboxamide **18d** as a white powder (215 mg, 82%). ¹H NMR (400 MHz) δ 5.77 (s, 1H), 5.63 (s, 2H), 3.18 (dd, J= 8 Hz, J=8 Hz, 2H), 2.33-2.00 (m, 5H), 1.86-1.82 (s, 1H), 1.70-1.60 (m, 1H), 1.43 (m, 2H), 1.22 (m, 10H), 0.82 (t, J= 8 Hz, 3H). ¹³C NMR (100 MHz) δ 175.9, 126.9, 125.6, 41.46, 39.6, 31.9, 29.8, 29.4, 29.3, 28.3, 27.1, 25.9, 24.8, 22.8, 14.2. HRMS (ESI) calcd for $C_{15}H_{28}NO [M+H]^+$ 238.2165; found 238.2160.

*CB-CONHC*₄*H*₈*Cl*, *19*. The chloramine hydrochloride was prepared according to Sommen et al. (*5*). H₂NCH₂CH₂CH₂CH₂CH₂OH (2.24 mmol, 200 mg) was dissolved in benzene (2 mL). SOCl₂ (500 μ L) was added slowly to the solution and a white precipitate formed. The mixture was stirred at rt for 2 h. The precipitate was filtered, washed with benzene, and dried under vacuum to provide H₂NCH₂CH₂CH₂CH₂CH₂CHCI (320 mg, 99%) which was combined with 1-cyclobutenecarboxylic acid (1.12 mmol, 110 mg) and EDC·HCI (1.35 mmol, 258 mg) and dissolved in CH₂Cl₂ (10 mL). Pyridine (4.49 mmol, 362 μL) was added at 0 °C, and the reaction was stirred for 16 h at rt. The workup (washed with 1N HCI twice, and then washed with brine twice) and chromatography (acetone:CH₂Cl₂/10:90) yielded **19** as a viscous oil (98 mg, 47%). ¹H NMR (400 MHz) δ 6.56 (s, 1H), 5.79 (s, 1H), 3.52 (t, J= 8 Hz, 2H), 3.28 (m, 2H), 2.63 (m, 2H), 2.41 (m, 2H), 1.75 (m, 2H), 1.65 (m, 2H). ¹³C NMR (100 MHz) δ 163.0, 141.6, 140.5, 44.8, 38.4, 30.0, 28.6, 27.2, 26.3. HRMS (ESI) calcd for C₉H₁₅CINO [M+H]⁺ 188.0837; found 188.0835.

(*Z*)-5-Bromocyclooctene, 21. Cyclooctene 21 was prepared according to the literature (*δ*). ¹H NMR (500 MHz) δ 5.65 (m, 2H), 4.33 (m, 1H), 2.47-1.54 (m, 11H).

(Z)-4-Cyclooctenecarboxylic acid, 22. (Z)-4-Cyclooctenecarboxylic acid 22 was prepared according to the literature (*7*). ¹H NMR (500 MHz) δ 11.67 (s, 1H), 5.69 (m, 2H), 2.51-1.41 (m, 11H). ¹³C NMR (125 MHz) δ 184.6, 130.8, 129.5, 43.4, 31.6, 29.4, 27.9, 26.2, 24.2.

(*Z*)-4-Chlorobutyl 4-cyclooctenecarboxylate, 20. 4-Cyclooctenecarboxylic acid (1.04 mmol, 160 mg) was dissolved in 6 mL dry CH₂Cl₂. The solution was cooled to 0 °C and oxalyl dichloride (4.16 mmol, 356 μ L) was added. The temperature of the solution was raised to rt, and the mixture was allowed to react for 1 h. The solvent was evaporated to generate 4-cyclooctenecarboxylic chloride as a viscous oil. 4-Chlorobutanol (1.04 mmol, 113 mg) and triethylamine (2.07 mmol, 287 μ L) were dissolved in 6 mL dry CH₂Cl₂, and the solution was stirred at 0 °C for 45 min before being added to a vial containing 4-cyclooctenecarboxylic chloride. The reaction mixture was stirred for 16 h at rt. The CH₂Cl₂ solution was concentrated by rotary evaporation, and then purified by flash column chromatography (CH₂Cl₂) to yield **20** as a colorless oil (200 mg, 79%). ¹H NMR (500 MHz) δ 5.64 (m, 2H), 4.03 (m, 2H), 3.51 (t, J = 15 Hz, 2H), 2.43-1.36 (m, 15H). ¹³C NMR (125 MHz) δ 177.5, 130.4, 129.6, 63.6, 44.6, 43.5, 31.6, 29.4, 27.8, 25.9, 24.0. HRMS (ESI) calcd for C₁₃H₂₂ClO₂ [M+H]⁺ 245.1303; found 245.1298.

Intermediate-1 and Acopolymer-1. Cyclobutene **17a** (0.15 mmol), cyclohexene **18a** (0.30 mmol) and catalyst **15** (0.006 mmol) were allowed to react for 5 h at rt to reach 90% completion. The solvent was evaporated, and the residue was purified by flash column chromatography (acetone:CH₂Cl₂/5:95) to provide **Intermediate-1** (21 mg, 51%). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.40-7.21 (m, 5H), 6.78 (b, 25H), 6.43 (m, 1H), 6.27 (m, 1H), 5.85(m, 1H), 5.44 (b, 42H), 4.17 (b, 50H), 3.63 (b, 50H), 2.44-2.02 (m, 188H), 1.88 (m, 100H), 1.52-1.44 (b, 88H). ¹³C NMR (125 MHz) δ 168.0, 143.3, 131.9, 131.0, 130.9, 130.7, 130.5, 130.4, 130.1, 129.9, 129.7, 129.3, 128.7, 128.5, 125.5, 63.7, 44.8, 32.6, 32.4, 31.9, 29.6, 29.4, 29.2, 29.1, 29.0, 28.8-27.3, 26.4. **Intermediate-1** and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated to provide **Acopolymer-1** as a brown powder. ¹H NMR (600 MHz, D₂O) δ 7.50-7.27 (m, 5H), 6.91 (b, 25H), 6.39 (b, 1H), 6.28 (b, 1H), 5.89 (b, 1H), 5.45 (b, 44H), 4.25 (b, 50H), 3.44 (b, 50H), 3.19 (s, 225H), 2.40-2.04 (m, 188H), 1.94 (m, 50H), 1.84 (m, 50H), 1.47 (m, 88H).

Intermediate-2 and Acopolymer-2. Cyclobutene 17a (0.15 mmol), cyclohexene 18b (0.30 mmol) and catalyst 15 (0.006 mmol) were allowed to react for 3 h at 50 °C to reach 94% completion. The solvent was evaporated, and the residue was purified by flash column chromatography (acetone: $CH_2Cl_2/10:90$) to provide Intermediate-2 (35 mg, 81%). ¹H NMR (600 MHz, CD_2Cl_2) δ 7.38-7.21 (m, 5H), 6.75 (b, 25H), 6.39 (b, 1H), 6.22 (b, 1H), 5.81 (b, 1H), 5.42 (b, 34H), 4.14 (b, 50H), 3.61 (b, 50H), 2.36-2.01 (m, 172H), 1.84 (m, 100H), 1.57-1.36 (m, 108H). Intermediate-2 and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solventwas evaporated to provide Acopolymer-2 as a brown powder. ¹H NMR (600 MHz, D_2O) δ 7.36-7.15 (m, 5H), 6.75 (b, 17H), 5.27 (b, 13H), 4.08 (b, 34H), 3.26 (b, 34H), 3.02 (b, 153H), 2.40-1.97 (m, 124H), 1.76-1.66 (b, 68H), 1.37-1.08 (m, 84H).

Intermediate-3 and Acopolymer-3. Cyclobutene 17a (0.15 mmol), cyclohexene 18c (0.30 mmol) and catalyst 15 (0.006 mmol) were mixed in CDCl₃ and allowed to react for 3 h at 50 °C to reach 92% completion. The solvent was evaporated, and the residue was purified by flash column chromatography (acetone:CH₂Cl₂/10:90) to provide Intermediate-3 (28 mg, 53%). ¹H NMR (600 MHz, CD₂Cl₂) δ 7.43-7.21 (m,

5H), 6.73 (s, 31H), 6.36 (b, 1H), 6.21 (b, 1H), 5.83 (b, 1H), 5.56-5.40 (b, 44H), 4.15 (b, 62H), 3.60 (b, 62H), 3.17 (b, 46H), 2.44-2.08 (m, 216H), 1.85-1.82 (m, 124H), 1.61-1.51 (m, 115H), 0.92 (m, 69H). **Intermediate-3** and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated, the residue dissolve in water and washed with Et₂O to provide **Acopolymer-3** as a brown powder. ¹H NMR (600 MHz, D_2O) δ 7.53-7.31 (m, 5H), 6.86 (m, 30H), 5.47 (b, 48H), 4.28 (b, 60H), 3.41 (b, 60H), 3.17 (b, 270H), 2.57-2.18 (m, 220H), 1.93-1.56 (m, 195H), 0.94 (b, 75H).

Intermediate-4 and Acopolymer-4. Cyclobutene 17a (0.15 mmol), cyclohexene 18d (0.30 mmol) and catalyst 15 (0.006 mmol) were mixed in CDCl₃ and allowed to react for 5 h at 50 °C to reach 96% completion. The solvent was evaporated, and the residue was purified by flash column chromatography (acetone:CH₂Cl₂/10:90) to provide Intermediate-4 (39 mg, 61%). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.41-7.23 (m, 5H), 6.76 (b, 22H), 6.42 (b, 1H), 6.23 (b, 1H), 5.94 (b, 1H), 5.41 (b, 38H), 4.17 (b, 44H), 3.61 (b, 44H), 3.22 (40H), 2.53-2.11 (m, 168H), 1.86 (m, 88H), 1.62-1.50 (m, 60H), 1.32 (m, 240H), 0.91 (m, 60H). Intermediate-4 and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated, diluted with water and washed by Et₂O to provide Acopolymer-4 as a brown powder. ¹H-NMR (600 MHz, D₂O) δ 7.46-7.30 (m, 5H), 6.88 (b, 25H), 5.48 (b, 48H), 4.26 (b, 50H), 3.42 (b, 50H), 3.18 (b, 225H), 2.40-1.31 (m, 650H).

Intermediate-6 and Acopolymer-6. Cyclobutene 17b (0.15 mmol), cyclohexene 18a (0.30 mmol) and catalyst 15 (0.006 mmol) were mixed in CDCl₃ and allowed to react for 80 min at 50 °C to reach 97% completion. The solvent was evaporated, and the residue was purified by flash column chromatography (acetone:CH₂Cl₂/10:90) to provide Intermediate-6 (26 mg, 49%). ¹H NMR (600 MHz, CD₂Cl₂) δ 7.40-7.20 (m, 5H), 6.75 (b, 25H), 6.36 (m, 1H), 6.22 (b, 1H), 5.79 (b, 1H), 5.39 (b, 38H), 4.67 (b, 25H), 4.12 (b, 50H), 3.13 (b, 50H), 2.44-2.02 (m, 180H), 1.69-1.28 (m, 405H). Intermediate-6 and trifluoro acetic acid (TFA) (2 mL) were mixed in CH₂Cl₂ (2 mL). The solution was stirred at rt for 2 h. The crude solution was purged with Ar to remove solvent and to provide Acopolymer-6 as a brown powder. ¹H NMR (600 MHz, D₂O) δ 7.34-7.06 (m, 5H), 6.70 (b, 18H), 5.24 (b, 22H), 4.04 (m, 36H), 2.94 (b, 36H), 2.34-1.84 (m, 120H), 1.66-1.09 (m, 282H).

Intermediate-7 and Acopolymer-7. Cyclobutene 17c (0.15 mmol), cyclohexene 18a (0.30 mmol) and catalyst 15 (0.006 mmol) were mixed in CDCl₃ and allowed to react for 80 min at 50 °C to reach 97% completion. Thesolvent was evaporated, and the residue was purified by flash column chromatography (acetone:CH₂Cl₂/10:90) to provide Intermediate-7 (51 mg, 73%). ¹H-NMR (500 MHz, CD₂Cl₂) δ 8.59 (b, 50H), 7.56-7.21 (m, 5H), 6.84 (b, 25H), 5.41 (b, 48H), 4.28 (m, 50H), 3.68 (m, 50H), 2.49-1.61 (m, 300H), 1.49 (b, 450H). Intermediate-7 and TFA (2 mL) were mixed in CH₂Cl₂ (2 mL). The solution was stirred at rt for 2 h. The crude solution was purged with Ar to remove solvent and to provide Acopolymer-7 as a brown powder. ¹H-NMR (600 MHz, D₂O) δ 7.38-7.18 (m, 5H), 6.85 (b, 25H), 5.35 (b, 48H), 4.27 (b, 50H), 3.55 (b, 50H), 2.35-2.00 (m, 200H), 1.38 (m, 100H).

Intermediate-8 and Rcopolymer-8. Cyclobutene **19** (0.048 mmol), cyclooctene (0.048 mmol) and catalyst **15** (0.012 mmol) were allowed to react for 1 h at rt to reach > 99% completion. The solvent was evaporated to remove solvent, and was purified by flash column chromatography (acetone:CH₂Cl₂/5:95) to provide **Intermediate-8** (10 mg, 66%). ¹H NMR (500 MHz, acetone-D₆) δ 7.38-7.18 (m, 5H), 6.30-6.09 (m, 4H), 5.42 (b, 10H), 3.62 (b, 8H), 3.32 (b, 8H), 2.54-1.66 (m, 52H), 1.33 (m, 40H). **Intermediate-8** and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated to provide **Rcopolymer-8** as a brown powder. ¹H NMR (600 MHz, D₂O) δ 7.35-6.96 (m, 11H), 6.29-6.09 (m, 6H), 5.24 (b, 16H), 3.25-3.16 (m, 24H), 3.00 (b, 54H), 2.36-1.45 (m, 84H), 1.19 (b, 72H).

Intermediate-9 and Rcopolymer-9. Cyclobutene **19** (0.064 mmol), cyclooctene (0.064 mmol) and catalyst **15** (0.008 mmol) were allowed to react for 1 h at rt to reach > 99% completion. The solvent was evaporated, and the residue was purified by flash column chromatography (acetone:CH₂Cl₂/5:95) to provide **Intermediate-9** (14 mg, 74%). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.37-7.19 (m, 5H), 6.12 (b, 11H), 5.85 (b, 11H), 5.42 (b, 28H), 3.60 (b, 22H), 3.31 (b, 22H), 2.41-1.70 (m, 148H), 1.35 (b, 120H). **Intermediate-9** and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated to provide **Rcopolymer-9** as a brown powder. ¹H NMR (600 MHz, D₂O) δ 7.28-6.98 (m, 5H), 6.21 (b, 9H), 5.25 (b, 24H), 3.24 (m, 36H), 3.00 (b, 81H), 2.33-1.20 (m, 228H).

Intermediate-10 and Rcopolymer-10. Cyclobutene **19** (0.20 mmol), cyclooctene (0.20 mmol) and catalyst **15** (0.008 mmol) were allowed to react for 1 h at rt to reach > 99% completion. The solvent was evaporated, and the residue was purified by flash column chromatography (acetone: $CH_2Cl_2/5:95$) to provide **Intermediate-10** (40 mg, 68%). ¹H NMR (500 MHz, CD_2Cl_2) δ 7.39-7.22 (m, 5H), 6.13 (b, 25H), 5.42 (b, 62H), 3.61 (b, 50H), 3.32 (b, 50H), 2.44-1.71 (m, 328H), 1.35 (b, 256H). ¹³C NMR (125 MHz) δ 170.1, 136.6, 135.4, 131.6, 130.5, 130.3, 129.2, 126.1, 44.8, 39.0, 32.8, 32.2, 30.1, 29.2, 27.3. **Intermediate-10** and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated to provide **Rcopolymer-10** as a brown powder. ¹H NMR (600 MHz, D_2O) δ 7.20-7.01 (m, 5H), 6.23 (b, 25H), 5.28 (b, 60H), 3.28 (m, 100H), 3.02 (b, 225H), 2.43-1.50 (m, 324H) 1.21 (b, 248H).

Intermediate-11 and Homopolymer-11. Cyclobutene 19 (0.048 mmol) and catalyst 15 (0.012 mmol) were allowed to react for 4 h to reach 93% completion before the addition of ethylvinyl ether (300 μ L). After 30 min, the solvent was evaporated and the residue was purified by silica column chromatography with 2% MeOH/ CH₂Cl₂ to afford the product Intermediate-11 (7.7 mg, 75% yield). ¹H-NMR (500 MHz, CD₂Cl₂) δ 7.43-7.04 (m, 9H), 6.35 (b, 4H), 3.59 (b, 8H), 3.28 (b, 8H), 2.39-1.51 (m, 32H). Intermediate-11 and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated to provide Homopolymer-11 as a brown powder. ¹H NMR (600 MHz, D₂O) δ 7.51-7.19 (m, 5H), 6.17 (b, 4H), 3.42 (b, 8H), 3.31 (b, 8H), 3.42-2.26 (m, 16H), 1.87-1.63 (m, 16H).

Intermediate-12 and Homopolymer-12. Cyclobutene 19 (0.096 mmol) and catalyst 15 (0.012 mmol) were allowed to react for 4 h to reach 92% completion before the addition of ethylvinyl ether (300 μ L). After 30 min, the solvent was evaporated and the residue was purified by silica column chromatography with 2% MeOH/ CH₂Cl₂ to afford the product Intermediate-12 (14 mg, 74% yield). ¹H-NMR (600 MHz, CD₂Cl₂) δ 7.42-6.98 (m, 13H), 6.18 (b, 8H), 3.58 (b, 16H) 3.25 (b, 16H), 2.38-1.65 (m, 128H). ¹³C-NMR (125 MHz) δ 170.8, 136.1, 134.7, 134.4, 130.3, 129.0, 128.8, 128.3, 44.9, 39.4, 30.1, 27.9, 27.2, 26.8. Intermediate-12 and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated to provide Homopolymer-12 as a brown powder. ¹H NMR (600 MHz, D₂O) δ 7.51-7.20 (m, 5H), 6.18 (b, 8H), 3.42 (b, 16H), 3.31 (b, 16H), 3.19 (b, 72H), 2.43-2.18 (m, 32H), 1.87-1.64 (m, 32H).

Intermediate-13 and Homopolymer-13. Cyclooctene 20 (0.048 mmol) and catalyst 15 (0.012 mmol) were allowed to react for 4 h to reach 93% completion before the addition of ethylvinyl ether (300 µL). After 30 min, the solvent was evaporated and the residue was purified by silica column chromatography with 5% acetone/CH₂Cl₂ to afford the product Intermediate-13 (9.9 mg, 76% yield). ¹H NMR (500 MHz, CD_2Cl_2) δ 7.36-7.20 (m, 5H), 6.43 (m, 1H), 6.23 (m, 1H), 5.81 (m, 1H), 5.41 (b, 8H), 5.03 (m, 1H), 4.12 (m, 8H), 3.61 (m, 8H), 2.37-1.27 (m, 60H). Intermediate-13 and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated to provide Homopolymer-13 as a brown powder. ¹H NMR (600 MHz, D_2O) δ 7.37 (b, 5H), 6.41 (b, 1H), 6.26 (b, 1H), 5.88 (b, 1H), 5.45 (b, 8H), 5.06 (b, 1H), 4.21 (b, 8H), 3.42 (b, 8H), 3.18 (b, 36H), 2.54-1.38 (m, 60H).

Intermediate-14 and Homopolymer-14. Cyclobutene 20 (0.096 mmol) and catalyst 15 (0.012 mmol) were allowed to react for 4 h to reach 92% completion before the addition of ethylvinyl ether (300 μ L). After 30 min, the solvent was evaporated and the residue was purified by silica column chromatography with 2% MeOH/CH₂Cl₂ to afford the product Intermediate-14 (19.5 mg, 78% yield). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.36-7.15 (m, 5H), 6.43 (m, 1H), 6.24 (m, 1H), 5.81 (m, 1H), 5.41 (b, 16H), 5.02 (m, 1H), 4.11 (m, 16H), 3.60 (m, 16H), 2.37-1.26 (m, 120H). ¹³C NMR (125 MHz) δ 176.4, 130.8, 130.4, 129.9, 129.4, 129.0, 126.2, 63.7, 45.4, 33.0, 32.2, 30.8, 29.6, 26.7. Intermediate-14 and aqueous trimethylamine (45% wt, 1 mL) were mixed in acetonitrile (2 mL). The solution was heated to 70 °C for 4 h. The solvent was evaporated to provide Homopolymer-14 as a brown powder. ¹H NMR (600 MHz, D₂O) δ 7.39 (b, 5H), 6.41 (b, 1H), 6.27 (b, 1H), 5.90 (b, 1H), 5.47 (b, 16H), 5.07 (b, 1H), 4.23 (b, 16H), 3.41 (b, 16H), 3.18 (b, 72H), 2.47-1.40 (m, 120H).

Polydispersity Index (PDI) determination. Polymers (before flash column chromatography purification) were dissolved in THF (0.5 mg mL⁻¹). An aliquot (100 μ L) of each polymer solution was injected and analyzed by gel permeation chromatography using a Phenogel column (300 x 7.80 mm, 5 μ m, linear mixed bed, 0-40K MW range). Elution was performed at 0.7 mL/min with THF and detection at 220 nm and 254 nm at 30 °C. Narrowly dispersed polystyrene standards from Aldrich were used as molecular weight calibrants. The number average and weighted average molecular weights were calculated from the chromatogram (WinGPC, Brookhaven Inst.).

ClogP calculation. CLogP's of quaternary ammonium polymers were calculated according to Crippen's fragmentation (*30*) using ChemDraw Ultra 12.0 for the ring-opened AB dyads (copolymers) or A monomers (homopolymer). The ClogP calculations are relative ($CLogP_{rel}$) to **Acopolymer-1** that was arbitrarily set to 0. The quaternary ammonium fragment, which was present in all the polymers, was not included in the calculation. A more positive CLogP is more hydrophobic than **Acopolymer-1** and conversely, a more negative CLogP is less hydrophobic. The standard deviation of the calculation is ± 0.5 .

MIC and Hemolysis Assays. The minimal inhibitory concentration (MIC) for the polymers towards six bacterial species were determined using the broth microdilution method as described by protocol M7-A7 of the Clinical and Laboratory Standards Institute (59). Two-fold serial dilutions of test polymers were made using cation-adjusted Mueller Hinton broth (MHBC) from a concentration of 512 µg per mL to 1 µg per mL. Each dilution (50 µL) was placed into a well of a 96-well microtiter plate (Becton Dickinson and Company, Franklin Lakes, NJ; catalog #353077). Test bacterial species were obtained from the American Type Culture Collection (ATCC) and consisted of Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Bacillus cereus ATCC 10987, Staphylococcus aureus ATCC 25923, Enterococcus faecium ATCC 19434, and Enterococcus faecalis ATCC 19433. Three to four isolated bacterial colonies, grown overnight on Mueller Hinton II agar plates at 37°C, were suspended into pre-warmed cation-adjusted Mueller Hinton broth (10 mL) and incubated at 37°C until the optical density reached approximately 1.0 McFarland standard. The cultures were then adjusted to a 0.5 McFarland standard (equivalent to approximately 1 - 2 x 10⁸ cells per mL) then diluted 1/10 twice, in cationadjusted Mueller Hinton broth, to produce 1 x 10^6 cells per mL. This dilution (50 μ L) was added to microtiter wells containing the test polymers. This resulted in a final cell concentration of 5 x 10⁵ per mL and one-half concentration of the polymer in a final volume of 0.1 mL. A control well containing no polymer was used as a positive growth control. The microtiter plates were incubated at 37° C for 16 – 20 h. The MIC was defined as the lowest concentration of polymer to completely inhibit bacterial growth. Statistical significance of differences was determined by ANOVA.

Hemolysis assays were conducted using 0.1 M phosphate buffer (pH 7.4) as described by Murthy et al.(*60*) except washed sheep RBC were used. Washed sheep red blood cells (RBCs), containing approximately 10^8 RBCs per 200 μ L in 100 mM phosphate buffer (PB, pH 7.4), was added to PB (800 μ L), containing a known amount of polymer, in 1.5 mL microcentrifuge tubes. The final concentration of polymer in the assay tubes varied as a series of two-fold dilutions from 1024 μ g mL⁻¹ to 0.125 μ g mL⁻¹. The contents of the microcentrifuge tubes were mixed by inversion and the tubes placed in a water bath at 37 °C for 1 h. After 30 min incubation, the tubes were again mixed by inversion. The positive control consisted of RBCs (200 μ L) mixed with distilled deionized water (800 μ L) while the negative control consisted of RBCs (200 μ L) mixed with PB (800 μ L) alone. After incubation, the tubes were centrifuged at 16,000 xg for 5 min, then the supernatants were measured for absorbance at 541 nm with negative control serving as the blank. Percent hemolysis was determined by dividing the absorbance of the sample by the absorbance of the positive control then multiplying by 100.

Thin-section TEM of Bacteria. E. coli (ATCC 25922) and *S. aureus* (ATCC 25923) were grown to logarithmic phase in MHBc (OD600 = 1.0). The bacterial suspension was washed with PBS buffer (pH 7.0) twice, and was resuspended in the same amount of PBS buffer. An aqueous solution of **Acopolymer-1** was added to the bacterial suspension, and the mixture was incubated at 37 °C for 30 min. The bacterial suspension was washed with PBS buffer, and was resuspended in the same amount of 2.5% glutaraldehyde in sodium cacodylate buffer (pH = 7). After fixing, samples were then placed in 2% osmium tetroxide in PBS buffer (pH = 7.0), dehydrated in a graded series of ethyl alcohol and embedded in Epon resin. Ultrathin sections of 80 nm were cut with a Reichert-Jung Ultracut E ultramicrotome and placed on formvar coated slot copper grids. Sections were then counterstained with uranyl acetate and lead citrate and viewed with a FEI Tecnai12 BioTwinG² electron microscope. Digital images were acquired with an AMT XR-60 CCD Digital Camera system.

Lipid Vesicle Preparation (11, 12). Two stock buffer solutions were used: buffer A (20 mM calcein, 10 mM Na₂HPO₄, pH 7.0) and buffer B (10 mM Na₂HPO₄, 90 mM NaCl, pH 7.0). Appropriate amounts of each lipid mixture (DOPC 25 mg; POPE/POPG 20 mg/15.6 mg; 1, 1', 2, 2'-tetraoleoyl cardiolipin (CL) (sodium salt) 47.8 mg) were dissolved in buffer A (1 mL), followed by stirring for 1 h. The suspension was subjected to five freeze-thaw cycles, and was extruded five times through a polycarbonate membrane (Whatman, pore size 100 nm). The external calcein was removed by gel filtration (Sephadex G-25 resin) in buffer B. After gel filtration, the solution was typically diluted 7-fold to yield a final lipid concentration of around 4.5 mM in buffer B. The above vesicle solution (100 μ L) was diluted in buffer B (9.9 mL) to make the stock vesicle solution (45 μ M).

Dye Leakage Experiments of Lipid Vesicles (11, 12). The stock vesicle solution (100 μ L) and buffer B (900 μ L) were mixed in a fluorimeter cuvette. The fluorescence signal was allowed to stabilize ($\lambda_{\text{excitation}} = 490$ nm, $\lambda_{\text{emission}} = 510$ nm) for 100 s at 37 °C before addition of polymer solution (1 μ g mL⁻¹ or 4 μ g mL⁻¹). The change in fluorescence over 5 min was recorded followed by the addition of 20% Trition X-100 (50 μ L) to determine the maximum fluorescence of the dye. The dye leakage percentage was calculated according to equation (1):

dye leakage percentage = $100[(I_t - I_0)/(I_{\infty} - I_0)]$ (1)

Where I_0 is the fluorescence intensity before the addition of samples, and I_{∞} is the fluorescence intensity after the addition of 20% Triton X-100.

Potassium Release Assay (13). Potassium ion release assays were performed by following the method of Silverman et al. (13). *E. coli* (ATCC 25922) and *S. aureus* (ATCC 25923) were grown to late logarithmic phase in MHBc (OD600 = 1.0). The bacterial suspension was washed twice with 10 mM HEPES (pH 7.2) and 0.5% glucose, and was resuspended in the same amount of 10 mM HEPES (pH 7.2) and 0.5% glucose. The bacterial suspension (2 mL) was placed in a fluorimeter cuvette containing a stir bar. The fluorescence of the bacterial suspension was allowed to stabilize for 60 s at 37 °C (λ_{excitation} = 346 nm, λ_{emission} = 505 nm) before the addition of PBFI-AM (potassium indicator, 1 μM). Data were collected for an additional 2 min to establish a baseline signal before the addition of polymers (32 μg mL⁻¹). The fluorescence signals were collected for each sample over

1000 s. For the control sample, valinomycin (10 μ g mL⁻¹) was added to the sample solution and stirred for 1000 s, followed by the addition of KCI (1 mM) to demonstrate continued indicator responsiveness. Data were normalized relative to the fluorescent signal change in 1000 s after the addition of valinomycin according to equation (2).

Potassium release percentage = $100[(I_t - I_0)/(I_{\infty} - I_1)]$ (2)

Where I_0 is I_t before the addition of polymers, I_1 is the fluorescence intensity before the addition of valinomycin, and I_{∞} is the fluorescence intensity at 1000 s after the addition of valinomycin.

Membrane Depolarization Assay. Both *E. coli* (ATCC 25922) and *S. aureus* (ATCC 25923) were grown to logarithmic phase in MHBc (OD600 = 0.05). The bacterial suspension was washed with HEPES buffer (5 mM, pH 7.4) twice, and was resuspended in the same amount of HEPES buffer (5 mM, pH 7.4). A final concentration of 0.2 mM EDTA (pH 7.4) was added to the bacterial suspension. The bacterial suspension (2 mL) was transferred to a fluorescence cuvette, diSC₃5 was added at a final concentration of 0.4 μ M and the mixture equilibrated at 37 °C. The fluorescence was allowed to quench for 20-30 min before the addition of 100 mM KCl. The fluorescence was allowed to stabilize for 60 s before the addition of valinomycin, Acopolymer-1, Rcopolymer-8, Homopolymer-11 or Homopolymer-13. The fluorescence change thereafter was recorded for 1 h.

The residual cell viability of the bacteria in the membrane depolarization assay was assessed. At regular intervals (0, 5, 15, 45 and 60 min) an aliquot of the bacterial suspension was plated on MH agar plates and incubated at 37 °C for 24 h (*E. coli*) or 48 h (*S. aureus*), and residual colony forming units (CFU) were determined.

0 17a: R ₁ = 0 17b: R ₁ = 0 17c: R ₁ = 0	R ₁ CD ₂ C CH ₂ CH ₂ CH ₂ CH ₂ C CH ₂ CH ₂ CH ₂ CH ₂ N=C(5 or 16 Cl ₂ or CDCl ₃ CH ₂ CI CH ₂ NHBoc NHBoc) ₂	18a: 18b: 18b: 18c: 18d:	R_{2} $R_{2} = H$ $R_{2} = CH_{3}$ $R_{2} = CONHCH_{2}CH_{2}CH_{3}$ $R_{2} = CONH(CH_{2})_{7}CH_{3}$	$ = \int_{\mathbb{R}_2}^{\mathbb{R}_2} $		O OR ₁ Ph
Α	В	Cat.	[Ru] (M)	[A]:[B]:[Ru]	Rxn time (h)	Product	% conv ^a
17a	18a	15	0.01	25:50:1	5	Intermediate-1	90 ^b
17a	18b	15	0.01	25:50:1	2	Intermediate-2	92 ^c
17a	18c	15	0.01	25:50:1	3	Intermediate-3	92 <i>°</i>
17a	18d	15	0.01	25:50:1	5	Intermediate-4	96 ^c
17a	18a	16	0.01	25:50:1	4	Intermediate-5 (4)	92 ^c
17b	18a	15	0.01	25:50:1	2	Intermediate-6	97 ^c
17c	18a	15	0.01	25:50:1	2	Intermediate-7	95 ^c

Table S1. AROMP of 1-substituted cyclobutene esters with cyclohexenes. All AROMP reactions were monitored by ¹H-NMR spectroscopy. ^aPercent conversion determined by integration of ¹H-NMR spectra unless specified otherwise. ^bReaction was performed in CD_2Cl_2 at rt. ^cReaction was performed in $CDcl_3$ at 50 °C.

R₁: CH₂CH₂CH₂CH₂CH₂CI

Intermediate-8: n = 4 Intermediate-9: n = 8 Intermediate-10: n = 25

Α	В	Cat.	[Ru] (M)	[A]:[B]:[Ru]	Rxn time (h)	Product	% conv ^a
19	cyclooctene	15	0.01	4:4:1	2	Intermediate-8	>99
19	cyclooctene	15	0.01	8:8:1	2	Intermediate-9	>99
19	cyclooctene	15	0.01	25:25:1	2	Intermediate-10	>99

Table S2. Synthesis of random copolymers. All ROMP reactions were performed in CD₂Cl₂ and monitored by 'H-NMR spectroscopy at rt. ^aPercent conversion determined by integration of 'H-NMR spectra unless specified otherwise.

R₁: CH₂CH₂CH₂CH₂CH₂CI

Intermediate-11: n = 4 Intermediate-12: n = 8

[Ru] (M)	[A]:[Ru]	Rxn time (h)	Product	% conv ^a
0.01	4:1	4	Intermediate-11	93
0.01	8:1	3	Intermediate-12	92

Table S3. Synthesis of Homopolymers. All ROMP reactions were performed in CD_2CI_2 and monitored by ¹H-NMR spectroscopy. ^aPercent conversion determined by integration of ¹H-NMR spectra unless specified otherwise. ^bCalculated M_n was calculated based on conversion yields of monomers. ^cMolecular weight and PDI were determined by GPC using polystyrene standards.

 $\begin{array}{l} \mathsf{R}_1: \mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CI}\\ \mathsf{R}_2: \mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{NMe}_3\mathsf{CI} \end{array}$

Intermediate-13: n = 4 Intermediate-14: n = 8

Homopolymer-13: n = 4 Homopolymer-14: n = 8

[Ru] (M)	[A]:[Ru]	Rxn time (h)	Product	% conv ^a	Calcd. <i>M</i> n ^b	PSS <i>M</i> n [°]	PDI
0.01	4:1	1	Intermediate-13	99	1083	1265	1.33
0.01	8:1	1	Intermediate-14	99	2062	2256	1.23

Table S4. Synthesis of **Homopolymer-13** and **Homopolymer-14**. All ROMP reactions were performed in CD_2CI_2 and monitored by ¹H-NMR spectroscopy. ^aPercent conversion determined by integration of ¹H-NMR spectra unless specified otherwise. ^bCalculated M_n was calculated based on conversion yields of monomers. ^cMolecular weight and PDI were determined by GPC using polystyrene standards.

Polymer	Calcd. M _n	PSS M _n ^a	PDI
Acopolymer-1	6874	2154	1.8
Acopolymer-2	7225	1265	2.4
Acopolymer-3	9002	1436	1.6
Acopolymer-4	10755	1443	1.6
Acopolymer-5 (4)	6874	1327	2.1
Acopolymer-6	8891	2141	1.3
Acopolymer-7	11744	2235	1.6
Rcopolymer-8	1295	830	1.4
Rcopolymer-9	2495	2800	2.5
Rcopolymer-10	7575	9363	2.1
Homopolymer-11	855	589	3.5
Homopolymer-12	1606	2052	1.3
Homopolymer-13	1083	1265	1.3
Homopolymer-14	2062	2256	1.2

Table S5. GPC characterization of polymers. ^aMolecular weight and PDI were determined by GPC using polystyrene standards.

Polymer			MIC, μg	mL⁻¹ (μM)			
(MW) ¹ CLogP _{rel} ²	P. aeruginosa ATCC27853	<i>E. coli</i> ATCC 25922	<i>B. cereus</i> ATCC 10987	<i>S. aureus</i> ATCC 25923	<i>E. faecalis</i> ATCC 19433	<i>E. faecium</i> ATCC 19434	μg/mL (μM)
Acopolymer-1 (2154)	160 (74)	40 (19)	12 (6)	6 (3)	10 (5)	10 (5)	256 (119)
0 Acopolymer-2 (1265) 0,3	>256 (>202)	160 (126)	40 (32)	12 (9)	24 (19)	24 (19)	768 (607)
Acopolymer-3 (1436)	>256 (>178)	>256 (>178)	64 (45)	32 (22)	128 (89)	64 (45)	>1024 (>713)
Acopolymer-4 (1443)	>256 (>179)	256 (179)	24 (17)	24 (17)	24 (17)	24 (17)	192 (134)
Acopolymer-5 (1327)	256 (193)	64 (48)	40 (30)	12 (9)	20 (15)	20 (15)	1024 (772)
Acopolymer-6 (2141)	192 (90)	64 (30)	96 (45)	48 (22)	64 (30)	32 (15)	1024 (478)
Acopolymer-7 (2235)	32 (14)	12 (5)	12 (5)	6 (3)	12 (5)	12 (5)	512 (229)
Rcopolymer-8 (830)	>256 (>308)	>256 (>308)	32 (39)	16 (19)	16 (19)	16 (19)	512 (617)
Rcopolymer-9 (2800)	>256 (>91)	256 (91)	32 (11)	16 (6)	16 (6)	16 (6)	>1024 (>366)
Rcopolymer-10 (9363)	>256 (>27)	>256 (>27)	48 (5)	24 (3)	24 (3)	24 (3)	>1024 (>109)
Homopolymer-11 (589) -2.9	>512 (>869)	>512 (>869)	>512 (>869)	384 (652)	>512 (>869)	>512 (>869)	>2048 (>3477)
Homopolymer-12 (2052)	>512 (>250)	>512 (>250)	320 (156)	288 (140)	320 (156)	320 (156)	>2048 (>998)
Homopolymer-13 (1265) -0.3	128 (101)	32 (25)	12 (9)	8 (6)	8 (6)	8 (6)	379 (300)
Homopolymer-14 (2256) -0.3	>256 (>113)	64 (28)	16 (7)	8 (4)	8 (4)	8 (4)	443 (196)

Table S6. Antibacterial and hemolytic activities of **Acopolymer-1** to **Homopolymer-14**. The data shown are the average of triplicate measurements for two independent replicates.

¹The MW is the experimentally determined number-average molecular weight (Table S5). ²The CLogP's were calculated according to Crippen's fragmentation (*8*) using ChemDraw Ultra 12.0 for the ring-opened AB dyads (copolymers) or A monomers (homopolymer). The CLogP_{rel} is relative to **Acopolymer-1** that was arbitrarily set to 0. A more positive CLogP is more hydrophobic than **Acopolymer-1** and conversely, a more negative CLogP is less hydrophobic. The standard deviation of the calculation is ± 0.5 . ³n.d., not determined.

	%Dye leakage ([vesicle] = 4.5 μ M) ^a					
Polymer	POPE/POPG (3/1) ([Polymer] = 4 μg mL ⁻¹)	Cardiolipin ([Polymer] = 4 μg mL ⁻¹)	DOPC ([Polymer] = 1 µg mL ⁻¹)			
Acopolymer-1	76 ± 5	65 ± 2	83 ± 3			
Acopolymer-2	62 ± 2	75 ± 1	37 ± 3			
Acopolymer-3	37 ± 3	20 ± 1	9 ± 9			
Acopolymer-4	71 ± 3	37 ± 2	50 ± 1			
Acopolymer-5	82 ± 1	49 ± 1	37 ± 4			
Acopolymer-6	85 ± 4	45 ± 1	58 ± 4			
Acopolymer-7	98 ± 1	69 ± 4	85 ± 4			
Rcopolymer-8	23 ± 7	50 ± 1	28 ± 2			
Rcopolymer-9	47 ± 1	34 ± 3	41 ± 2			
Rcopolymer-10	50 ± 1	49 ± 1	50 ± 4			
Homopolymer-11	19 ± 1	13 ± 2	2 ± 1			
Homopolymer-12	22 ± 9	11 ± 1	2 ± 1			
Homopolymer-13	92 ± 5	59 ± 2	77 ± 6			
Homopolymer-14	80 ± 2	51 ± 1	65 ± 7			

Table S7. Dye leakage percentages of **Acopolymer-1** to **Homopolymer-14** in 5 min. ^aPercent dye release was calculated as the ratio of fluorescence observed upon polymer addition to the fluorescence observed after adding Triton X-100.

Polymer	%P	otassium release ^a
	E. coli	S. aureus
Acopolymer-1	47 ± 5	77 ± 6
Acopolymer-2	21 ± 16	37 ± 7
Acopolymer-3	18 ± 10	19 ± 2
Acopolymer-4	36 ± 7	33 ± 5
Acopolymer-5	35 ± 7	70 ± 10
Acopolymer-6	49 ± 19	73 ± 17
Acopolymer-7	41 ± 17	42 ± 4
Rcopolymer-8	27 ± 14	18 ± 5
Rcopolymer-9	21 ± 7	24 ± 5
Rcopolymer-10	19 ± 9	30 ± 17
Homopolymer-11	8 ± 1	7 ± 1
Homopolymer-12	8 ± 2	10 ± 3
Homopolymer-13	55 ± 8	69 ± 13
Homopolymer-14	40 ± 10	65 ± 5

Table S8. Potassium release percentages of **Acopolymer-1** to **Homopolymer-14** in 16 min. ^aPercent potassium release was calculated as the ratio of fluorescence observed upon polymer addition to the fluorescence observed after adding valinomycin.

Figure S1. ¹H-NMR spectra of Intermediate-1 to Intermediate-7.

Figure S2. ¹H-NMR spectrum of Acopolymer-1.

Figure S3. ¹H-NMR spectra of Intermediate-7 and Acopolymer-7.

Figure S4. ¹H-NMR spectra of Intermediate-8 to Intermediate-10.

Figure S5. ¹H-¹H gCOSY NMR spectrum of Intermediate-10.

Figure S6. ¹H-NMR spectra of Intermediate-11 and Intermediate-12.

Figure S7. ¹H-NMR spectra of Intermediate-13 and Intermediate-14.

References

- 1. Love, J. A., Morgan, J. P., Trnka, T. M., and Grubbs, R. H. (2002) A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile, *Angew. Chem. Int. Ed. 41*, 4035-4037.
- 2. Lee, J. C., Parker, K. A., and Sampson, N. S. (2006) Amino acid-bearing ROMP polymers with a stereoregular backbone, *J. Am. Chem. Soc.* 128, 4578-4579.
- 3. Campbell, A., and Rydon, H. N. (1953) The synthesis of caryophyllenic acid, *J. Chem. Soc.*, 3002-3008.
- 4. Song, A., Parker, K. A., and Sampson, N. S. (2010) Cyclic Alternating ROMP (CAROMP). Rapid Access to Functionalized Cyclic Polymers, *Org. Lett. 12*, 3729–3731.
- 5. Sommen, G. L., Linden, A., and Heimgartner, H. (2005) First synthesis of a selenazepane, *Tetrahedron Lett. 46*, 6723-6725.
- 6. Ashby, E. C., and Pham, T. N. (1986) The use of 5-halocyclooctenes as a radical probe. Reactions with lithium aluminum hydride, *J. Org. Chem. 51*, 3598-3602.
- 7. Bloodworth, A. J., Melvin, T., and Mitchell, J. C. (1988) Mechanistic aspects of oxygen transfer by gem-dialkylperoxonium ions, *J. Org. Chem. 53*, 1078-1082.
- 8. Ghose, A. K., and Crippen, G. M. (1987) Atomic physicochemical parameters for threedimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions, *J. Chem. Inf. Comput. Sci. 27*, 21-35.
- 9. CLSI, (Ed.) (2006) *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 6th ed., Approved Standard M7-A6*, Clinical and Laboratory Standards Institute, Wayne, PA.
- 10. Murthy, N., Robichaud, J. R., Tirrell, D. A., Stayton, P. S., and Hoffman, A. S. (1999) The design and synthesis of polymers for eukaryotic membrane disruption, *J. Control. Release 61*, 137-143.
- Mason, A. J., Moussaoui, W., Abdelrahman, T., Boukhari, A., Bertani, P., Marquette, A., Shooshtarizaheh, P., Moulay, G., Boehm, N., Guerold, B., Sawers, R. J., Kichler, A., Metz-Boutigue, M. H., Candolfi, E., Prevost, G., and Bechinger, B. (2009) Structural determinants of antimicrobial and antiplasmodial activity and selectivity in histidine-rich amphipathic cationic peptides, *J. Biol. Chem. 284*, 119-133.
- 12. Al-Badri, Z. M., Som, A., Lyon, S., Nelson, C. F., Nusslein, K., and Tew, G. N. (2008) Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers, *Biomacromolecules 9*, 2805-2810.
- 13. Silverman, J. A., Perlmutter, N. G., and Shapiro, H. M. (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in *Staphylococcus aureus*, *Antimicrob. Agents Chemother.* 47, 2538-2544.

¹³C-NMR spectrum of 17b

	2052008.fid/fid			
Value	E:/ NMRdata/ 10012008-02172009/ 400/ CBC00C4H8NH-boc-C13- BC00C4H8NHBoc-C13- nova	DCl3 s2pul 2008-12-05T08:18:01	25.0 320 ncy 100.55 25000.0 -2986.3 3C 2984 65536 65536	60 150 140 130 120 110 100 90 80
Parameter	 Data File Name Title Origin Owner 	5 Solvent CI 6 Pulse Sequence 7 Acquisition Date 8 Modification Date	9 Temperature 10 Number of Scans 11 Spectrometer Frequen 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 15 Acquired Size 16 Spectral Size	200 190 180 170 16

S32

NMR chemical shift (ppm)	¹³ C-NMR spectrum of 17c
-	

Value

Parameter

Sc
1
of
spectrum
IR
13C

																							Γ	0
																							-	10
																				بلديد وجول			-	20
																					the second second		-	30
																							-	40
																							-	50
																				. ط حر الحال			-	60
																				ليلمك الم			-	70
-	R.fid/fid																						-	80
	7-C13NMF																						-	06 (
	CONHC3H																						-	100 (ppm
	hexene-(110 f1
Value	400/ cyclc																			1.444				120
	172009/	3NMR											_									I	-	130
	12008-02	IC3H7-C13					1:32													المرجمة مرال				140
	data/ 100	kene-conh)-29T06:1					_								-eki tae				150
	E:/ NMR	cyclohe	inova		CDC13	s2pul	2008-10		25.0	112	y 100.55	25000.0	-2988.3	13C	29984	65536				و د را را د را د			-	160
eter	0					ē	te	ate		sui	Frequency	_	ency										-	170
Parame	File Nam		Ē	er	ent	Sequenc	lisition Dat	fication D	erature	ber of Sca	trometer	tral Width	st Freque	sna	iired Size	tral Size		_					F	180
	1 Data	2 Title	3 Origi	4 Own	5 Solvé	6 Pulse	7 Acqu	8 Modi	9 Temp	10 Num	11 Spec	12 Spec	13 Low∈	14 Nuclé	15 Acqu	16 Spec								190
																S35							Ĺ	200

			3:00 - 10.54 - 10.5	0.0 0.1 C.1 0.7 C.7																						
	leCONHC8H17.fid/fid			trum of 18d																						
Value	E:/ NMRdata/ 10012008-02172009/ 400/ Cyclohexe CyclohexeneCONHC8H17 inova CDCI3 s2pul 2008-10-30T09:21:29 25 n	16 y 399.83 6000.6 -1000.8 1H 19637 65536	- SO'Z - 22'0 - 22'0 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	¹ H-NMR spec																						
Parameter	 Data File Name Title Origin Origin Ovner Solvent Pulse Sequence Acquisition Date Modification Date Temnerature 	 10 Number of Scans 11 Spectrometer Frequency 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size 	- - - - - - - - - - - - - - - - - - -	C.O D.A C.A																						
																							E		0	
---------	------------	-------------	----------	----------	----------	----------	-------------	-----------	---------	------------	-----------	-----------	------------	-----------	----------	----------	-----	---	--	---	--	---------------------------	-------------------	---	--------------	------------
																						يعقلهم فأ			10	
																						للم الم ال	أستعط		20	
	-	-																					وللم المعالية		30	
-																						ليسطيك أليان		-	40	
																				_		بليليد		-	50	
																									60	
																						يلايدين أتدنك	يستحقانه م	-	70	
	IR.fid/fid																							-	80	18d
	17-C13NM																								06 (l of
	ONHC8H																					لملمسي		-	100 (ppm)	Tum
	hexene-C																					بلدار مطراب		-	110 f1	pect
Value	-00/ Cyclo																						a de la constante	-	120	IR S
	172009/ 4	3NMR	-																			خللمسحم	حديد الم	-	130	-NN
	12008-02	C8H17-C1					5:47																علمته	-	140	^{13}C
	lata/ 100	(enCONH					-30T09:25																	-	150	
	E:/ NMRo	Cyclohex	inova		CDCI3	s2pul	2008-10		25.0	72	100.55	25000.0	-2990.6	13C	29984	65536								-	160	
er							0	te		S	requency		JCY									a subscript of the second	فمتدعل	-	170	
Paramet	File Name			<u>ـ</u>	٦t	Sequence	sition Date	cation Da	erature	er of Scar	rometer F	ral Width	st Frequer	SL	ed Size	ral Size						ماعمامه	فخصيتها	-	180	
	1 Data	2 Title	3 Origin	4 Owne	5 Solvei	6 Pulse	7 Acqui	8 Modifi	9 Tempe	10 Numb	11 Spect	12 Spect	13 Lowes	14 Nuclei	15 Acqui	16 Spect						يعطيط		-	190	
																	S3′	7						F	200	

																				_		± 10.5 ⊥ 10.5	0 1.5 1.0 0.5 0.0	
															_							I−20.2	2.5 2.	
							-											_				₽-200.5 1-00.5	3.5 3.0	
	Cl11212008.fid/ fid																				-		5.0 4.5 4.0	rum of 19
Value)/ 400/ CBCONHC4H8																					82.0	6.0 5.5 f	MR spect
-	a/ 10012008-02172009						T08:43:42												_			<u></u> , 56.0	.5 7.0 6.5	IN-H ¹
	E:/ NMRdata	CBCONHC4	inova		CDC13	s2pul	2008-11-21		25.0	16	icy 399.83	6000.6	-1000.8	1H	19637	65536							8.0	
Parameter	Data File Name	Title	Origin	Owner	Solvent	Pulse Sequence	Acquisition Date	Modification Date	Temperature	Number of Scans	Spectrometer Frequen	Spectral Width	Lowest Frequency	Nucleus	Acquired Size	Spectral Size							5 9.0 8.5	
	1 [2) Ю	4	5	9	1 1	8	۰ ۱-	10 I	11 5	12 5	13 1	14 [15 /	99 S38							6	

		- 9	
		5 - 5	
		- R	
		- 64	
		20 -	
		09	
		- - R	
-			1
	d/ fid		•
	1212008.fi	(bbm) (bbm)	
	C13NMR-1		,)))
	NHC4H8CL		}` ↓ ↓
Value	Value 400/ CBCO		•
	- 11212009/	13 T 1)
	.0012008-C C-C13-NMR :46:51	20	
	MRdata/ 1 0NHC4H8c a 13 3-11-21T06 55 55 30.0 9.3 86 86 86		
	E:// CBC inov. inov. 25.0 25.0 25.0 136 -298 2505 2505 2505 2505 2505 2505 2505 250		
arameter	a rameter a Name on Date tion Date ture of Scans meter Frequ requency requency Size Size		
д.	 Pata Fik Data Fik Title Title Ovigin Ovigin Ovigin Oviest Pulse Se Acquisition Pulse Se Acquisition Sectoral Spectral 		
	- N M 4 10 V 8 0		

													I [- 0	
														- 9	
														50	
=														30	
-														- 4	
	п													20	
	10.fid/fi													- 09	
	R012220													20	
	H-C13NMF													80 bm)	· 22
	eneCOOF													90 shift (p	m of
lue	Cycloocte													100 mical s	ctru
Ъ	/ 500/ 5-(110 R chei	spec
	1262010, MR													120 NM	MR
	22009-0. H-C13N			:39								 		130	
	ita/ 1212 eneCOO			:1T06:18										140	13
	:/ NMRda -cyclooct Iova		DCl3 2pul	010-01-2	5.0	28 27	1446.5	2210.1	ЗС	9680	31072			150	
	ш ю .⊑		O `o	N	2		luericy 1 3		1	4	-			160	
rameter	Name		uence	n Date on Date	ure	f Scans	eler rrec Vidth	equency		Size	ize			170	
Ра)ata File Title)rigin	wner	olvent ulse Seq	vcquisitio 10dificati	emperati	lumber o	pectral V	owest Fr	lucleus	vcquired 3	pectral S			180	
	о ч п м 5 н	4	9 0 0	< ∠ 8	1 6	10 1	11 S 12 S	13 L	14 N	15 A	16 5			190	
									5	542				500	

	ł	0
		- 6
		5 0
		30
		- 4
	ji 	- 20
	2010.fid/	- 09
	IMR 01232	- 0
Value	009-01262010/ 500/ 5-cycloocteneCOOC4H8CFC13N HBCF-C13NMR	130 120 110 100 90 80 NMR chemical shift (ppm)
	E:/ NMRdata/ 121220 5-cycloocteneCOOC4 inova CDCl3 s2pul 2010-01-22T06:34:1. 2010-01-22T06:34:1. 25.0 184 5210-01-22T06:34:1. 2010-01-22106:34:1. 184 511072 131072	0 150 140 13 C
Parameter	 Data File Name Title Title Origin Ovigin Ovient Solvent Pulse Sequence Pulse Sequence Acquisition Date Modification Date Temperature Number of Scans Spectral Width Spectral Width Lowest Frequency Nucleus Acquired Size Spectral Size 	0 180 170 16
	S44	200

Value

Parameter

¹H-NMR spectrum of Intermediate-2

			\$	
				- 6
				5
				30
				- 4
				20
	.fid/fid			60 60 6-10
	1252010			70 diat
Value	E:/ NMRdata/ 12122009-01262010/ 500/ Pre-Polymer-10-C13NMF0 CBCONHC4H8CI-cyclooctene25mer-C13NMR inova	CDCl3 s2pul 2010-01-25T13:12:42 25.0 5944 incy 125.71 31446.5 -2206.6	13C 40896 131072	160 150 140 130 120 110 100 90 80 NMR chemical shift (ppm) 13C-NMR spectrum of Interme
Parameter	 Data File Name Title Origin Owner 	 5 Solvent 6 Pulse Sequence 7 Acquisition Date 8 Modification Date 9 Temperature 10 Number of Scans 11 Spectrometer Freque 12 Spectral Width 13 Lowest Frequency 	14 Nucleus 15 Acquired Size 16 Spectral Size	190 180 170
			S56	200

																					I	o	
																						- 10	
																				-		50	
																	 	 	 			30	
]	- 40	
																					Ì	50	
																						- 09	e-12
	fid																					- 0 2	diat
Value	/ 12122009-01262010/ 500/ Pre-Polymer-12-C13NMR01262010.fd ARRON PARAMETERS					17:06:34																140 130 120 110 100 90 80 NMR chemical shift (ppm)	C-NMR spectrum of Interme
	E:/ NMRdata, STANDARD C	inova		CDCI3	s2pul	2010-01-25T		25.0	18544	uency 125.71	31446.5	-2211.6	13C	40896	131072							160 150	13
Parameter	1 Data File Name 2 Title	3 Origin	4 Owner	5 Solvent	6 Pulse Sequence	7 Acquisition Date	8 Modification Date	9 Temperature	10 Number of Scans	11 Spectrometer Freq	12 Spectral Width	13 Lowest Frequency	14 Nucleus	15 Acquired Size	16 Spectral Size					2		190 180 170	
															S	9					ł	200	

Value

Value

