Cascade Intramolecular *N***-Arylation/Intermolecular Carboamination Reactions for the Construction of Tricyclic Heterocycles.**

Georgia S. Lemen and John P. Wolfe*

Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055

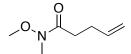
Supporting Information

Experimental procedures and characterization data for new compounds in Table 2 and Scheme 2.

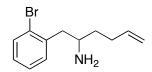
Table of Contents	
General Considerations	S1
Preparation and Characterization of Substrates	S2
Preparation and Characterization of Heterocyclic Products	S20
Assignment of Stereochemistry	S32
References	S33
Copies of NMR data for substrates and intermediates	S34
Copies of NMR and HPLC data for products in Table 2	S85

General: All reactions were carried out under a nitrogen atmosphere in oven- or flame-dried glassware. $Pd(OAc)_2$, $Pd_2(dba)_3$, and all phosphine ligands were purchased from Strem Chemical Co. or Aldrich Chemical Co. and used without further purification. All aryl chlorides and common reagents were obtained from commercial sources and were used as received. Toluene, diethyl ether, methylene chloride, and THF were purified using a GlassContour solvent purification system. Flash chromatography was conducted using silica gel unless otherwise noted. Bulk quantities of NaO'Bu were stored in a nitrogen-filled glovebox. Small amounts (ca 1 g) were removed and stored in a dessicator for up to a few days prior to use, and quantities needed for individual experiment were weighed in the air. 3-(2-bromophenyl)propanal¹ and 2-(2-

bromophenoxy)acetic acid² were synthesized according to literature procedure. Ratios of diastereomers were determined by ¹H NMR analysis of crude reaction mixtures. Yields refer to isolated yields of compounds estimated to be \geq 95% pure as determined by ¹H NMR analysis. The yields reported in the supporting information describe the result of a single experiment, whereas the yields reported in Table 2 are average yields of two or more experiments. Thus, the yields reported in the supporting information may differ from those shown in Table 2.

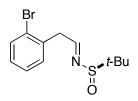

Preparation and Characterization of Substrates

General Procedure 1: Generation of Grignard Reagents

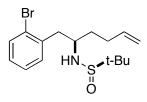

A flame- or oven-dried flask equipped with a reflux condenser and a magnetic stir bar was cooled under a stream of nitrogen and charged with an appropriate alkyl bromide (2.0 equiv relative to substrate) and diethyl ether (0.2–1 M). Freshly ground magnesium turnings were added (4.0 equiv relative to substrate) and the flask was purged with nitrogen. When self-reflux began, the reaction mixture was placed in an ambient temperature water bath for 5 min, then was removed from the bath and stirred for an additional 30 min at rt. Stirring was then halted, and the reaction mixture was allowed to stand at rt for 20 min. During this time a finely divided particulate suspension settled to the bottom of the flask. Only the solution above the solid material was employed in subsequent addition reactions to electrophiles.

General Procedure 2: Synthesis of N-Sulfinyl Imines

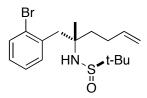
A flame-dried flask equipped with a magnetic stir bar was cooled under a stream of nitrogen and charged with an appropriate aldehyde or ketone (1.0 equiv), 2-methylpropane-2-sulfinamide (1.05 equiv), THF (0.5 M), and titanium ethoxide (2.0 equiv). The resulting mixture was stirred under a nitrogen atmosphere at rt (aldehyde) or reflux (ketone) until the starting material was consumed as judged by TLC analysis. The reaction mixture was cooled to rt, quenched with brine (0.5 M) and quickly filtered through a plug of Celite. The plug was rinsed thoroughly with ethyl acetate. The filtrate was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated *in vacuo* and purified by flash chromatography on silica gel.



N-Methoxy-*N*-methylpent-4-enamide (S1).³ An oven-dried flask equipped with a magnetic stir bar was cooled under a stream of nitrogen and charged with 4-pentenoic acid (10.2 mL, 100 mmol) and chloroform (400 mL, 0.25 M). *N*,*O*-dimethylhydroxylamine hydrochloride (14.63 g, 150 mmol), *N*-methylmorpholine (27.5 mL, 250 mmol), 1-hydroxybenzotriazole hydrate (14.86 g, 110 mmol), and *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (21.09 g, 110 mmol) were added, and the reaction flask was purged with N₂. The resulting mixture was stirred at rt overnight, then was filtered through a fritted funnel. The solids were rinsed with 1:1 EtOAc/ hexanes, and the filtrate was concentrated *in vacuo*. The crude product was purified by flash chromatography to afford 7.76 g (54%) of the title compound as a clear oil. ¹H NMR (400 MHz, CDCl₃) δ 5.93–5.81 (m, 1 H), 5.11–5.04 (m, 1 H), 5.02–4.98 (m, 1 H), 3.69 (s, 3 H), 3.19 (s, 3 H), 2.56–2.51 (m, 2 H), 2.41–2.36 (m, 2 H).

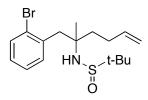

(±)-1-(2-Bromophenyl)hex-5-en-2-amine (5a) A solution of 2-bromobenzyl bromide (16.41 g, 66 mmol) in diethyl ether (300 mL) was converted to 2-bromobenzylmagnesium bromide according to General Procedure 1. The freshly made Grignard reagent was added dropwise to a 0 °C solution of *N*-methoxy-*N*-methylpent-4-enamide (4.70 g, 33 mmol) in diethyl ether (30 mL) via cannula over 25 min. After the addition was complete, the reaction vessel was removed from the ice bath and stirred at rt overnight. The mixture was then cooled to 0 °C and slowly quenched with saturated ammonium chloride. The resulting mixture was transferred to a separatory funnel and the layers were separated. The aqueous layer was extracted with methylene chloride (3 x 50 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The crude product was purified by flash chromatography on basic alumina to afford 1-(2-bromophenyl)hex-5-en-2-one (**S2**) as a clear oil (6.15 g, 74%). ¹H NMR (500 MHz, CDCl₃) δ 7.57 (dd, *J* = 1.0, 8.1 Hz, 1 H), 7.30–7.26 (m, 1 H), 7.21 (dd, *J* = 1.7, 7.6 Hz, 1 H), 7.16–7.12 (m, 1 H), 5.85–5.76 (m, 1 H), 5.05–4.96 (m, 2 H), 3.86 (s, 2 H), 2.60 (t, *J* = 7.3, 2 H), 2.38–2.33 (m, 2 H).

A portion of the 1-(2-bromophenyl)hex-5-en-2-one (1.27 g, 5.0 mmol) was stirred with ammonium acetate (3.93 g, 5.1 mmol) and sodium cyanoborohydride (223 mg, 3.6 mmol) in anhydrous methanol (15 mL, 0.33 M) under nitrogen at rt for 4 d. The reaction was quenched with 1 M HCl and concentrated *in vacuo* to remove methanol. The mixture was taken to pH 14 by addition of 3 M NaOH, and the resulting solution was extracted with methylene chloride (3 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The crude product was purified by column chromatography on basic alumina to afford the title compound as a pale yellow oil (642 mg, 51%). ¹H NMR (500 MHz, CDCl₃) δ 7.57–7.54 (m, 1 H), 7.27–7.22 (m, 2 H), 7.11–7.07 (m, 1 H), 5.89–5.80 (m, 1 H), 5.07 (dd, *J* = 2.0, 3.4 Hz, 1 H), 5.04–4.95 (m, 1 H), 3.15–3.09 (m, 1 H), 2.97 (dd, *J* = 4.9, 13.7 Hz, 1 H), 2.29–2.19 (m, 1 H), 2.18–2.13 (m, 1 H), 1.66–1.58 (m, 1 H), 1.53–1.45 (m, 1 H), 1.22 (s, br, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 138.5, 133.0, 131.6, 128.0, 127.3, 125.0, 114.7, 50.8, 44.8, 36.9, 30.5; IR (film) 3371, 3287, 2920, 1640 cm⁻¹. MS (ESI) *m/z* 254.0554 (245.0544 calcd for C₁₂H₁₆BrN, M + H⁺).

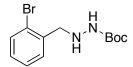

(-)-(*R*,*E*)-*N*-[2-(2-Bromophenyl)ethylidene]-2-methylpropane-2-sulfinamide (10a). An ovendried round bottom flask equipped with a magnetic stir bar was charged with 2-(2bromophenyl)ethanol (1.00 g, 5.0 mmol) and purged with nitrogen. Methylene chloride (16 mL, 0.32 M) was added and the resulting solution was cooled to 0 °C. Trichloroisocyanuric acid (1.16 g, 5.0 mmol) was added and the mixture was stirred at 0 °C for 5 min. 2,2,6,6-Tetramethylpiperidin-1-oxyl (81 mg, 0.50 mmol) was then added and the reaction mixture was stirred at 0 °C for an additional 10 min. The reaction mixture was then filtered through Celite, and the Celite was rinsed with fresh methylene chloride. The filtrate was transferred to a separatory funnel and washed with 10% Na₂CO₃ (3 x 50 mL), 1 M HCl (3 x 50 mL) and brine (1 x 50 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated *in vacuo* to afford 2-(2bromophenyl)acetaldehyde⁴ (9a) as a clear oil. This material was used without additional purification. ¹H NMR (500 MHz, CDCl₃) δ 9.77 (t, *J* = 1.7 Hz 1 H), 7.62 (dd, *J* = 1.0, 8.1 Hz, 1 H), 7.34–7.30 (m, 1 H), 7.27–7.23 (m, 1 H), 7.21–7.17 (m, 1 H), 3.87 (d, *J* = 1.7 Hz, 2 H).

The crude 2-(2-bromophenyl)acetaldehyde (**9a**) was then condensed with (*R*)-2methylpropane-2-sulfinamide (641 mg, 5.30 mmol) according to General Procedure 2 to afford 619 mg (41% over two steps) of the title compound as a clear oil. $[\alpha]^{23}_{D}$ –201.6 (*c* 2.42, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.13 (t, *J* = 4.6 Hz, 1 H), 7.58 (dd, *J* = 1.0, 8.1 Hz, 1 H), 7.31– 7.23 (m, 2 H), 7.17–7.13 (m, 1 H), 3.99 (d, *J* = 4.6 Hz, 2 H), 1.18 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 135.0, 133.0, 131.2, 128.9, 127.7, 124.8, 57.0, 42.7, 22.4; IR 3059, 2959, 1619 cm⁻¹. MS (ESI) 302.0202 (302.0209 calcd for C₁₂H₁₆BrNOS, M + H⁺).

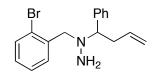
 $(+)-(R_{sy}R)-N-[1-(2-Bromophenyl)hex-5-en-2-yl]-2-methylpropane-2-sulfinamide (11a). A$ solution of 4-bromo-1-butene (0.41 mL, 4.0 mmol) in diethyl ether (4 mL) was converted to the corresponding Grignard reagent via General Procedure 1. The freshly made Grignard solution was added dropwise to a -55 °C solution of 10a (602 mg, 2.0 mmol) in methylene chloride (10 mL) over 5 min. The resulting mixture was slowly warmed from -55 °C to -15 °C over 4 h. TLC analysis indicated the reaction had not proceeded to completion. The reaction was cooled to -78°C and allowed to warm slowly overnight (12 h) to +10 °C. The reaction was then quenched with saturated ammonium chloride and transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with methylene chloride (4 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography to afford 478 mg (67%) of the title compound as a 22:1 mixture of diastereomers as a clear oil which solidified upon standing to give a white solid, mp 69–75 °C $[\alpha]^{23}_{D}$ +9.2 (c 2.48, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.54–7.51 (m, 1 H), 7.28-7.21 (m, 2 H), 7.09-7.04 (m, 1 H), 5.88-5.79 (m, 1 H), 5.12-5.06 (m, 1 H), 5.03-4.99 (m, 1H), 3.63-3.56 (m, 1 H), 3.17 (d, J = 7.6 Hz, 1 H), 2.99 (dd, J = 5.4, 11.7 Hz, 1 H), 2.95-2.90(m, 1 H), 2.33–2.22 (m, 2 H), 1.93–1.85 (m, 1 H), 1.82–1.74 (m, 1 H), 1.04 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) & 138.3, 137.8, 132.8, 132.0, 128.1, 127.3, 125.1, 115.3, 57.4, 55.8, 42.5.


35.5, 30.0, 22.4; IR (film) 3216, 3071, 2924, 1640. MS (ESI) *m/z* 358.0835 (358.0835 calcd for $C_{16}H_{24}BrNOS$, M + H⁺).

(-)-(R_{ss} *S*)-*N*-[1-(2-Bromophenyl)-2-methylhex-5-en-2-yl]-2-methylpropane-2-sulfinamide (S4). Ketone S2 (1.92 g, 7.57 mmol) was condensed with (*R*)-2-methylpropane-2-sulfinamide (963 mg, 7.94 mmol) according to General Procedure 2. This procedure afforded 1.88 g (70%) of (-)-(*R*)-*N*-[1-(2-bromophenyl)hex-5-en-2-ylidene]-2-methylpropane-2-sulfinamide (S3) as a 1:1 mixture of diastereomers as judged by ¹H NMR analysis. Data are for the mixture. [α]²³_D -85.0 (*c* 3.31, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.52 (m, 2 H), 7.32–7.23 (m, 4 H), 7.20– 7.09 (m, 2 H), 5.93–5.82 (m, 1 H), 5.78–5.69 (m, 1 H), 5.12 (d, *J* = 17.6 Hz, 1 H), 5.05 (d, *J* = 10.4 Hz, 1 H), 4.99–4.91 (m, 2 H), 4.37 (d, *J* = 15.8 Hz, 1 H), 4.22 (d, *J* = 15.6 Hz, 1 H), 3.92– 3.83 (m, 2 H), 2.99–2.91 (m, 1 H), 2.89–2.80 (m, 1 H), 2.51–2.44 (m, 2 H), 2.37–2.32 (m, 4 H), 1.31 (s, 9 H), 1.04 (s, 9 H).


A flame dried flask was cooled under a stream of nitrogen, charged with a portion of **S3** (772 mg, 2.17 mmol), then purged with nitrogen. Toluene (2.2 mL) was added and the resulting solution was cooled to -78 °C. Trimethylaluminum (2.0 M in toluene, 1.2 mL, 2.4 mmol) was added and the resulting mixture was stirred at -78 °C for 5 min, then was added via cannula over 10 min to a flask containing a -78 °C solution of methyllithium (1.6 M in diethyl ether, 3.0 mL, 4.8 mmol) and toluene (6.6 mL). The mixture was stirred at -78 °C for 4 h, then the reaction vessel was placed in an ice bath and saturated aqueous ammonium chloride was added until bubbling stopped. The layers were separated, and the organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated *in vacuo* and purified via flash chromatography on silica gel to afford 385 mg (50% recovery) of **S3** and 285 mg (35%) of the title compound as a yellow oil which was a 12:1 mixture of diastereomers as determined by ¹H NMR analysis. Data are for the major isomer. [α]²³_D –4.2 (*c* 2.12, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, *J* = 1.2, 8.0 Hz, 1 H), 7.50 (dd, *J* = 1.7, 7.6 Hz, 1 H), 7.29–7.24 (m, 1 H), 7.12–7.07 (m, 1 H), 5.86–5.75 (m, 1 H), 5.05–4.93 (m, 2 H), 3.33 (s, 1 H), 3.21 (d, *J* = 13.6 Hz, 1 H), 7.12–7.07 (m, 1 H), 5.86–5.75 (m, 1 H), 5.05–4.93 (m, 2 H), 3.33 (s, 1 H), 3.21 (d, *J* = 13.6 Hz, 1 H), 7.12–7.07 (m, 1 H), 5.86–5.75 (m, 1 H), 5.05–4.93 (m, 2 H), 3.33 (s, 1 H), 3.21 (d, *J* = 13.6 Hz, 1 H), 7.12–7.07 (m, 1 H), 5.86–5.75 (m, 1 H), 5.05–4.93 (m, 2 H), 3.33 (s, 1 H), 3.21 (d, *J* = 13.6 Hz, 1 H), 7.12–7.07 (m, 1 H), 5.86–5.75 (m, 1 H), 5.05–4.93 (m, 2 H), 3.33 (s, 1 H), 3.21 (d, *J* = 13.6 Hz, 1 Hz).

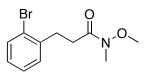
1 H), 3.08 (d, J = 13.6 Hz, 1 H), 2.15–2.12 (m, 2 H), 1.83–1.75 (m, 1 H), 1.64–1.55 (m, 1 H), 1.43 (s, 3 H), 1.21 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 136.7, 133.3, 133.1, 128.3, 127.2, 126.4, 114.5, 58.9, 56.0, 47.1, 39.4, 27.9, 26.2, 22.8; IR (film) 3301, 3220, 3071, 2976, 1640 cm⁻¹. MS (ESI) 372.0992 (372.0991 calcd for C₁₇H₂₆BrNOS, M + H⁺).



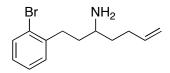
(±)-*N*-[1-(2-Bromophenyl)-2-methylhex-5-en-2-yl]-2-methylpropane-2-sulfinamide (S4). Ketone S2 (2.23 g, 8.8 mmol) was condensed with (±)-2-methylpropane-2-sulfinamide (1.12 g, 9.2 mmol) according to General Procedure 2. This procedure afforded 1.98 g (63%) of (±)-*N*-[1- (2-bromophenyl)hex-5-en-2-ylidene]-2-methylpropane-2-sulfinamide (S3) as a 1:1 mixture of diastereomers as judged by ¹H NMR analysis. NMR data were identical to those reported above for (–)-S3.

A flame dried flask was cooled under a stream of nitrogen and charged with **S3** (1.98 g, 5.52 mmol). The reaction vessel was purged with nitrogen, toluene (5.5 mL) was added, and the resulting solution was cooled to -78 °C. Trimethylaluminum (2.0 M in toluene, 3.0 mL, 6.0 mmol) was added and the resulting mixture was stirred at -78 °C for 5 min, then was added via cannula over 10 min to a flask containing a -78 °C solution of methyllithium (1.6 M in diethyl ether, 7.5 mL, 12.1 mmol) and toluene (18 mL). The mixture was stirred at -78 °C for 4 h, then the reaction vessel was placed in an ice bath and saturated aqueous ammonium chloride was added until bubbling stopped. The layers were separated, and the organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated *in vacuo* and purified to afford 1.25g (63% recovery) of **S3** and 588 mg (29%) of the title compound as a yellow oil which was a 12:1 mixture of diastereomers as determine by ¹H NMR. ¹H NMR data were identical to that those reported above for (–)-**S4**.

tert-Butyl 2-(2-bromobenzyl)hydrazinecarboxylate (S5). An oven-dried flask equipped with a magnetic stir bar was cooled under a stream of nitrogen and charged with tert-butyl carbazate (1.13 g, 8.6 mmol). The flask was purged with nitrogen. THF (11 mL) and 2bromobenzaldehyde (1.0 mL, 8.6 mmol) were added, and the resulting mixture was stirred at rt for 18 h. Additional THF (23 mL), sodium cyanoborohydride (808 mg, 13 mmol), and acetic acid (14 mL) were added, and stirring was continued for an additional 24 h at rt. The reaction mixture was then diluted with water (60 mL) and ethyl acetate (60 mL), then saturated aqueous sodium bicarbonate was slowly added until bubbling ceased. The mixture was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with ethyl acetate (2 x 75 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was dissolved in methanol (40 mL), and 1.5 M sodium hydroxide (30 mL) was added. The resulting mixture was stirred at 60 °C for 1.5 h. The reaction mixture was then cooled to rt and transferred to a separatory funnel. The mixture was extracted with diethyl ether (3 x 50 mL), and the combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The product was taken up in additional diethyl ether (10 mL) and re-dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to afford 2.19 g (85%) of a white solid, mp 67-71 °C, which was used without further purification. ¹H NMR (500 MHz, CDCl₃) & 7.56–7.54 (m, 1 H), 7.40–7.39 (m, 1 H), 7.28–7.26 (m, 1 H), 7.15–7.12 (m, 1 H), 6.16 (s, br, 1 H), 4.33 (s, br, 1 H), 4.10 (d, J = 11.5Hz, 2 H), 1.45 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 156.6, 137.1, 132.8, 131.0, 129.0, 127.4, 124.6, 80.5, 55.6, 28.3; IR (film) 3314, 2976, 1695 cm⁻¹. MS (ESI) 301.0542 (301.0546 calcd for $C_{12}H_{17}BrN_2O_2, M + H^+$).

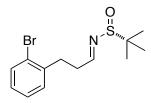


1-(2-Bromobenzyl)-1-(1-phenylbut-3-en-1-yl)hydrazine (16). A flame dried flask was cooled under a stream of nitrogen and charged with **S5** (4.10 g, 14 mmol), benzotriazole (2.43 g, 20

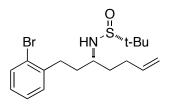

mmol), benzene (68 mL), and benzaldehyde (2.1 mL, 20 mmol). The flask was equipped with a Dean-Stark apparatus and purged with nitrogen. The reaction mixture was heated to reflux for 26 h, then was cooled to rt and quenched with 2 M sodium hydroxide (75 mL). The mixture was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with ethyl acetate (3 x 30 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The flask containing the resulting viscous benzotriazole adduct was purged with nitrogen, in diethyl ether (132 mL) was added, and the solution was cooled to 0 °C. A solution of allyl magnesium bromide (1 M in ether, 27 mL, 27 mmol) was added in slowly over 5 min, then the cooling bath was removed and the reaction mixture was stirred at rt until the benzotriazole adduct was consumed as judged by TLC analysis. The reaction mixture was then cooled to 0 °C and guenched with 2 M sodium hydroxide (20 mL). The mixture was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with ethyl acetate (3 x 30 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to afford 4.10 g (70%) of tert-butyl 2-(2bromobenzyl)-2-(1-phenylbut-3-en-1-yl)hydrazinecarboxylate (S6) as a white solid, mp 88-92 °C. ¹H NMR (500 MHz, C₇D₈, 80 °C) δ 7.52 (s, br, 1 H), 7.29 (d, J = 8.1 Hz, 1 H), 7.23 (d, J = 7.3 Hz, 2 H), 7.14–7.11 (m, 2 H), 7.06–7.03 (m, 2 H), 7.00–6.97 (m, 1 H), 6.73 (t, J = 7.6 Hz, 1 H), 5.80–5.75 (m, 1 H), 5.08 (s, br, 1 H), 4.95–4.86 (m, 2 H), 4.00–3.90 (m, 2 H), 3.70–3.66 (m, 1 H), 2.81–2.75 (m, 1 H), 2.49–2.43 (m, 1 H), 1.29 (s, 9 H).

A flame-dried flask was cooled under a stream of nitrogen and charged with portion of **S6** (4.03 g, 9.3 mmol). Dichloromethane (9.3 mL) was added, and the resulting solution was cooled to 0 °C. Trifluoroacetic acid (9.3 mL) was added over 5 min and the resulting mixture was stirred and slowly warmed from 0 °C to rt over 2 h. The mixture was then cooled to 0 °C and solid potassium carbonate was added slowly until the bubbling stopped. A solution of 2 M sodium hydroxide (25 mL) was added, the mixture was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The product was purified by flash chromatography on silica gel to afford 1.64 g (53%) of the title compound as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.52–7.47 (m, 2 H), 7.39–7.35 (m, 4 H), 7.32–7.27 (m, 2 H), 7.11–7.07 (m, 1 H), 5.84–5.76 (m, 1 H), 5.06–5.02 (m, 1 H), 4.98–4.95

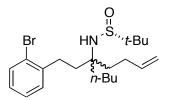
(m, 1 H), 3.79–3.76 (m, 1 H), 3.73 (d, J = 14.2 Hz, 1 H), 3.57 (d, J = 14.2 Hz, 1 H), 2.99–2.93 (m, 1 H), 2.75–2.60 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 137.8, 136.3, 132.7, 130.8, 128.9, 128.5, 128.2, 127.5, 127.3, 124.6, 116.2, 71.0, 62.5, 37.4; IR (film) 3347, 3065, 3027, 2918 cm⁻¹. MS (ESI) 331.0801 (331.0804 calcd for C₁₇H₁₉BrN₂, M + H⁺).


3-(2-Bromophenyl)-N-methoxy-N-methylpropanamide (S7). A round bottom flask equipped with a magnetic stir bar was charged with 3-(2-bromophenyl)propanoic acid (4.00 g, 17.5 mmol), N,O-dimethyl hydroxylamine hydrochloride (2.90 g, 29.7 mmol), THF (35 mL, 0.5 M), water (35 mL, 0.5 M), and aqueous 1 M NaOH (3 mL). A solution of EDCI (8.39 g, 43.8 mmol) and 1 M NaOH (7 mL) in water (117 mL) was then added dropwise over 20 min. After the addition was complete, 1 M NaOH (5.5 mL) was added to raise the pH of the solution to 4.5 and the mixture was then stirred at rt for 8 h. The reaction mixture was then saturated with solid sodium chloride, transferred to a separatory funnel, and extracted with ethyl acetate (5 x 100 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to afford the title compound as a clear oil (4.43 g, 93%). ¹H NMR (500 MHz, CDCl₃) δ 7.53 (dd, J = 1.0, 8.0 Hz, 1 H), 7.30 (dd, J = 1.5, 7.5 Hz, 1 H), 7.24 (dt, J = 1.0, 7.5 Hz, 1 H), 7.07 (dt, J = 1.5, 7.5 Hz, 1 H), 3.63 (s, 3 H), 3.18 (s, 3 H), 3.10–3.06 (m, 2 H), 2.76 (t, J = 7.5 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) & 173.2, 140.4, 132.7, 130.7, 127.8, 127.5, 124.3, 61.1, 31.9, 31.3, 31.1; IR (film) 3312, 2936, 1664 cm⁻¹. MS (ESI) *m/z* 272.0274 (272.0281 calcd for C₁₁H₁₄Br $NO_2, M + H^+$).

(±)-1-(2-Bromophenyl)hept-6-en-3-amine (5b) A solution of 4-bromo-1-butene (0.75 mL, 7.35 mmol) in diethyl ether (15 mL) was converted to the corresponding Grignard reagent according to General Procedure 1. The freshly made Grignard reagent was added dropwise to a 0 °C

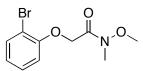

solution of **S7** (1.00 g, 3.67 mmol) in diethyl ether (7 mL) via cannula over 25 min. After the addition was complete, the reaction vessel was removed from the ice bath and stirred at rt for 1.5 h. The mixture was then cooled to 0 °C and slowly quenched with saturated ammonium chloride. The resulting mixture was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with methylene chloride (3 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The crude product was purified by flash chromatography on silica gel to afford 1-(2-bromophenyl)hept-6-en-3-one⁵ (**S8**) as a clear oil (858 mg, 88%). ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 8.1 Hz, 1 H), 7.25–7.22 (m, 2 H), 7.09–7.04 (m, 1 H), 5.84–5.75 (m, 1 H), 5.04–4.96 (m, 2 H), 3.03–2.99 (m, 2 H), 2.77–2.73 (m, 2 H), 2.53–2.49 (m, 2 H), 2.36–2.30 (m, 2 H).

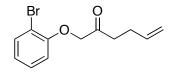
S8 (858 mg, 3.21 mmol) was stirred with ammonium acetate (2.54 g, 32.7 mmol) and sodium cyanoborohydride (202 mg, 3.21 mmol) in anhydrous methanol (10 mL, 0.33 M) under nitrogen at reflux for 1 d. The mixture was then cooled to rt, quenched with 1 M HCl, and concentrated *in vacuo* to remove methanol. The resulting solution was basified to pH 14 with 3 M NaOH and then was extracted with methylene chloride (3 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The crude product was purified by flash chromatography on basic alumina to afford the title compound as a clear oil (549 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 1 H), 7.24–7.22 (m, 2 H), 7.08–7.02 (m, 1 H), 5.89–5.77 (m, 1 H), 5.07–5.00 (m, 1 H), 4.98–4.94 (m, 1 H), 2.90–2.71 (m, 3 H), 2.22–2.08 (m, 2 H), 1.80–1.70 (m, 1 H), 1.64–1.51 (m, 2 H), 1.47–1.37 (m, 1 H), 1.25 (s, br, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 138.6, 132.8, 130.3, 127.52, 127.47, 124.4, 114.6, 50.6, 38.3, 37.2, 32.9, 30.5; IR (film) 3375, 3283, 3068, 2927, 1639 cm⁻¹. MS (ESI) *m/z* 268.0696 (268.0701 caled for C₁₃H₁₈BrN, M + H⁺).



(R,E)-N-[3-(2-Bromophenyl)propylidene]-2-methylpropane-2-sulfinamide⁶ (10b). 3-(2-bromophenyl)propanal¹ (765 mg, 3.59 mmol) was condensed with (R)-2-methylpropane-2-sulfinamide (414 mg, 3.42 mmol) according to General Procedure 2 to afford 870 mg (77%) of

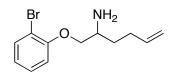
the title compound as a clear oil, $[\alpha]_{D}^{23} - 117.6$ (*c* 0.92, CHCl₃) [lit.⁶ $[\alpha]_{D}^{22} - 156.2$ (*c* 0.98, CHCl₃)].¹H NMR (400 MHz, CDCl₃) δ 8.15 (t, *J* = 4.1 Hz, 1 H), 7.54 (d, *J* = 7.8 Hz, 1 H), 7.25-7.23 (m, 2 H), 7.11-7.06 (m, 1 H), 3.12-3.07 (m, 2 H), 2.90-2.84 (m, 2 H), 1.17 (s, 9 H).


 $(-)-(R_s,R)-N-[1-(2-Bromophenyl)hept-6-en-3-yl]-2-methylpropane-2-sulfinamide (11b). A$ solution of 4-bromo-1-butene (0.41 mL, 4.0 mmol) in diethyl ether (4 mL) was converted to the corresponding Grignard reagent according to General Procedure 1. The freshly made Grignard solution was added dropwise to a -55 °C solution of 10b (602 mg, 2.0 mmol) in methylene chloride (10 mL) over 5 min. The resulting mixture was slowly warmed from -55 °C to -10 °C over 3.5 h at a rate of approximately 13 °C/hr. The reaction was then quenched with saturated ammonium chloride and transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with methylene chloride (3 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography to afford 596 mg (62%) of the title compound as a 10:1 mixture of diastereomers as a yellow oil. Data are for the major diastereomer. $\left[\alpha\right]_{D}^{23}$ -30.4 (c 1.19, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.54–7.51 (m, 1 H), 7.26–7.20 (m, 2 H), 7.08–7.04 (m, 1 H), 5.86-5.80 (m, 1 H), 5.09-5.03 (m, 1 H), 4.99 (dd, J = 1.7, 10.3 Hz, 1 H), 3.36-3.31 (m, 1 H), 3.15 (d, J = 6.8 Hz, 1 H), 2.94–2.87 (m, 1 H), 2.74–2.67 (m, 1 H), 2.18 (dd, J = 7.6, 14.4Hz, 2 H), 1.90–1.69 (m, 4 H), 1.24 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 141.2, 137.9, 132.8, 130.3, 127.7, 127.6, 124.3, 115.3, 56.3, 55.9, 35.9, 35.5, 32.4, 30.0, 22.8; IR (film) 3222, 3071, 2925, 1690, 1640 cm⁻¹. MS (ESI) 372.0990 (372.0991 calcd for $C_{17}H_{26}BrNOS$, M + H⁺).


(-)-($R_{ss}R^*$)-N-[5-(2-Bromophenethyl)non-1-en-5-yl]-2-methylpropane-2-sulfinamide (S10). Ketone S8 (1.50 g, 5.60 mmol) was condensed with (R)-2-methylpropane-2-sulfinamide (715 mg, 5.90 mmol) according to General Procedure 2 to afford 1.62 g (78%) of (R)-N-[1-(2-bromophenyl)hept-6-en-3-ylidene]-2-methylpropane-2-sulfinamide (S9) as a 1:1 mixture of E:Z diastereomers, as determined by ¹H and ¹³C NMR analysis. Data is reported for the mixture. [α]²³_D-125.2 (c 2.41, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 8.1 Hz, 2 H), 7.34 (d, J = 7.3 Hz, 1 H), 7.26–7.21 (m, 3 H), 7.10–7.05 (m, 2 H), 5.87–5.78 (m, 2 H), 5.10–4.98 (m, 4 H), 3.09–2.98 (m, 5 H), 2.94–2.86 (m, 2 H), 2.82–2.71 (m, 3 H), 2.61–2.48 (m, 2 H), 2.42–2.35 (m, 4 H), 1.30 (s, 18 H). ¹³C NMR (100 MHz, CDCl₃) δ 185.9, 185.7, 140.3, 139.5, 137.3, 136.4, 132.8, 132.7, 130.8, 130.2, 128.2, 127.9, 127.8, 127.5, 124.3, 124.0, 115.9, 115.3, 56.6, 56.5, 40.7, 40.5, 36.7, 35.7, 33.9, 32.1, 31.4, 29.3, 22.3 (one signal is missing due to incidental equivalence).

A flame dried flask was cooled under a stream of nitrogen and charged with a portion of **S9** (1.44 mg, 3.88 mmol). The reaction vessel was purged with nitrogen, toluene (4 mL) was added, and the resulting solution was cooled to -78 °C. Trimethylaluminum (2.0 M in toluene, 2.1 mL, 4.2 mmol) was added and the resulting mixture was stirred at -78 °C for 5 min, then was added via cannula over 10 min to a flask containing a -78 °C solution of of *n*-butyllithium (2.0 M in diethyl ether, 4.3 mL, 8.6 mmol) and toluene (13 mL). The mixture was stirred at -78 °C for 7 h, then the reaction vessel was placed in an ice bath and saturated aqueous ammonium chloride was added until bubbling stopped. The layers were separated, and the organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated *in vacuo* and purified via flash chromatography on silica gel to afford 1.39 g (83 %) of the title compound as a white solid, mp 51–56 °C which was a 1:1 mixture of diastereomers as determined by ¹H and ¹³C NMR analysis. Data is for the mixture. $[\alpha]^{23}_{\text{ D}}$ –48.1 (*c* 3.34, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.48 (m, 2 H), 7.34–7.29 (m, 2 H), 7.25–7.21 (m, 2 H), 7.07–7.01 (m, 2 H), 5.89–5.79 (m, 2 H), 5.10–5.02 (m, 2 H), 5.00–4.94 (m, 2 H), 3.24 (s, 2 H), 2.83–2.72 (m, 4 H), 2.19–2.12 (m, 4 H), 1.85–1.78 (m, 4 H), 1.76–1.57 (m, 8 H), 1.38–1.32 (m, 8 H), 1.25 (s, 18 H), 0.97–0.91 (m, 6 H)

H); ¹³C NMR (100 MHz, CDCl₃) δ 141.47, 141.45, 138.4, 138.3, 132.61, 132.59, 130.7, 130.6, 127.7, 127.6, 124.1, 114.7, 114.6, 60.1, 55.9, 39.01, 38.96, 37.7, 37.3, 37.0, 29.9, 27.5, 27.4, 25.1, 25.0, 23.1, 23.0, 22.8, 14.0 (nine signals are missing due to incidental equivalence); IR (film) 3307, 3236, 3070, 2953, 1640 cm⁻¹. MS (ESI) *m/z* 428.1607 (428.1617 calcd for C₂₁H₃₄BrNOS, M + H⁺).

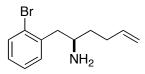


2-(2-Bromophenoxy)-N-methoxy-N-methylacetamide (S11). A round bottom flask equipped with a magnetic stir bar was charged with 2-(2-bromophenoxy)acetic acid² (1.11 g, 4.80 mmol) and purged with nitrogen. Methylene chloride (9.6 mL) was added, the mixture was cooled to 0 °C, 1,1'-carbonyldiimidazole (1.01 g, 6.24 mmol) was added, and the reaction vessel was briefly purged with nitrogen. The resulting mixture was stirred at rt for 30 min, then triethylamine (0.94 mL, 0.68 g, 6.7 mmol) was added and the mixture was cooled to 0 °C. N,O-dimethyl hydroxylamine hydrogen chloride was added in one portion, the vessel was briefly purged with nitrogen, then was stirred at rt for 14 h. The reaction was then quenched with 1 M HCl (15 mL) and the mixture was transferred to a separatory funnel. The layers were separated, the aqueous layer was extracted with methylene chloride (3 x 10 mL), and the combined organic layers were dried over magnesium sulfate and filtered. The filtrate was concentrated in vacuo and purified by flash chromatography to afford 1.23 g (94%) of the title compound as a clear oil. ¹H NMR (500 MHz, CDCl₃) & 7.56–7.53 (m, 1 H), 7.26–7.22 (m, 1 H), 6.91–6.85 (m, 2 H), 4.90 (s, 2 H), 3.77 (s, 3 H), 3.24 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 154.8, 133.5, 128.4, 122.7, 114.0, 112.3, 66.8, 61.8, 32.3; IR (film) 2941, 1686, 1479 cm⁻¹. MS (ESI) *m/z* 274.0072 (274.0073 calcd for $C_{10}H_{12}BrNO_3$, M + H⁺).

1-(2-Bromophenoxy)hex-5-en-2-one (S12). A solution of 4-bromo-1-butene (0.89 mL, 8.8 mmol) in diethyl ether (12 mL) was converted to the corresponding Grignard reagent according

to General Procedure 1. The freshly made Grignard reagent was added dropwise to a 0 °C solution of **S11** (1.20 g, 4.4 mmol) in diethyl ether (5 mL) via cannula over 15 min. After the addition was complete, the reaction vessel was removed from the ice bath and the mixture was stirred at rt for 1 h. The mixture was then cooled to 0 °C and slowly quenched with saturated ammonium chloride. The reaction mixture was transferred to a separatory funnel and the layers were separated. The aqueous layer was extracted with methylene chloride (3 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The crude product was purified by flash chromatography on silica gel to afford 871 mg (74%) of the title compound as a clear oil. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, *J* = 1.5, 6.4 Hz, 1 H), 7.28–7.23 (m, 1 H), 6.91–6.87 (m, 1 H), 6.77 (d, *J* = 8.3 Hz, 1 H), 5.89–5.81 (m, 1 H), 5.10–5.05 (m, 1 H), 5.00 (dd, *J* = 1.0, 9.3 Hz), 4.56 (s, 2 H), 2.84 (t, *J* = 7.3 Hz, 2 H), 2.43–2.38 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 206.8, 154.2, 136.7, 133.7, 128.6, 122.9, 115.5, 113.1, 112.2, 73.5, 38.4, 27.0; IR (film) 2917, 1723 1480 cm⁻¹. MS (ESI) *m/z* 290.9991 (290.9991 calcd for C₁₂H₁₃BrO₂, M + Na⁺).

(±)-1-(2-Bromophenoxy)hex-5-en-2-amine (5c). Ketone S10 (1.41 g, 5.22 mmol) was stirred with ammonium acetate (4.10 g, 53.2 mmol) and sodium cyanoborohydride (328 mg, 5.22 mmol) in anhydrous methanol (16 mL, 0.33 M) under nitrogen at reflux 1 d. The reaction mixture was cooled to rt then was quenched with 1 M HCl and concentrated *in vacuo* to remove methanol. The pH was raised 14 with 3 M NaOH and the resulting solution was extracted with methylene chloride (3 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The crude product was purified by flash chromatography on basic alumina to afford the title compound as a clear oil (630 mg, 45%). ¹H NMR (500 MHz, CDCl₃) δ 7.53 (dd, *J* = 1.7, 6.1 Hz, 1 H), 7.27–7.22 (m, 1 H), 6.89–6.81 (m, 2 H), 5.89–5.80 (m, 1 H), 5.10–4.98 (m, 2 H), 4.01–3.98 (m, 1 H), 3.80–3.75 (m, 1 H), 3.26–3.21 (m, 1 H), 2.30–2.15 (m, 2 H), 1.72–1.64 (m, 1 H), 1.58–1.49 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 155.1, 138.1, 133.2, 128.4, 121.9, 115.0, 113.3, 112.3, 74.2, 50.1, 33.1, 30.3; IR (film)

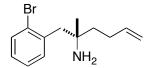

3375, 3282, 3073, 2925 cm⁻¹. MS (ESI) m/z 270.0491 (270.0488 calcd for C₁₂H₁₆BrNO, M + H⁺).

General Procedure 3 - Deprotection of Sulfinamides.

A flame-dried flask equipped with a magnetic stir bar was cooled under a stream of nitrogen and charged with the sulfinamide (1 equiv) and anhydrous methanol (1 M) under nitrogen. A 4 M solution of hydrogen chloride in 1,4-dioxane (4 equiv) was added via syringe. The resulting solution was stirred at rt for 15 min, then the solvent was evaporated via a nitrogen purge. The crude reaction mixture was diluted with methylene chloride and the pH was raised to 14 with aqueous sodium hydroxide. The layers were separated, the aqueous layer was extracted with methylene chloride (4 x), and the combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The crude product was purified by flash chromatography on basic alumina.

General Procedure 4 - Mosher Amide Analysis

In order to assess enantiomeric purity of the amine substrates, the Mosher amides were generated using the following procedure. A flame dried vial equipped with a magnetic stir bar was cooled under a stream of nitrogen and charged with amine (1.0 equiv), methylene chloride (10 mL solvent/mmol amine), either (*S*)- or (*R*)- α -methoxy- α -trifluoromethylphenylacetic acid (1.2 equiv), *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (1.2 equiv), and triethylamine (1.2 equiv). The vial was purged with nitrogen and stirred at rt for 36 h. The mixture was then concentrated *in vacuo* and the crude product was purified by flash chromatography on silica gel. Enantiomeric purity was determined by ¹⁹F NMR analysis.


(+)-(*R*)-1-(2-Bromophenyl)hex-5-en-2-amine (5a). The deprotection of (+)-(R_s ,R)-N-[1-(2-bromophenyl)hex-5-en-2-yl]-2-methylpropane-2-sulfinamide (11a) (475 mg, 1.30 mmol) was conducted according to General Procedure 3 to afford 264 mg (80 %) of the title compound as a pale yellow oil. [α]²³_D +13.4 (*c* 2.60, CH₂Cl₂). ¹H NMR data were identical to those reported

above for (±)-11a. The enantiomeric purity of the title compound was determined by conversion of 64 mg (0.25 mmol) of **5a** to the corresponding Mosher amide using General Procedure 4. This procedure afforded 13 mg (11%) of **S13**. The enantiopurity was determined to be 92% ee by ¹⁹F NMR analysis.

(2S,1'R)-N-[1-(2-Bromophenyl)hex-5-en-2-yl]-3,3,3-trifluoro-2-methoxy-2-

phenylpropanamide (S13). ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.49 (m, 3 H), 7.41–7.37 (m, 3 H), 7.26–7.20 (m, 2 H), 7.11–7.05 (m, 1 H), 6.61 (d, *J* = 8.6 Hz, 1 H), 5.80–5.68 (m, 1 H), 5.00–4.93 (m, 2 H), 4.37–4.26 (m, 1 H), 3.27–3.26 (m, 3 H), 3.01–2.97 (m, 2 H), 2.11–1.99 (m, 2 H), 1.74–1.61 (m, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ –68.71 (s); IR (film) 3400, 3339, 2925, 1695, 1686 cm⁻¹. MS (ESI) 470.0940 (470.0937 calcd for C₂₂H₂₃BrF₃NO₂, M + H⁺).

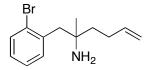
The absolute stereochemistry of the product was assigned based on models established by Ellman.⁷

(-)-(*S*)-1-(2-Bromophenyl)-2-methylhex-5-en-2-amine (5d). The deprotection of (-)-(R_s , *S*)-*N*-[1-(2-bromophenyl)-2-methylhex-5-en-2-yl]-2-methylpropane-2-sulfinamide (S4) (415 mg, 1.11 mmol) was conducted according to General Procedure 3 to afford 240 mg (81%) of the title compound as a clear oil. [α]²³_D –14.6 (*c* 2.60, CH₂Cl₂). ¹H HMR (500 MHz, CDCl₃) δ 7.57 (dd, J = 1.2, 6.8 Hz, 1 H), 7.30–7.23 (m, 2 H), 7.10–7.07 (m, 1 H), 5.91–5.83 (m, 1 H), 5.09–5.04 (m, 1 H), 4.99–4.95 (m, 1 H), 2.91 (s, 2 H), 2.24–2.17 (m, 2 H), 1.64–1.51 (m, 2 H), 1.29 (s, br, 2 H), 1.09 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 139.0, 137.9, 133.1, 132.4, 127.9, 126.9, 126.3, 114.3, 53.4, 47.6, 42.6, 28.5, 27.3; IR (film) 3367, 3298, 3071, 2921, 1640 cm⁻¹. MS (ESI) *m/z* 268.0696 (268.0695 calcd for C₁₃H₁₈BrN, M + H⁺).

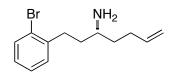
The enantiomeric purity of the title compound was determined by conversion of 76 mg (0.28 mmol) of **5d** to the corresponding Mosher amide using General Procedure 4. This procedure afforded 12 mg (8%) of **S14**. The enantiopurity was determined to be 87% ee by ¹⁹F NMR analysis.

(2*S*,1'*S*)-*N*-[1-(2-Bromophenyl)-2-methylhex-5-en-2-yl]-3,3,3-trifluoro-2-methoxy-2phenylpropanamide (S15). ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.49 (m, 3 H), 7.40–7.37 (m, 3

H), 7.22–7.17 (m, 2 H), 7.11–7.06 (m, 1 H), 6.71 (s, 1 H), 5.81–5.72 (m, 1 H), 5.00–4.92 (m, 2 H), 3.47 (d, J = 11.2 Hz, 1 H), 3.38-3.37 (m, 3 H), 3.12 (d, J = 11.1 Hz, 1 H), 2.13-1.94 (m, 3 H), 1.87–1.79 (m, 1 H), 1.34 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -67.92 (s, 3 F); IR (film) 3404, 3377, 2923, 1697 cm⁻¹. MS (ESI) 484.1093 (484.1094 calcd for C₂₃H₂₅BrF₃NO₂, M + H⁺).


To determine the absolute stereochemistry of the title compound, 55 mg (0.21 mmol) was reacted with (R)- α -methoxy- α -trifluoromethylphenylacetic acid in an analogous to General Procedure 4 to afford 13 mg (12%) of **S15**. Modified Mosher amide analysis was conducted as described below.

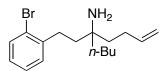
(2R,1'S)-N-[1-(2-Bromophenyl)-2-methylhex-5-en-2-yl]-3,3,3-trifluoro-2-methoxy-2-


phenylpropanamide (S15). ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.53 (m, 3 H), 7.47–7.43 (m, 3 H), 7.13–7.05 (m, 2 H), 7.00–6.97 (m, 1 H), 6.68 (s, 1 H), 5.86–5.75 (m, 1 H), 5.05–4.94 (m, 2 H), 3.40-3.34 (m, 4 H), 3.08 (d, J = 13.8 Hz, 1 H), 2.19-2.03 (m, 3 H), 1.90-1.82 (m, 1 H), 1.34(s, 3 H); ¹⁹F (376 MHz, CDCl₃) δ –68.05 (s); IR (film) 3396, 2929, 1699 cm⁻¹. MS 484.1096 $(484.1094 \text{ calcd for } C_{23}H_{25}BrF_{3}NO_{2}, M + H^{+}).$

The absolute stereochemistry of 5d was tentatively assigned based on a modified Mosher amide analysis, using Δ_{SR} .⁸ The methyl signal does not shift between S14 and S15, thus the methyl group was assigned the place of the hydrogen in the model reported by Kusumi and coworkers.⁸ Signals reported in this table are centers for multiplets or the peak if a defined splitting pattern.

	$H_b H_c$ H_d MTPA H_d	NHMTPA I $\Delta_{SR} < 0$ —C $-\Delta_{SR} > 0$ I CH $_3$				
Proton	S-MTPA (ppm)	<i>R</i> -MTPA (ppm)	Δ_{SR} (Hz)			
H _a	3.12	3.08	16			
CH ₃	1.34	1.34	0			
H _b	2.04	2.11	-30			
H _c	5.77	5.81	-16			
H _d	4.96	5.00	-14			

(\pm)-1-(2-Bromophenyl)-2-methylhex-5-en-2-amine (5d). The deprotection of (\pm)-*N*-(1-(2-bromophenyl)-2-methylhex-5-en-2-yl)-2-methylpropane-2-sulfinamide (S4) (588 mg, 1.6 mmol) was conducted according to General Procedure 3 to afford 376 mg (88%) of the title compound as a clear oil. ¹H NMR data matched that reported above for (–)-5d.

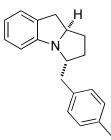

(+)-(*R*)-1-(2-Bromophenyl)hept-6-en-3-amine (5b)

The deprotection of $(-)-(R_{s}R)-N-[1-(2-bromophenyl)hept-6-en-3-yl]-2-methylpropane-2$ sulfinamide (11b) (550 mg, 1.48 mmol) was conducted according to General Procedure 3 to afford 317 mg (80%) of the title compound as a clear oil. In order to increase the level of optical purity, the amine was stirred with (L)-tartaric acid (176 mg, 1.17 mmol) in methanol (1.2 mL) and water (2 mL). After 1 min, a voluminous white precipitate formed, which was collected by filtration. The white solid was recrystallized from an ethanol/ethyl acetate/water mixture. The recrystallized salt was suspended in EtOAc and aqueous NaOH was added until a solution of pH 14 was obtained. The mixture was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with methylene chloride (3 x 20 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered through alumina, and concentrated in *vacuo* to afford 152 mg (38%) of the title compound as a clear oil. $[\alpha]_{D}^{23} + 10.5$ (*c* 2.73, CH₂Cl₂). ¹H NMR data were identical to those reported above for (\pm) -5b. The enantiomeric purity of the title compound was determined by conversion of 67 mg (0.25 mmol) of 5b to the corresponding Mosher amide using General Procedure 4. This procedure afforded 17 mg (14 %) of S16. The enantiopurity was determined to be 88% ee by ¹⁹F NMR analysis.

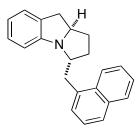
(2S,1'R)-N-[1-(2-Bromophenyl)hept-6-en-3-yl]-3,3,3-trifluoro-2-methoxy-2-

phenylpropanamide (S16). ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.49 (m, 3 H), 7.45–7.40 (m, 3 H), 7.26–7.19 (m, 2 H), 7.10–7.03 (m, 1 H), 6.67 (d, *J* = 9.1 Hz, 1 H), 5.79–5.70 (m, 1 H), 5.00–4.92 (m, 2 H), 4.12–4.02 (m, 1 H), 3.46 (s, 3 H), 2.89–2.80 (m, 1 H), 2.76–2.67 (m, 1 H), 2.05–

1.99 (m, 2 H), 1.93–1.83 (m, 1 H), 1.78–1.52 (m, 4 H); ¹⁹F NMR (376 MHz, CDCl₃) δ –68.60 (s); IR (film) 3408, 3339, 2925, 1686 cm⁻¹. MS (ESI) 484.1094 (484.1094 calcd for C₂₃H₂₅BrF₃NO₂, M + H⁺).

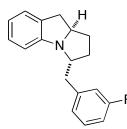

(±)-5-(2-Bromophenethyl)non-1-en-5-amine (5e). The reaction of (±)-*N*-[5-(2-bromophenethyl)non-1-en-5-yl]-2-methylpropane-2-sulfinamide (S8) (1.312 g, 3.06 mmol) was conducted according to General Procedure 3 to afford 907 mg (91%) of the title compound as a clear oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 1 H), 7.24–7.21 (m, 2 H), 7.07–7.02 (m, 1 H), 5.91–5.80 (m, 1 H) 5.05 (dd, *J* = 1.7, 17.1 Hz, 1 H), 4.96 (d, *J* = 10.1 Hz, 1 H), 2.75–2.70 (m, 2 H), 2.15–2.08 (m, 2 H), 1.62–1.47 (m, 2 H), 1.44–1.39 (m, 2 H), 1.37–1.30 (m, 6 H), 1.10 (s, br, 2 H), 0.95–0.91 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 139.1, 132.8, 130.3, 127.5, 127.4, 124.2, 114.2, 53.3, 40.7, 39.7, 39.2, 30.7, 28.0, 25.6, 23.4, 14.1; IR (film) 3371, 3310, 3071, 2930 cm⁻¹. MS (ESI) *m/z* 324.1321 (324.1321 calcd for C₁₇H₂₆BrN, M + H⁺).

Preparation and Characterization of Heterocyclic Products.

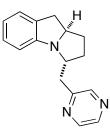

General Procedure 5 - Palladium Catalyzed Tandem Intramolecular *N*-Arylation/Intermolecular Carboamination.

An oven-dried Schlenk tube equipped with a magnetic stirbar was cooled under a stream of nitrogen and charged with $Pd_2(dba)_3$ (2 mol % complex, 4 mol % Pd) or $Pd(OAc)_2$ (4 mol %), PCy_3 HBF₄ (4 or 8 mol %), Cy_4Dpe -Phos (4 mol%), or X-Phos (8 mol%), sodium *tert*-butoxide (2.4 equiv), and the aryl chloride if solid (1.2 equiv). The Schlenk tube was evacuated and refilled with nitrogen three times. The primary amine substrate (1.0 equiv) was added as a solution in toluene (4 mL/mmol substrate), along with the aryl chloride if liquid. The resulting mixture was heated to 100 °C until the intermediate was consumed as judged by GC analysis. The reaction mixture was cooled to rt and treated with saturated aqueous ammonium chloride (2 mL) and ethyl acetate (5 mL). The layers were separated, the aqueous layer was extracted with ethyl acetate (2 x 5 mL), and the combined organic layers were dried over anhydrous sodium

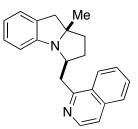
sulfate, filtered, and concentrated *in vacuo*. The crude product was purified by flash chromatography on silica gel.



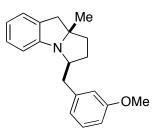
(±)-($3R^*$, $9aR^*$)-3-(4-Methylbenzyl)-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indole (8a). The reaction of **5a** (64 mg, 0.25 mmol) with 4-chlorotoluene (36 µL, 38 mg, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd(OAc)₂ (2.2 mg, 0.010 mmol) and Cy₄Dpe-Phos (5.6 mg, 0.010 mmol) to afford 51 mg (77%) of the title compound as an off-white solid, mp 42–45 °C. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 20:1 mixture of diastereomers. The product was isolated as a >25:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, *J* = 7.8, 2 H), 7.11 (d, *J* = 7.8 Hz, 2 H), 7.03 (d, *J* = 6.8 Hz, 1 H), 6.98–6.94 (m, 1 H), 6.68 (dt, *J* = 1.0, 7.3 Hz, 1 H), 6.13 (d, *J* = 7.8 Hz, 1 H), 4.00–3.94 (m, 1 H), 3.51–3.47 (m, 1 H), 3.15 (dd, *J* = 6.3, 13.2 Hz, 1 H), 2.96 (dd, *J* = 6.8, 13.2 Hz, 1 H), 2.91 (dd, *J* = 2.0, 16.1 Hz, 1 H), 2.79 (dd, *J* = 6.3, 13.2 Hz, 1 H), 2.33 (s, 3 H), 2.01 (dtd, *J* = 1.5, 7.3, 12.3 Hz, 1 H), 1.85–1.81 (m, 1 H), 1.64–1.55 (m, 2 H), 1.38–1.28 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 136.8, 135.5, 129.4, 129.1, 129.0, 127.4, 124.8, 118.9, 110.0, 67.4, 64.9, 43.8, 33.4, 32.9, 31.9, 21.0; IR (film) 3021, 2923, 1603 cm⁻¹. MS (ESI) *m/z* 264.1752 (264.1752 calcd for C₁₉H₂₁N, M + H⁺).


(±)- $(3R^*,9aR^*)$ -3-(Naphthalen-1-ylmethyl)-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indole (8b). The reaction of 5a (64 mg, 0.25 mmol) with 1-chloronapthalene (41 mg, 0.30 mmol) was

conducted according to General Procedure 5 using a catalyst composed of Pd(OAc)₂ (2.2 mg, 0.010 mmol) and Cy₄Dpe-Phos (5.6 mg, 0.010 mmol) to afford 59 mg (79%) of the title compound as a tan solid, mp 65–78 °C. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 5:1 mixture of diastereomers. The product was isolated as an 8:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.6 Hz, 1 H), 7.88–7.85 (m, 1 H), 7.80–7.72 (m, 1 H), 7.55–7.36 (m, 4 H), 7.00–6.98 (m, 1 H), 6.83 (t, *J* = 7.8 Hz, 1 H), 6.63 (dt, *J* = 1.2, 7.4 Hz, 1 H), 5.83 (d, *J* = 7.8 Hz, 1 H), 4.09–4.02 (m, 1 H), 3.76–3.68 (m, 1 H), 3.42 (dd, *J* = 7.1, 13.7 Hz, 1 H), 3.31 (dd, *J* = 6.7, 13.7 Hz, 1 H), 3.14 (dd, *J* = 9.4, 16.1 Hz, 1 H), 2.92 (d, *J* = 2.3 Hz, 1 H), 2.03–1.95 (m, 1 H), 1.90–1.82 (m, 1 H), 1.74–1.63 (m, 1 H), 1.38–1.27 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 136.1, 133.9, 132,2, 129.1, 128.8, 127.6, 127.4, 126.9, 125.8, 125.6, 125.4, 124.8, 124.0, 119.0, 110.0, 66.3, 64.9, 41.2, 33.5, 33.1, 32.0; IR (film) 3045, 2927, 1603 cm⁻¹. MS (ESI) *m/z* 300.1753 (300.1752 calcd for C₂₂H₂₁N, M + H⁺).

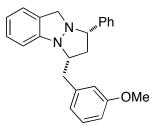

(±)-($3R^*$, $9aR^*$)-3-(3-Fluorobenzyl)-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indole (8c). The reaction of 5a (64 mg, 0.25 mmol) with 1-chloro-3-fluorobenzene (32 µL, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd₂(dba)₃ (4.6 mg, 0.0050 mmol) and PCy₃'HBF₄ (7.4 mg, 0.020 mmol) to afford 28 mg (42%) of the title compound as a pale yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 5:1 mixture of diastereomers. The product was isolated as a >25:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.24 (m, 1 H), 7.09 (d, *J* = 7.8 Hz, 1 H), 7.05–7.01 (m, 2 H), 6.97–6.90 (m, 2 H), 6.69 (dt, *J* = 1.0, 7.3 Hz, 1 H0, 6.04 (d, *J* = 7.8 Hz, 1 H), 4.00–3.93 (m, 1 H), 3.53–3.46 (m, 1 H), 3.15 (dd, *J* = 9.4, 16.0 Hz, 1 H), 2.98–2.90 (m, 2 H), 2.86–2.82 (m, 1 H), 2.08–2.01 (m, 1 H), 1.88–1.82 (m, 1 H), 1.64–1.55 (m, 1 H), 1.39–1.29 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 162.9 (d, *J* = 243.6 Hz), 154.5, 142.6 (d, *J* = 7.3 Hz), 129.7 (d, *J* = 8.3 Hz), 129.1, 127.5, 125.2 (d, *J* = 2.9

Hz), 124.9, 119.1, 116.4 (d, J = 20.4 Hz), 113.0 (d, J = 20.9 Hz), 109.9, 67.1, 64.9, 43.9 (d, J = 1.5 Hz), 33.4, 32.9, 31.9; IR (film) 3043, 2927 cm⁻¹. MS (ESI) *m*/*z* 268.1499 (268.1496 calcd for C₁₈H₁₈FN, M + H⁺).



(±)-($3R^*$, $9aR^*$)-3-(Pyrazin-2-ylmethyl)-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indole (8d). The reaction of (±)-5a (64 mg, 0.25 mmol) with 2-chloropyrazine (27 µL, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd₂(dba)₃ (4.6 mg, 0.0050 mmol) and PCy₃:HBF₄ (3.7 mg, 0.010 mmol) to afford 37 mg (59%) of the title compound as a brown solid, mp 83–87 °C. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 7:1 mixture of diastereomers. The product was isolated as an 8:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (s, 2 H), 8.46–8.44 (m, 1 H), 7.05–7.01 (m, 1 H), 6.96–6.92 (m, 1 H), 6.69 (t, *J* = 7.3 Hz, 1 H), 6.02 (d, *J* = 7.8 Hz, 1 H), 4.00–3.93 (m, 1 H), 3.83–3.77 (m, 1 H), 3.17–3.05 (m, 3 H), 2.92 (d, *J* = 15.6 Hz, 1 H), 2.16–2.09 (m, 1 H), 1.91–1.85 (m, 1 H), 1.71–1.62 (m, 1 H), 1.44–1.33 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 154.1, 145.8, 144.0, 142.4, 128.9, 127.4, 124.9, 119.2, 109.8, 65.2, 64.7, 43.4, 33.4, 32.8, 31.7; IR (film) 3043, 2925, 1603. MS (ESI) *m/z* 252.1497 (252.1495 calcd for C₁₆H₁₇N₃, M + H⁺).

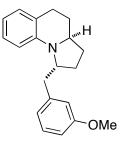
(-)-(3*R*,9a*R*)-3-(Pyrazin-2-ylmethyl)-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indole (8d). The reaction of (+)-5a (64 mg, 0.25 mmol) with 2-chloropyrazine (27 μ L, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd₂(dba)₃ (4.6 mg, 0.0050 mmol) and PCy₃·HBF₄ (3.7 mg, 0.010 mmol) to afford 33 mg (53%) of the title compound as a brown solid, mp 60–64 °C, [α]²³_D –133.3 (*c* 1.13, CH₂Cl₂). The product was determined to be 86% ee by chiral HPLC analysis [Chiralcel OD-H, 0.46 cm x 15 cm, 8% isopropanol/ hexanes, 1.0 mL/min, RT = 5.6 and 6.6 min]. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 7:1 mixture of diastereomers. The product was isolated as an 8:1 mixture of diastereomers. ¹H NMR data were identical to those reported above for (±)-8d.


(±)-($3S^*$, 9 aS^*)-3-(Isoquinolin-1-yImethyI)-9a-methyI-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2*a*]indole (8e). The reaction of 5d (67 mg, 0.25 mmol) with 1-chloroisoquinoline (49 mg, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd₂(dba)₃ (4.6 mg, 0.0050 mmol) and PCy₃:HBF₄ (3.7 mg, 0.010 mmol) to afford 38 mg (47%) of the title compound as a bright yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 5:1 mixture of diastereomers. The product was isolated as a 14:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.3 Hz, 1 H), 8.05–8.02 (m, 1 H), 7.78 (d, *J* = 8.1 Hz, 1 H), 7.74–7.70 (m, 1 H), 7.53–7.51 (m, 1 H), 7.47 (dd, *J* = 2.0, 13.2 Hz, 1 H), 6.97 (d, *J* = 7.1 Hz, 1 H), 6.81–6.78 (m, 1 H), 6.65–6.61 (m, 1 H), 5.84 (d, *J* = 7.8 Hz, 1 H), 3.85–3.80 (m, 1 H), 3.29 (dd, *J* = 1.7, 6.8 Hz, 2 H)), 3.11 (d, *J* = 15.9 Hz, 1 H), 2.86 (d, *J* = 15.9 Hz, 1 H), 2.23–2.16 (m, 1 H), 2.00–1.91 (m, 1 H), 1.78–1.74 (m, 1 H), 1.66–1.59 (m, 2 H), 1.39 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 161.0, 155.0, 147.9, 136.0, 129.2, 128.95, 128.93, 127.6, 127.4, 126.9, 125.8, 124.4, 123.2, 119.0, 110.3, 72.3, 66.7, 48.4, 42.5, 37.0, 32.0, 28.2; IR (film) 2957, 1600 cm⁻¹. MS (ESI) 315.1859 (315.1856 cald for C₂₂H₂₂N₂, M + H⁺).

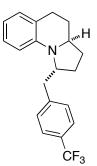
(+)-(3*S*,9a*S*)-3-(3-Methoxybenzyl)-9a-methyl-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indole (8f). The reaction of (–)-5d (67 mg, 0.25 mmol) with 3-chloroanisole (37 μ L, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd(OAc)₂ (2.2 mg, 0.010 mmol) and Cy₄Dpe-Phos (5.6 mg, 0.010 mmol) to afford 55 mg (75%) of the title compound as a pale yellow oil, [α]²³_D+97.5 (*c* 1.95, CH₂Cl₂). The product was determined to be

91% ee by chiral HPLC analysis [Chiralcel OJ-H, 0.46 cm x 25 cm, 0.1% isopropanol/ hexanes, 0.8 mL/min, RT = 9.3 and 12.7 min]. ¹H NMR analysis of the crude reaction mixture indicated the product was formed a 10:1 mixture of diastereomers. The product was isolated as a >25:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.19 (m, 1 H), 6.99–6.89 (m, 3 H), 6.84 (s, 1 H), 6.79–6.75 (m, 1 H), 6.69–6.65 (m, 1 H), 6.03 (d, *J* = 7.9 Hz, 1 H), 3.79 (s, 3 H), 3.49–3.41 (m, 1 H), 3.10 (d, *J* = 16.1 Hz, 1 H), 3.00 (dd, *J* = 7.4, 13.0 Hz, 1 H), 2.87–2.79 (m, 2 H), 2.08–2.01 (m, 1 H), 1.86–1.70 (m, 2 H), 1.62–1.54 (m, 1 H), 1.34 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 155.2, 141.6, 129.2, 129.1, 127.5, 124.4, 122.1, 119.0, 115.4, 111.3, 110.3, 72.1, 68.1, 55.2, 45.7, 42.6, 37.1, 31.9, 28.4; IR (film) 2957, 1602 cm⁻¹. MS (ESI) 294.1857 (294.1852 calcd for calcd for C₂₀H₂₃NO, M + H⁺).

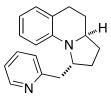
(±)-($3S^*$,9 aS^*)-3-(3-Methoxybenzyl)-9a-methyl-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indole (8f). The reaction of (±)-5d (67 mg, 0.25 mmol) with 3-chloroanisole (37 µL, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd(OAc)₂ (2.2 mg, 0.010 mmol) and Cy₄Dpe-Phos (5.6 mg, 0.010 mmol) to afford 55 mg (75 %) of the title compound as a pale yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 10:1 mixture of diastereomers. The product was isolated as a >25:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR data were identical to those reported above for (+)-8f.



(±)-(1 R^* ,3 R^*)-3-(3-Methoxybenzyl)-1-phenyl-1,2,3,9-tetrahydropyrazolo[1,2-*a*]indazole (17) The reaction of 16 (83 mg, 0.25 mmol) with 3-chloroanisole (37 µL, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd₂(dba)₃ (4.6 mg, 0.0050 mmol) and X-Phos (9.5 mg, 0.020 mmol) to afford 42 mg (48%) of the title compound as a yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the product was formed a 3:1 mixture of diastereomers. The product was isolated as a 15:1 mixture of diastereomers; data are for the

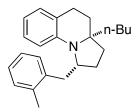

major diastereomer. ¹H NMR (500 MHz, C₆D₆) δ 7.32 (d, *J* = 7.3 Hz, 2 H), 7.20–7.09 (m, 4 H), 7.05 (s, br, 1 H), 6.97–6.73 (m, 3 H), 6.26 (d, *J* = 7.8 Hz, 1 H), 3.98 (d, *J* = 14.7 Hz, 1 H), 3.79 (d, *J* = 14.9 Hz, 1 H), 3.70–3.64 (m, 1 H), 3.43 (dd, *J* = 6.1, 11.0 Hz, 1 H), 3.32 (s, 3 H), 3.16 (dd, *J* = 9.0 Hz, 13.4 Hz, 1 H), 2.75 (dd, *J* = 4.6, 13.4 Hz, 1 H), 2.18–2.12 (m, 1 H), 1.91–1.86 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 152.8, 141.4, 139.5, 129.5, 128.6, 128.0, 127.8, 126.2, 123.6, 121.7, 121.0, 115.0, 111.8, 109.9, 67.1, 66.6, 55.2, 53.2, 44.5, 43.7 (one signal is missing due to incidental equivalence); IR (film) 3028, 2935, 2852 cm⁻¹. MS (EI) 356.1893 (356.1888 calcd for C₂₄H₂₄N₂O, M⁺).

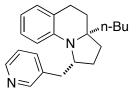
(±)-($1R^*, 3aR^*$)-1-Benzyl-1,2,3,3a,4,5-hexahydropyrrolo[1,2-*a*]quinoline (8g). The reaction of **5b** (67 mg, 0.25 mmol) with chlorobenzene (31 µL, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd(OAc)₂ (2.2 mg, 0.010 mmol) and Cy₄Dpe-Phos (5.6 mg, 0.010 mmol) to afford 45 mg (68%) of the title compound as a pale yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 12:1 mixture of diastereomers. The product was isolated as a 25:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.28 (m, 2 H), 7.24–7.20 (m, 3 H), 7.14–7.10 (m, 1 H), 7.05–6.99 (m, 1 H), 6.62 (d, *J* = 8.3 Hz, 1 H), 6.58–6.54 (m, 1 H), 4.02–3.96 (m, 1 H), 3.48–3.42 (m, 1 H), 3.17 (dd, *J* = 3.4, 13.7 Hz, 1 H), 2.84–2.77 (m, 1 H), 2.73–2.68 (m, 1 H), 2.62 (dd, *J* = 9.3, 13.2 Hz, 1 H), 2.09–1.96 (m, 3 H), 1.77–1.69 (m, 1 H), 1.44–1.34 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 139.2, 129.5, 128.6, 128.3, 127.2, 126.1, 122.0, 114.6, 109.6, 59.8, 58.1, 38.9, 31.8, 29.5, 28.4, 27.4; IR (film) 3024, 2934 cm⁻¹. MS (ESI) 264.1740 (264.1752 calcd for for C₁₉H₂₁N, M + H⁺).



(±)-($1R^*$, $3aR^*$)-1-(3-Methoxybenzyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-*a*]quinoline (8h). The reaction of **8b** (67 mg, 0.25 mmol) with 3-chloroanisole (37 µL, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd(OAc)₂ (2.2 mg, 0.010 mmol) and Cy₄Dpe-Phos (5.6 mg, 0.010 mmol) to afford 49 mg (67%) of the title compound as a yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as an 8:1 mixture of diastereomers. The product was isolated as a 22:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (500 MHz, CDCl₃) & 7.24–7.19 (m, 1 H), 7.13–7.09 (m, 1 H), 6.99 (d, *J* = 7.3 Hz, 1 H), 6.83 (d, *J* = 7.8 Hz, 1 H), 6.78–6.75 (m, 2 H), 6.61 (d, *J* = 8.3 Hz, 1 H), 6.55 (dt, *J* = 1.0, 7.3 Hz, 1 H), 4.02–3.96 (m, 1 H), 3.78 (s, 3 H), 3.48–3.42 (m, 1 H), 3.15 (dd, *J* = 3.0, 13.3 Hz, 1 H), 2.84–2.76 (m, 1 H), 2.73–2.67 (m, 1 H), 2.60 (dd, *J* = 9.3, 13.2 Hz, 1 H), 2.09–1.97 (m, 3 H), 1.77–1.69 (m, 1 H), 1.43–1.30 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) & 159.6, 143.6, 140.8, 129.2, 128.6, 127.2, 122.0, 115.4, 114.6, 111.3, 109.6, 59.6, 58.1, 55.1, 38.9, 31.8, 29.6, 28.4, 27.4 (one signal is missing due to incidental equivalence); IR (film) 2934, 2838 cm⁻¹. MS (ESI) 294.1859 (294.1852 calcd for C₂₀H₂₃NO, M + H⁺).

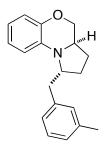
(±)-(1 R^* ,3 aR^*)-1-[4-(Trifluoromethyl)benzyl]-1,2,3,3a,4,5-hexahydropyrrolo[1,2-*a*]quinoline (8i). The reaction of 5b (64 mg, 0.25 mmol) with 4-chlorobenzotrifluoride (40 µL, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd₂(dba)₃ (4.6 mg, 0.0050 mmol) and PCy₃'HBF₄ (7.4 mg, 0.020 mmol) to afford 48 mg (58%) of the title compound as a pale yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the


product was formed as a 3:1 mixture of diastereomers. The product was isolated as a 7:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.9 Hz, 2 H) 7.31 (d, *J* = 7.9 Hz, 2 H), 7.14–7.09 (m, 1 H), 7.01 (d, *J* = 7.1 Hz, 1 H), 6.60–6.56 (m, 2 H), 4.04–3.99 (m, 1 H), 3.42–3.36 (m, 1 H), 3.18 (dd, *J* = 2.9, 13.4 Hz, 1 H), 2.83–2.67 (m, 3 H), 2.09–1.97 (m, 3 H), 1.71–1.64 (m, 1 H), 1.42–1.29 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 143.2, 129.9, 128.7, 128.0, 127.2, 125.1 (q, *J* = 3.5 Hz), 124.3 (q, *J* = 270 Hz), 122.1, 114.9, 109.5, 59.4, 58.3, 38.7, 31.7, 29.5, 28.4, 27.4; ¹⁹F NMR (376 MHz, CDCl₃) δ 62.3 (s, 3 F). IR (film) 2934, 1602 cm⁻¹. MS (EI) 331.1548 (331.1548 calcd for C₂₀H₂₀F₃N, M⁺).


(±)-(1*R*^{*},3a*R*^{*})-1-(Pyridin-2-ylmethyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-*a*]quinoline (8j). The reaction of (±)-5b (67 mg, 0.25 mmol) with 3-chloropyridine (29 μ L, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd₂(dba)₃ (4.6 mg, 0.0050 mmol) and PCy₃:HBF₄ (3.7 mg, 0.010 mmol) to afford 38 mg (57%) of the title compound as a yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 10:1 mixture of diastereomers. The product was isolated as a >25:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (400 MHz, CDCl₃) δ 8.59–8.57 (m, 1 H), 7.60–7.55 (m, 1 H), 7.16–7.08 (m, 3 H), 6.99 (d, *J* = 7.2 Hz, 1 H), 6.66 (dd, *J* = 2.8, 5.2 Hz, 1 H), 6.58–6.53 (m, 1 H), 4.24–4.16 (m, 1 H), 3.52–41 (m, 1 H), 3.41–3.36 (m, 1 H), 2.85–2.68 (m, 3 H), 2.10–1.95 (m, 3 H), 1.85–1.75 (m, 1 H), 1.49–1.35 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 149.3, 143.6, 136.1, 128.5, 127.3, 124.0, 121.8, 121.2. 114.7, 109.9, 58.9, 57.9, 41.3, 31.7, 29.4, 28.4, 27.5; IR (film) 3062, 2932 cm⁻¹. MS (EI) 264.1632 (264.1626 calcd for C₁₈H₂₀N₂, M⁺).

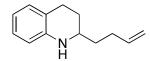
(+)-(1*R*,3*aR*)-1-(Pyridin-2-ylmethyl)-1,2,3,3*a*,4,5-hexahydropyrrolo[1,2-*a*]quinoline (8j). The reaction of (+)-5b (67 mg, 0.25 mmol) with 3-chloropyridine (29 μ L, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd₂(dba)₃ (4.6 mg, 0.0050 mmol) and PCy₃·HBF₄ (3.7 mg, 0.010 mmol) to afford 43 mg (65%) of the title

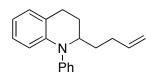
compound as a yellow oil, $[\alpha]^{23}_{D}$ +19.4 (*c* 0.34, CH₂Cl₂). The product was determined to be 92% ee by chiral HPLC analysis [Chiralcel OD-H, 0.46 cm x 15 cm, 0.5% isopropanol/ hexanes, 2.0 mL/min, RT = 4.8 and 11.2 min]. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 10:1 mixture of diastereomers. The product was isolated as a >25:1 mixture of diastereomers. ¹H NMR data were identical to those reported above for (±)-**8**j.



(±)-(1*R*^{*},3*aR*^{*})-3*a*-Butyl-1-(2-methylbenzyl)-1,2,3,3*a*,4,5-hexahydropyrrolo[1,2-*a*]quinoline (8k). The reaction of 5e (81 mg, 0.25 mmol) with 2-chlorotoluene (35 μ L, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd(OAc)₂ (2.2 mg, 0.010 mmol) and Cy₄Dpe-Phos (5.6 mg, 0.010 mmol) to afford 66 mg (79%) of the title compound as a pale yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 12:1 mixture of diastereomers. The product was isolated as an 11:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ 7.26–7.24 (m, 1 H), 7.21–7.15 (m, 3 H), 7.11–7.01 (m, 2 H), 6.64–6.58 (m, 2 H), 4.00–3.94 (m, 1 H), 2.26 (dd, *J* = 4.0, 14.5 Hz, 1 H), 2.85–2.77 (m), 2.72 (dd, *J* = 10.0, 14.0 Hz, 1 H), 2.65–2.59 (m, 1 H), 2.44 (s, 3 H), 2.15–2.07 (m, 1 H), 2.00–1.95 (m, 1 H), 1.94–1.86 (m, 1 H), 1.80–1.71 (m, 2 H), 1.68–1.61 (m, 1 H), 1.38–1.19 (m, 7 H), 0.94–0.90 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 144.4, 138.0, 136.4, 130.3, 129.9, 129.1, 126.9, 126.2, 125.9, 121.0, 115.1, 112.3, 63.1, 63.0, 39.3, 38.8, 36.3, 28.1, 27.9, 26.7, 24.6, 23.4, 20.3, 14.2; IR (film) 2927 cm⁻¹. MS (EI) 333.2459 (333.2457 calcd for C₂₄H₃₁N, M⁺).

(±)-(1*R*^{*},3a*R*^{*})-3a-Butyl-1-(pyridin-3-ylmethyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-

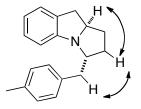

a]quinoline (81). The reaction of **5e** (81 mg, 0.25 mmol) with 3-chloropyridine (29 μ L, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd₂(dba)₃ (4.6 mg, 0.0050 mmol) and PCy₃·HBF₄ (3.7 mg, 0.010 mmol) to afford 38 mg (47%) of the title compound as a red solid, mp 76–85 °C. ¹H NMR analysis of the crude reaction mixture indicated the product was formed as a 7:1 mixture of diastereomers. The product was isolated as a 10:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ 8.56–8.53 (m, 1 H), 8.49 (dd, *J* = 1.5, 6.3 Hz, 1 H), 7.58 (dt, *J* = 7.7, 9.5 Hz, 1 H), 7.26–7.22 (m, 1 H), 7.11–7.07 (m, 1 H), 7.04–7.02 (m, 1 H), 6.63–6.57 (m, 2 H), 3.89–2.83 (m, 1 H), 3.25 (dd, *J* = 3.9, 11.8 Hz, 1 H), 2.83–2.75 (m, 1 H), 2.72–2.66 (m, 1 H), 2.64–2.59 (m, 1 H), 2.12–1.92 (m, 3 H), 1.80–1.72 (m, 1 H), 1.69–1.54 (m, 2 H), 1.34–1.14 (m, 6 H), 0.92–0.88 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 150.6, 147.8, 144.0, 136.7, 134.8, 129.1, 127.0, 123.4, 121.3, 115.3, 111.5; IR (film) 2928 cm⁻¹. MS (ESI) *m/z* 321.2326 (321.2325 calcd for C₂₂H₂₈N₂, M + H⁺).


(\pm) - $(1R^*, 3aR^*)$ -1-(3-Methylbenzyl)-2,3,3a,4-tetrahydro-1*H*-benzo[*b*]pyrrolo[1,2-

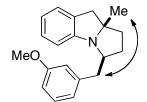
d][1,4]oxazine (8m). The reaction of 5c (68 mg, 0.25 mmol) with 3-chlorotoluene (36 μ L, 38 mg, 0.30 mmol) was conducted according to General Procedure 5 using a catalyst composed of Pd(OAc)₂ (2.2 mg, 0.010 mmol) and Cy₄Dpe-Phos (5.6 mg, 0.010 mmol) to afford 24 mg (35%) of the title compound as a pale yellow oil. ¹H NMR analysis of the crude reaction mixture indicated the product was formed a 5:1 mixture of diastereomers. The product was isolated as a 15:1 mixture of diastereomers; data are for the major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ 7.21–7.17 (m, 1 H), 7.08–7.02 (m, 3 H), 6.90–6.85 (m, 2 H), 6.70 (dd, *J* = 1.5, 7.9 Hz, 1 H),

6.63–6.58 (m, 1 H), 4.27 (dd, J = 3.9, 10.3 Hz, 1 H), 4.05–3.90 (m, 1 H), 3.65–3.58 (m, 1 H), 3.35 (t, J = 10.0 Hz, 1 H), 3.11 (dd, J = 4.0, 13.6 Hz, 1 H), 2.66 (dd, J = 8.8, 13.3 Hz, 1 H), 2.33 (s, 3 H), 2.04–1.96 (m, 1 H), 1.95–1.87 (m, 1 H), 1.80–1.73 (m, 1 H), 1.50–1.43 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 142.8, 138.8, 138.0, 134.4, 130.3, 128.3, 127.0, 126.5, 122.0, 116.3, 112.2, 67.5, 62.8, 55.2, 40.4, 28.4, 26.7, 21.4 (one signal is missing due to incidental equivalence); IR (film) 2920, 1500 cm⁻¹. MS (EI) 279.1616 (279.1623 calcd for C₁₉H₂₁NO, M⁺).

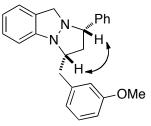
(±)-2-(But-3-en-1-yl)-1,2,3,4-tetrahydroquinoline (6a). In order to obtain a pure sample of 6a for the purposes of characterization, the reaction of 5b (351 mg, 1.31 mmol) was conducted via a modification of General Procedure 5 in which a catalyst composed of $Pd_2(dba)_3$ (11 mg, 0.012 mmol) and Dpe-Phos (13 mg, 0.024 mmol) was employed, and the aryl chloride was omitted. This procedure afforded 187 mg (76%) of the title compound as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 6.97–6.93 (m, 2 H), 6.59 (t, *J* = 7.3 Hz, 1 H), 6.46 (d, *J* = 8.1 Hz, 1 H), 5.89–5.80 (m, 1 H), 5.05 (dd, *J* = 1.7, 17.2 Hz, 1 H), 4.98 (dd, *J* = 0.5, 10.0 Hz, 1 H), 3.78 (s, br, 1 H), 3.30–3.25 (m, 1 H), 2.84–2.77 (m, 1 H), 2.75–2.69 (m, 1 H), 2.20–2.15 (m, 2 H), 1.99–1.93 (m, 1 H), 1.66–1.57 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 144.5, 138.2, 129.2, 126.7, 121.3, 116.9, 114.9, 114.1, 51.0, 35.6, 30.0, 27.9, 26.2; IR (film) 3405, 3076, 2924, 2845, 1608 cm⁻¹. MS (ESI) 188.1432 (188.1434 calcd for C₁₃H₁₇N, M + H⁺).

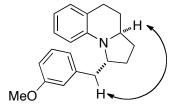


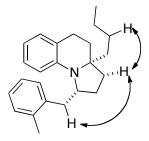
(±)-2-(but-3-en-1-yl)-1-phenyl-1,2,3,4-tetrahydroquinoline (12). In order to obtain a pure sample of 12 for the purposes of characterization, the reaction of 5b (67 mg, 0.25 mmol) with bromobenzene (27 μ L, 0.26 mmol) was conducted via a modification of General Procedure 5 in which a catalyst composed of (RuPhos) palladium(II) phenethylamine chloride (1.8 mg, 0.0025 mmol) and BrettPhos (1.3 mg, 0.0025 mmol) was employed, using 1,4-dioxane (2 mL/ mmol) as solvent. This procedure afforded 7 mg (11%) of the title compound as a clear oil.⁹ ¹H NMR of the crude reaction mixture indicated that the title compound was generated as a 1:1 mixture with

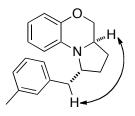

8g. ¹H NMR (700 MHz, CDCl₃) δ 7.33–7.29 (m, 2 H), 7.24–7.17 (m, 2 H), 7.08–7.05 (m, 2 H), 6.94–6.91 (m, 1 H), 6.73–6.68 (m, 2 H), 5.81–5.75 (m, 1 H), 5.00 (ddd, *J* = 1.7, 3.4, 17.2 Hz, 1 H), 4.95–4.93 (m, 1 H), 3.78–3.74 (m, 1 H), 2.89–2.83 (m, 1 H), 2.80–2.75 (m, 1 H), 2.22–2.16 (m, 1 H), 2.14–2. 08 (m, 1 H), 2.03–1.97 (m, 1 H), 1.91–1.86 (m, 1 H), 1.78–1.72 (m, 1 H), 1.63–1.53 (m, 1 H); ¹³C NMR (175 MHz, CDCl₃) δ 148.8, 143.3, 138.3, 129.34, 129.30, 126.3, 125.2, 124.5, 123.4, 118.5, 118.3, 114.7, 58.7, 31.2, 30.4, 24.2, 23.5; IR (film) 3063, 2929, 2847 cm⁻¹. MS 264.1743 (264.1747 calcd for C₁₉H₂₁N, M + H⁺).

Assignment of Stereochemistry


The relative stereochemistry of **8a** was determined based on the nOe signals depicted below. The stereochemistry of **8b–d** were assigned based on analogy to **8a**.

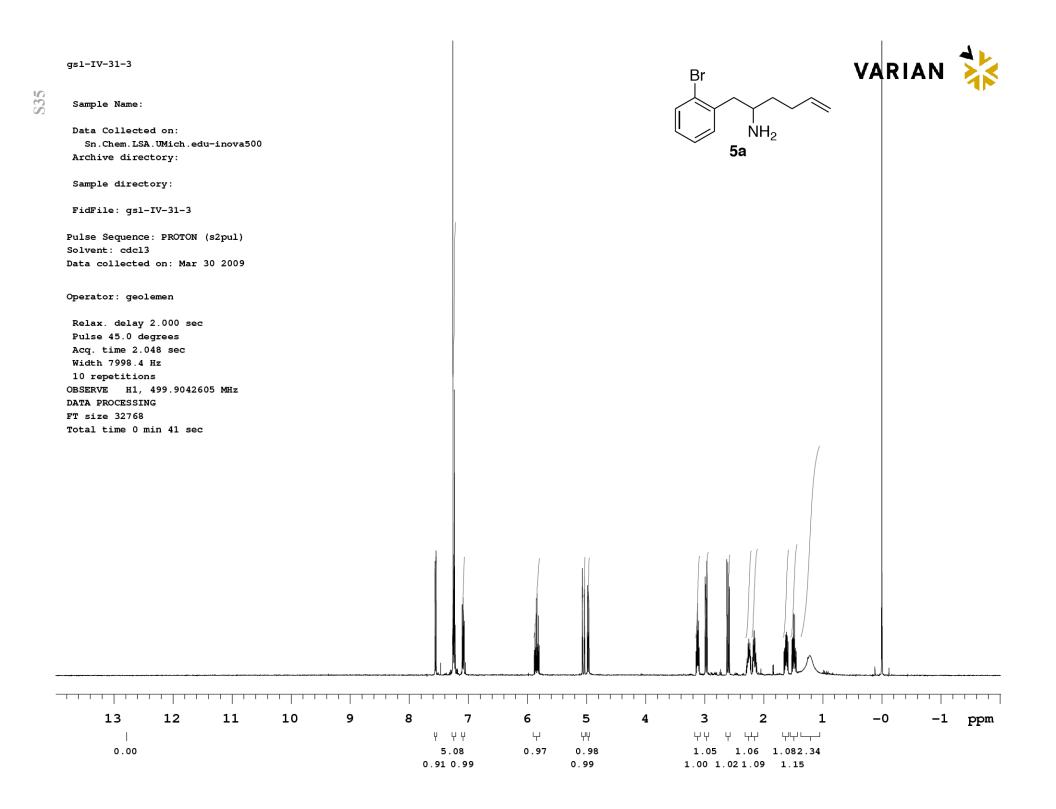

The relative stereochemistry of **8f** was determined based on the nOe signals depicted below. The stereochemistry of **8e** was assigned based on analogy to **8f**.


The relative stereochemistry of 17 was determined based on the nOe signals depicted below.


The relative stereochemistry of **8h** was determined based on the nOe signals depicted below. The stereochemistry of **8g**, and **8i–j** were assigned based on analogy to **8h**.

The relative stereochemistry of **8k** was determined based on the nOe signals depicted below. The stereochemistry of **8l** was assigned based on analogy to **8k**.

The relative stereochemistry of 8m was determined based on the nOe signals depicted below.



References

- ¹ Padwa, A.; Zanka, A.; Cassidy, M. P.; Harris, J. M. *Tetrahedron* 2003, *59*, 4939–4944.
- ² Hayes, N. V.; Branch, G. E. K. J. Am. Chem. Soc. 1943, 65, 1555–1564.
- ³ Sherry, B. D.; Fürstner, A. Chem. Commun. 2009, 7116–7118.
- ⁴ Pedrosa, R.; Andrés, C.; Iglesias, J. M. J. Org. Chem. 2001, 66, 243-250.
- ⁵ Kumar, G. D. K.; Natarajan, A. *Tetrahedron Lett.* **2008**, *49*, 2103–2105.
- ⁶ Chen, B.-L.; Wang, B.; Lin, G. -Q. J. Org. Chem. 2010, 75, 941–944.
- ⁷ Cogan, D. A.; Liu, G.; Ellman, J. *Tetrahedron* **1999**, *55*, 8883–8904.
- ⁸ Kusumi, T.; Fukushima, T.; Ohtani, I.; Kakisawa, H. Tetrahedron Lett. 1991, 32, 2939–2942.
- ⁹ Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 15914–15917.

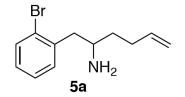
	gsl-VII-204-3	VARIAN 👬
2	Sample Name: Data Collected on: Sn.Chem.LSA.UMich.edu-inova500 Archive directory:	Br
	Sample directory:	52
	FidFile: gsl-VII-204-3	
	Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Dec 6 2010	
	Operator: geolemen	
	Relax. delay 0.500 sec Pulse 45.0 degrees Acq. time 3.500 sec Width 7998.4 Hz 12 repetitions OBSERVE H1, 499.9042603 MHz DATA PROCESSING Line broadening 0.3 Hz FT size 65536 Total time 0 min 56 sec	
	0.00 110802 2.08	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

S34

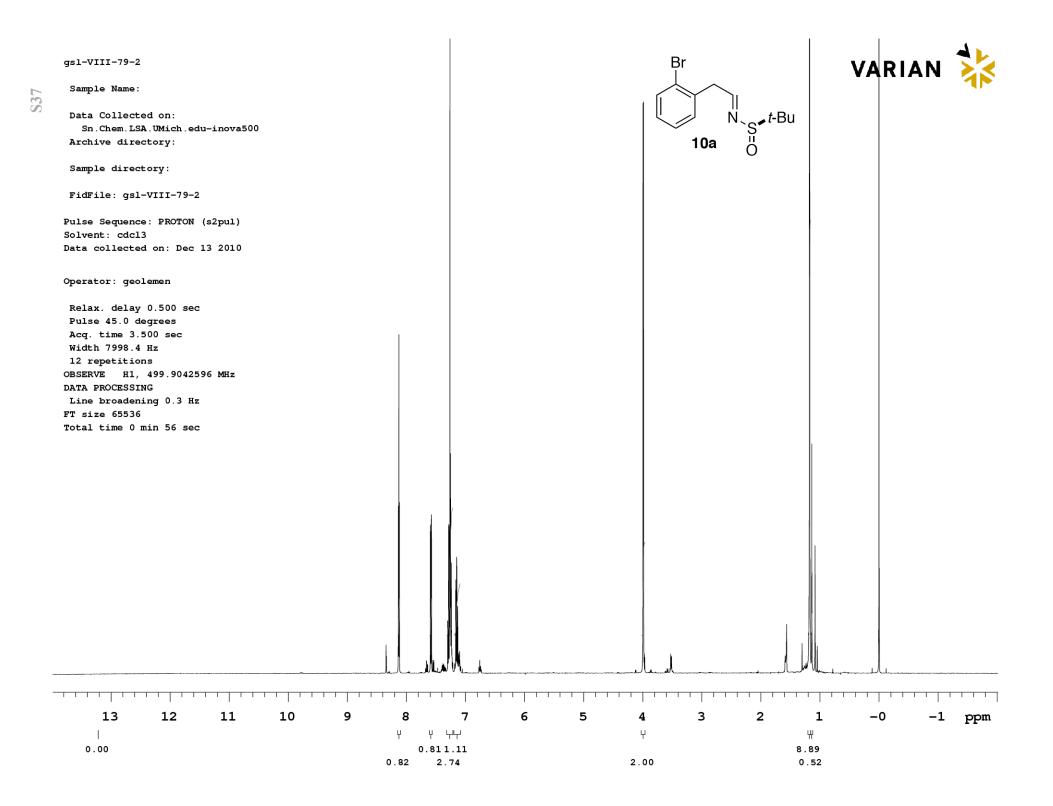
S36

Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:


Sample directory:

FidFile: gsl-IV-31-3carbon


Pulse Sequence: CARBON (s2pul) Solvent: cdcl3 Data collected on: Mar 30 2009

Operator: geolemen

VARIAN 🗱

1 5												
Relax. delay 1	.000 sec											
Pulse 45.0 deg												
Acq. time 1.28												
Width 25510.2	Hz											
240 repetition	s											
OBSERVE C13, 1		Z										
DECOUPLE H1, 4	00.5317616 MH:	Z										
Power 40 dB												
continuously o	n											
WALTZ-16 modul	ated											
DATA PROCESSING												
Line broadenin	g 0.5 Hz											
FT size 65536												
Total time 9 mi	n 10 sec											
				li li								
والمالية المنافعة والانتقار والمنافع المراجع	ومحتجب والمتعالية والمتعالية	المتناب المتعادية المتعاد	hud a day a a tro a fi	الأهرار بطلال بحسر بالارد	n		بر العام ويسمع الما يا	المتعادية والمعالية	بالمعاملات بالمعاملات	المتعادية والمعاد	القبل يصطف	والمعالمة والمعالم
san panaka da kata ngana na kata na kata na kata na kata na	n ya ka panging da balayining kana dipang labah Manang kana di baharan da sana di sana di sana di sana di sana	n an	and the first of the state of t		մել մենի ինչիչ խուղ նույինը տեռն ինչությո Գերգություն		ital part construction of the	an linu-service of the field of	in hala da kana yana da kana d Kana da kana da	na an an an Alban, sins ang a su ting an Alban, sin Alban su ting ang ang ang ang ang ang ang ang ang a	alapina di Babara (1988). Mana di Katalari da manana di Katalari da manana di Katalari da manana di Katalari da manana di Katalari da man	ala Martin ana an
1	والفعاصفيرين والحواصا مطالقيهما		r	1.5		1	ահեհ վելումներներեն հետ	ويروبه يتبل يرينا ألم يرور ليشتع مرراو لحرياتها	غاهر بانلينا البواريم أطعت باناتك مارينا بر	ليطهدنا لاربية فأربط والمنجلة لتحشر مالقانا	Aller a barra l'assertant	and a state of the second s
					1	1	1					
220	200	180	160	140	120	100	80	60	40	20	0	ppm

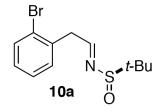
gsl-VIII-89-2 carbon

S38

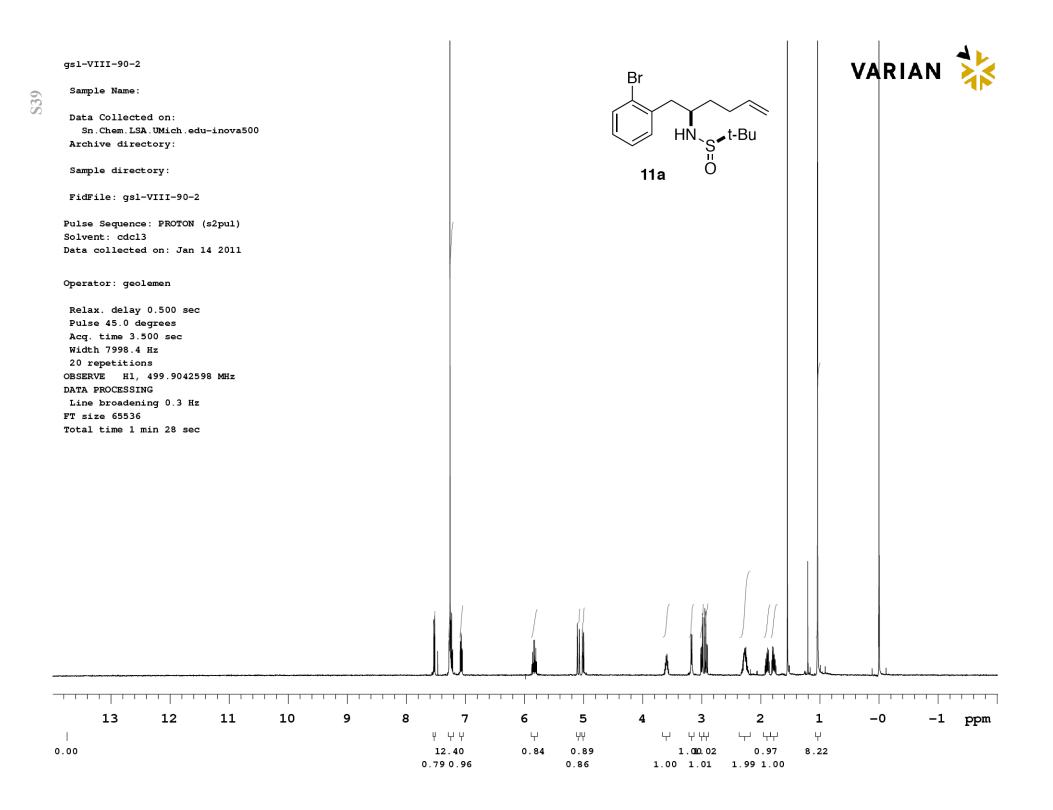
Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:


FidFile: gsl-VIII-89-2carbon

Pulse Sequence: CARBON (s2pul) Solvent: cdcl3 Data collected on: Jan 20 2011


Operator: geolemen

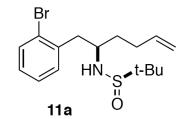
Relax. delay 0.100 sec Pulse 45.0 degrees Acq. time 2.569 sec Width 25510.2 Hz 88 repetitions OBSERVE C13, 100.7111173 MHz DECOUPLE H1, 400.5226414 MHz Power 41 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 131072 Total time 3 min 56 sec

FT size 131072 Total time 3 m:												
iotar time 5 m.												
			I	1								
								I				
فاع ومقالعهم والمعر والأرباط والأرباط ومعتوا ووالم ومتوالي	in a little og af høndes sit burdes i	وأحزار فالالمتع بالاسمالة التقاط أأمأوا	امتيل أنفع الارتلال إعلاما أتريد الا	والتلور المريدان والمتحديق الرواب	والمنحي وفاسانيسوا بالشواطان	فالالانيب أندار واأتت فارتدائه	iden have predative the mission	والمستعدية والمتلفة والمستعدية والمحافظ والمتعدون والمتعادين	والمقروط وموالية والمتعاط أفطأ ووالمرود والم	ومساطرة والمتناط ألاسيان فأستاده	والترار وأتم وأرزر التلافر	hthybesilaby, ili.
a de la parte de la facta de la cala de la c	iste mittel alle del multi e ditano	ullinu ar ihini an in an	المشخطين الطنطقين بماحمتهم واللحميد	ahin asila kuta ta ta ku da ku d	an a	a da ang ang ang ang ang ang ang ang ang an	الأيعوريان ويوريك الكناك فتريطيه	a al la de la d	an a	r be hered at the period of the	arine Later and Arne Addam and	a in ^{ta} n ta
220	200	180	160	140	120	100	80	60	40	20	0	
220	200	190	190	140	120	100	80	80	-20	20	0	ppr

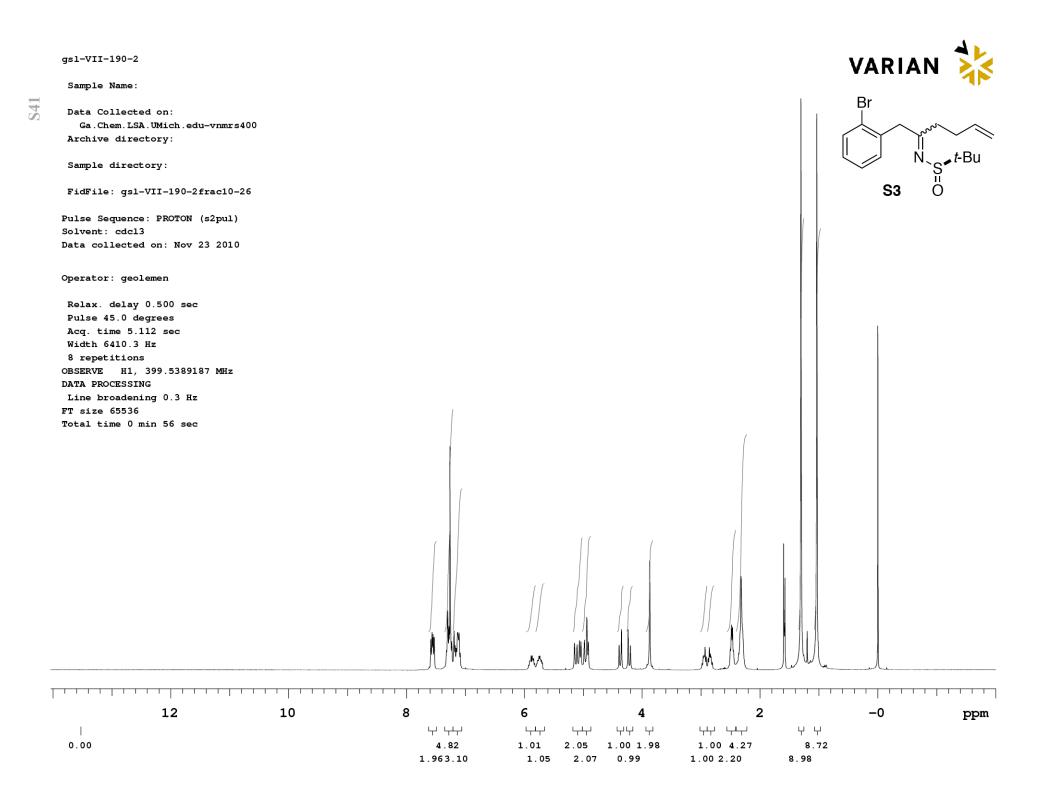
Sample Name:

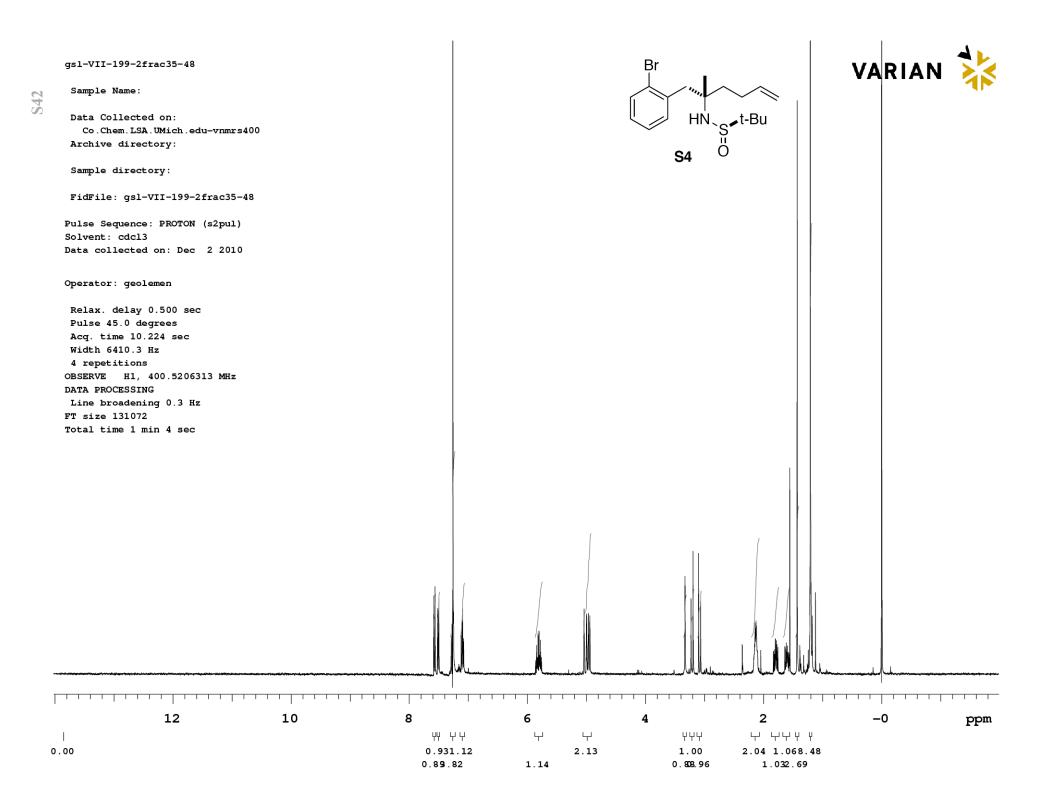
Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:


FidFile: gsl-VIII-90-2carbon

Pulse Sequence: CARBON (s2pul) Solvent: cdcl3 Data collected on: Jan 20 2011


Operator: geolemen


Relax. delay 0.100 sec Pulse 45.0 degrees

ы II — .					
وروابيا والمتعادية والمتعادية والمارية والمتعادية	والمتعالية والمتعادية والمتعارية والمتعارية والمتعارية	المربيعة والمتعادية والقام والقام والمعادية المتعادية	ويورز المرابعة لومن الولاير ومراجع المرابع	المانية الماني ومناقص النابية المانية	a strack of a ration .
AND BUILDING OF THE PROPERTY O	a na ka kana na kata na ka	a hundh a shi sa ku	and the standard stands and	a burning and real the Property	Period includent spectrum by
والمتحديد والمنابعة والمتعادية والمتعادية المتعادية المتعادية والمتعادي والمتعادين	ومطالبه والالمروجية والملاولة فيترج اللبريا فالتقاري والاستأراف بأراهان	التحفيف والطاطر أجارك والأراد ومالته ويعطمه مدويته والمالي	ante ditulares - chi a tetto cilli silita data - la colar coldi	alle de la constituít e suité con such el itera de tra	at a langeboord, so it is an is addited of the
فأعطاك واعترا ويهور يوليط مزاجي مناوعوا وراجا الاخراط أعطا والملاط	فيدرك يديما بالباني لإرتباعات فالربان بالتقتله بالإيتابيل وال	in a particular a la col initizza accalevante da	a na ang ang ang ang ang ang ang ang ang	and the second secon	and a second state of the second s
a na la anti anti anti anti anti anti anti ant	ا د د د د ۱ د د ۱ د د د ۲ د د د د د د د د	r	aliter film and the state of th		l I I I I I I I I I I I I I I I I I I I
		اللغان معاقلة معاقلة معاقلة معاقل معاقل معاقل معالم المعودية والج فاقلة ويتقومون أعدي معاقلة وبالمعلى	لا الله المحالية مع ما فقي مع ما في مع المحالية في القوم بنا في مقام بقارة من القوم المحالية من مع ما المحالية من المحالية م		

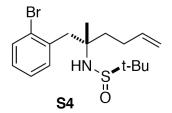
gsl-VII-199-2 carbon

Sample Name:

S43

Data Collected on: Te-vnmrs500 Archive directory:

Sample directory:


FidFile: gsl-VII-199-2carbon

Pulse Sequence: CARBON (s2pul) Solvent: CDC13 Data collected on: Jan 26 2011

Operator: geolemen

Relax. delay 0.100 sec Pulse 45.0 degrees Acq. time 2.045 sec Width 32051.3 Hz 152 repetitions OBSERVE C13, 125.7485300 MHz DECOUPLE H1, 500.0956704 MHz Power 42 dB continuously on WALTZ-16 modulated DATA PROCESSING

VARIAN

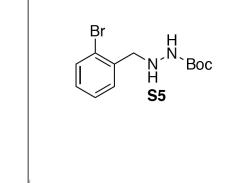
Line broadening FT size 131072 Total time 5 min	-											
	al na shi na sa tan na sa ta na dala da sa sa sa sa sa Ina sa	Mile Lanck Barran Alexandre San Jaron I. en se der Berecht Mile Lanck II. en sterne Mile San	n, na handi da na hana da na maing sa kana da na ka		ing the second second second second	i na	m.q	den men geleter henne	numphi lunch dinatawan di	and the second		atable after a start of the
220	200	180	160	140	120	100	80	60	40	20	0 0	ppm

gsl-VIII-144-3

Sample Name:

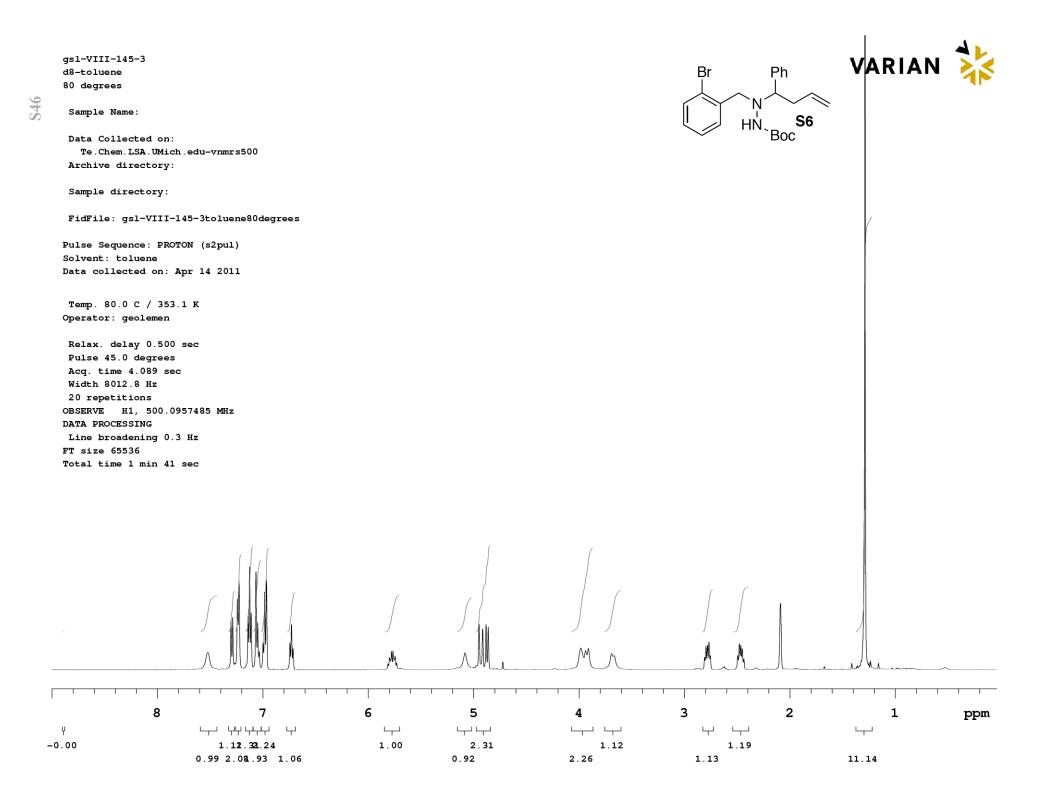
S44

Data Collected on: Te.Chem.LSA.UMich.edu-vnmrs500 Archive directory:


Sample directory:

FidFile: gsl-VIII-144-3

Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Apr 14 2011


Operator: geolemen

Relax. delay 0.500 sec Pulse 45.0 degrees Acq. time 4.089 sec Width 8012.8 Hz 8 repetitions OBSERVE H1, 500.0931657 MHz DATA PROCESSING Line broadening 0.3 Hz FT size 65536 Total time 0 min 46 sec

								VAR	IAN 法
Sample Name:									
Data Collected on:								Br	
Te.Chem.LSA.UMich.edu-vnmrs500									Н
Archive directory:									∕_N ^{´N} `Boc
Sample directory:									N Boc H S5
FidFile: gsl-VIII-144-3carbonrerun									30
Pulse Sequence: CARBON (s2pul)									
Solvent: c6d6									
Data collected on: Apr 14 2011									
Operator: geolemen									
Relax. delay 0.100 sec									
Pulse 45.0 degrees									
Acq. time 2.045 sec									
Width 32051.3 Hz 416 repetitions									
DBSERVE C13, 125.7485316 MHz									
DECOUPLE H1, 500.0957154 MHz									
Power 42 dB									
continuously on									
WALTZ-16 modulated									
DATA PROCESSING Line broadening 1.0 Hz									
FT size 131072									
Fotal time 14 min					h				
						I			
an year an	der franzen er	and the second	aligher and the second s	an fundamente fundation de	where we are a start with the second start withe second start with the second start with the second start with		<u>len si den de la serie de </u>	un ander and an	

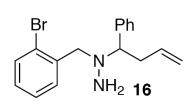
	gsl-VIII-146-4				VARIAN 法
	Sample Name:				
2	Data Collected on: Te.Chem.LSA.UMich.edu-vnmrs500 Archive directory:				Br Ph
	Sample directory:				N NH ₂ 16
	FidFile: gsl-VIII-146-4				
	Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Apr 14 2011				
	Operator: geolemen				
	Relax. delay 0.500 sec Pulse 45.0 degrees Acq. time 4.089 sec Width 8012.8 Hz 4 repetitions OBSERVE H1, 500.0931806 MHz DATA PROCESSING Line broadening 0.3 Hz				
	FT size 65536				
	Total time 0 min 28 sec				
-					
	12 10 8	6	4	2	-0 ppm
		밖부 부 5D.16 033 1.0	1.20 2.	부부 부트구크 29 1.28 1.17 3.43	

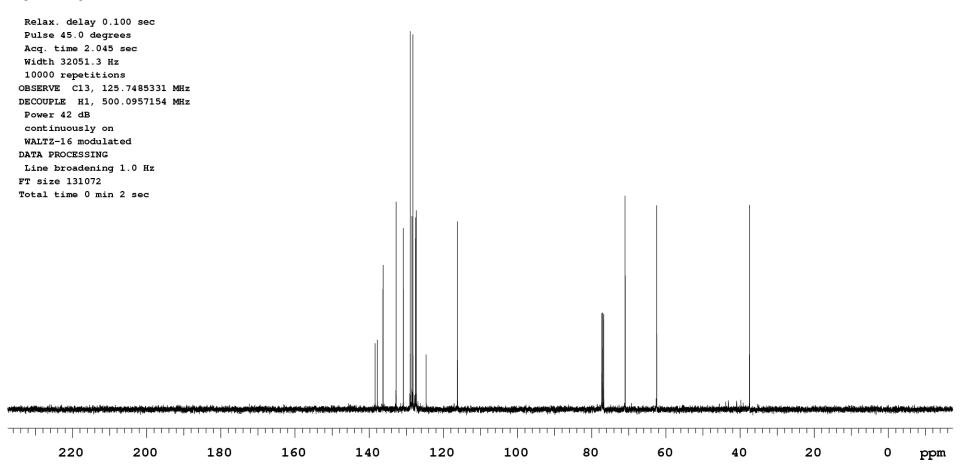
gsl-VIII-164-2

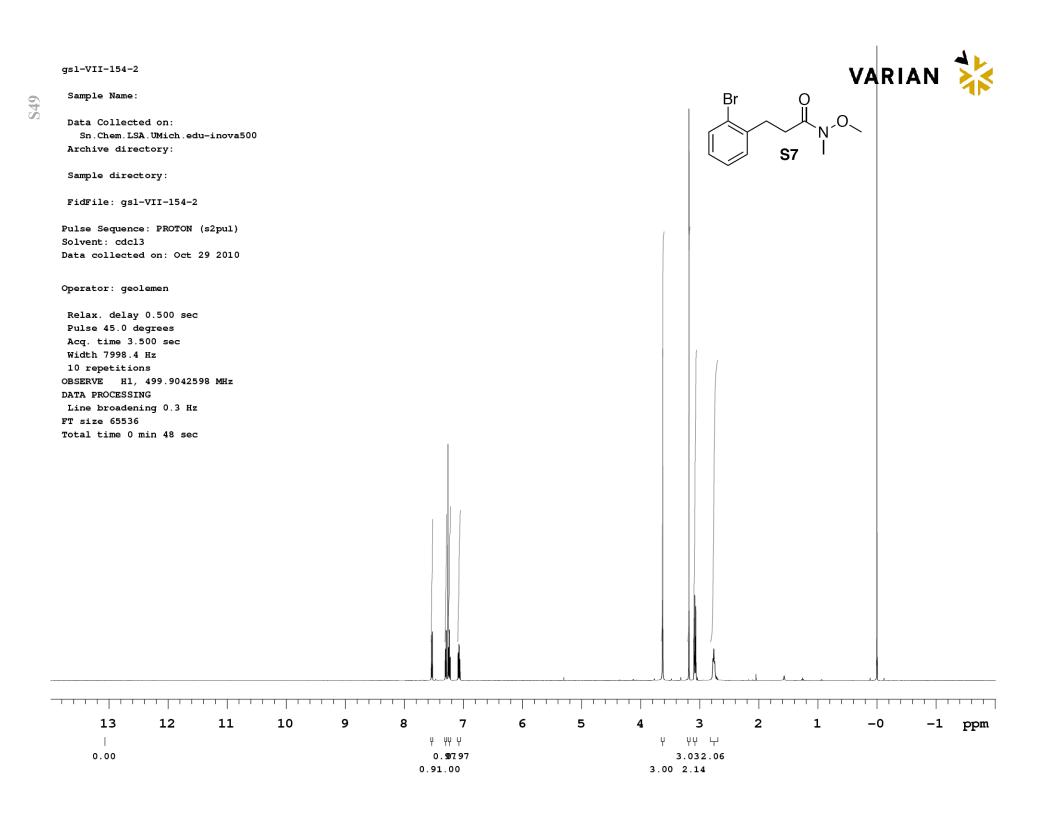
Sample Name:

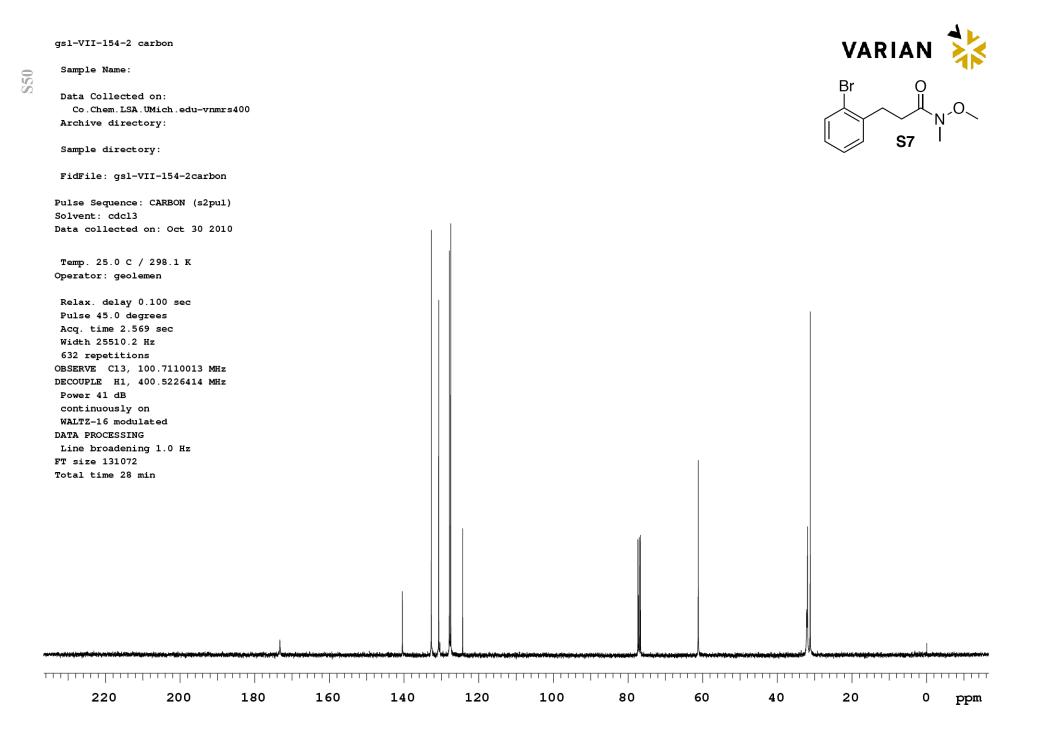
S48

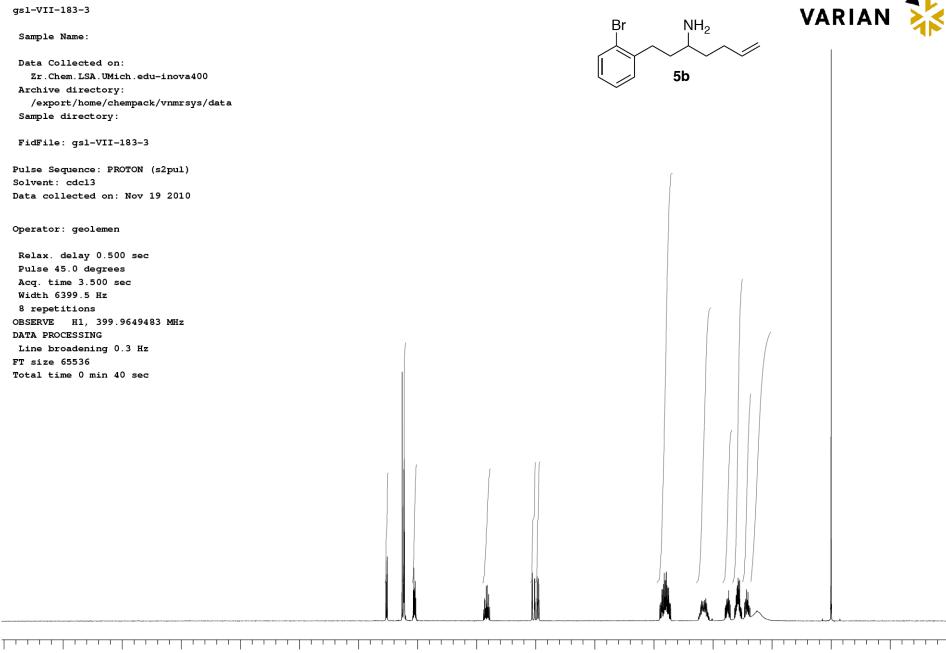
Data Collected on:


Te.Chem.LSA.UMich.edu-vnmrs500 Archive directory:


Sample directory:


FidFile: gsl-VIII-146-4carbon


Pulse Sequence: CARBON (s2pul) Solvent: c6d6 Data collected on: Apr 14 2011

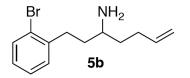

Operator: geolemen

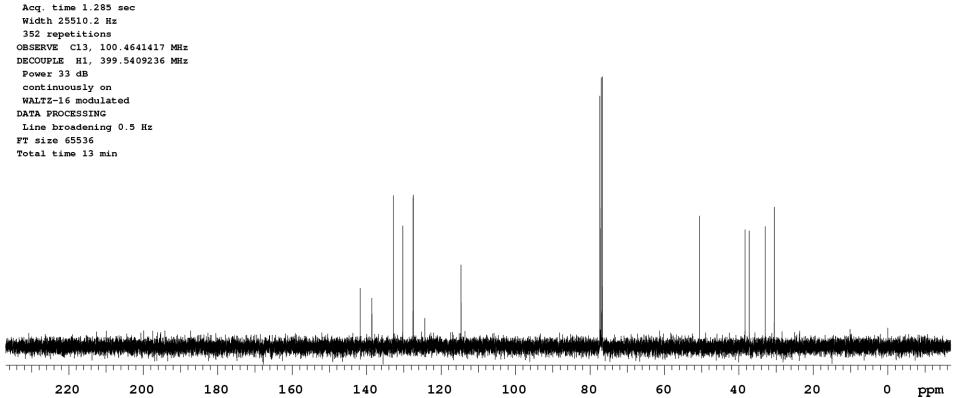
					•			•							
	13	12	11	10	9	8	7 6	5	4	3	2	1	-0	-1	ppm
	1					ΥŸ	Υ Ψ	ΥΨ		L		└┬┶╌┰╼┙			
0	. 00					2.1	.1 1.00	1.06			2.41 2.6	62.20			
						0.97 1	.04	1.06		3.58	1.34	. 67			

Sample Name:

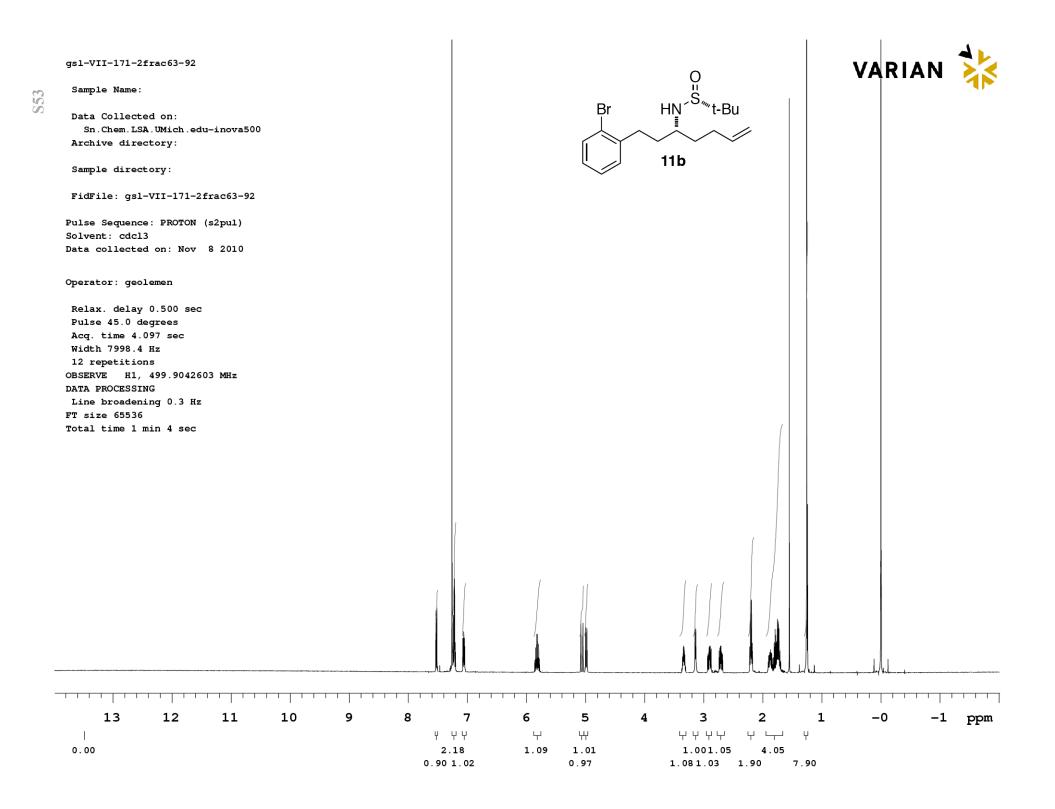
S52

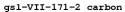
Data Collected on: Ga.Chem.LSA.UMich.edu-vnmrs400 Archive directory:


Sample directory:


FidFile: gsl-III-208-1carbon

Pulse Sequence: CARBON (s2pul) Solvent: cdcl3 Data collected on: Mar 24 2009


Operator: geolemen


Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.285 sec Width 25510.2 Hz 352 repetitions Power 33 dB continuously on WALTZ-16 modulated Line broadening 0.5 Hz VARIA

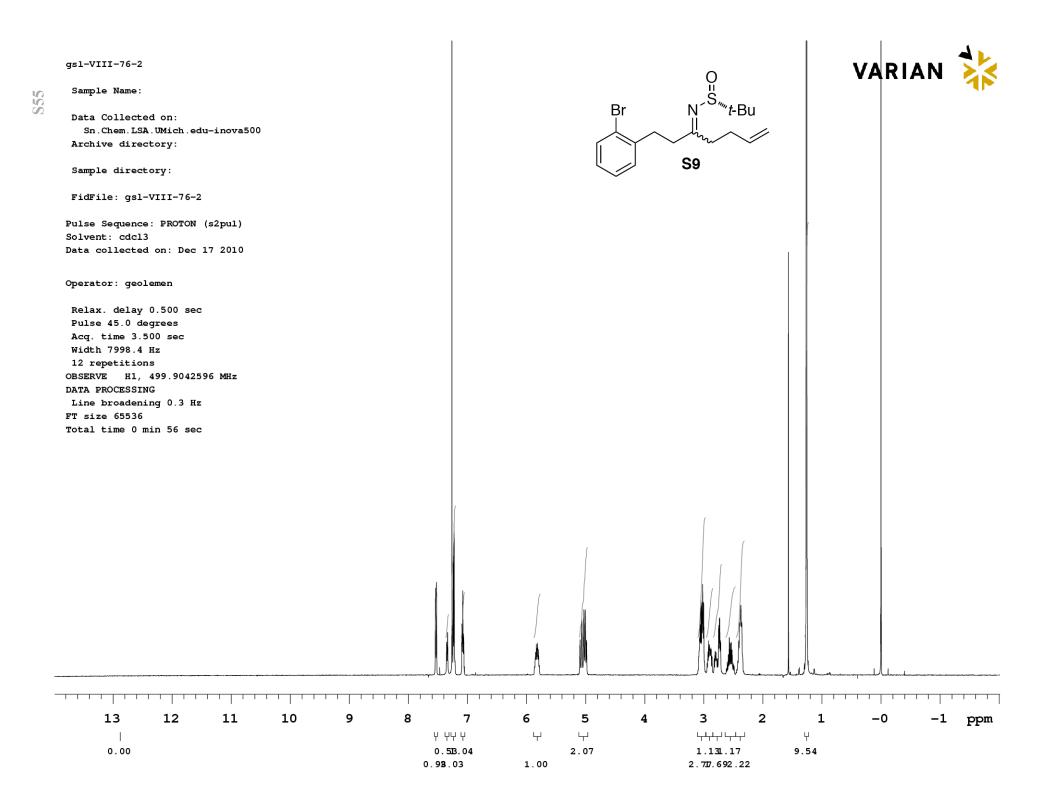
gsl-III-208-1 carbon

Sample Name:

S54

Data Collected on: Te-vnmrs500 Archive directory:

Sample directory:


FidFile: gsl-VII-171-2carbon

Pulse Sequence: CARBON (s2pul) Solvent: CDC13 Data collected on: Jan 27 2011

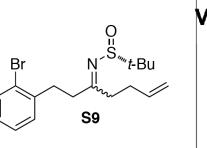
Operator: geolemen

220	200	180	160	140	120	100	80	60	40	20	0	ppm
						, , , , , , , , , , , , , , , , , , , 	*#####################################				, <u>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>	
											1	
								I				
tal time 5 min	n 10 sec						1					
ine broadening size 131072	g 1.0 Hz											
ontinuously on ALTZ-16 modula TA PROCESSING												
ower 42 dB		2										
44 repetitions SERVE C13, 12 COUPLE H1, 50	25.7485305 MH											
idth 32051.3 H												
cq. time 2.045												

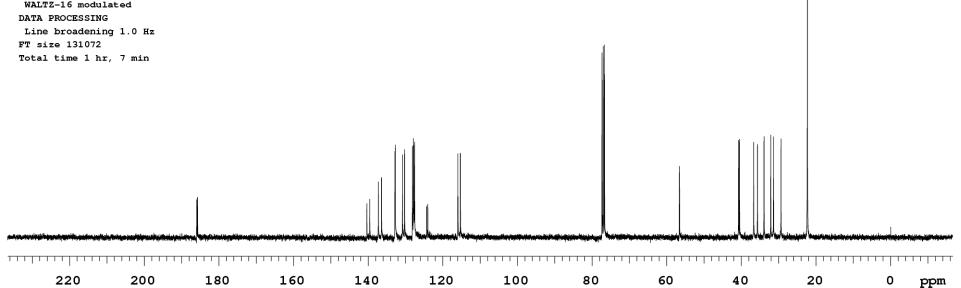
gsl-VIII-76-2 carbon

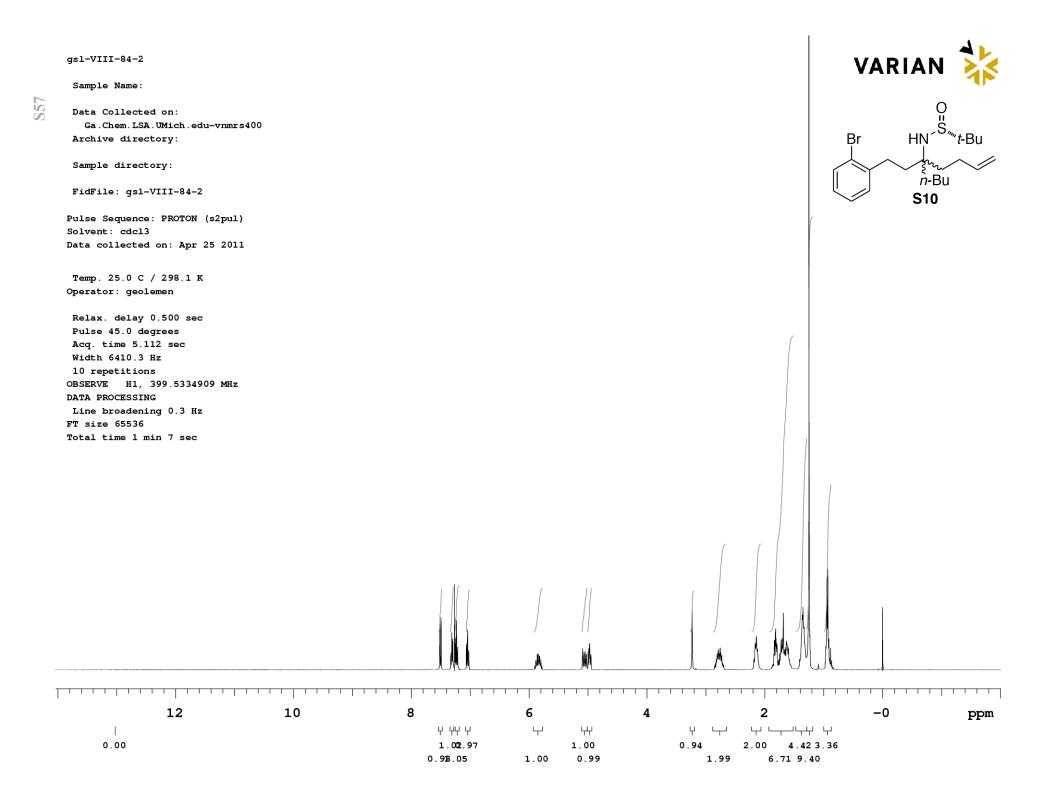
Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

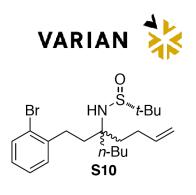

Sample directory:

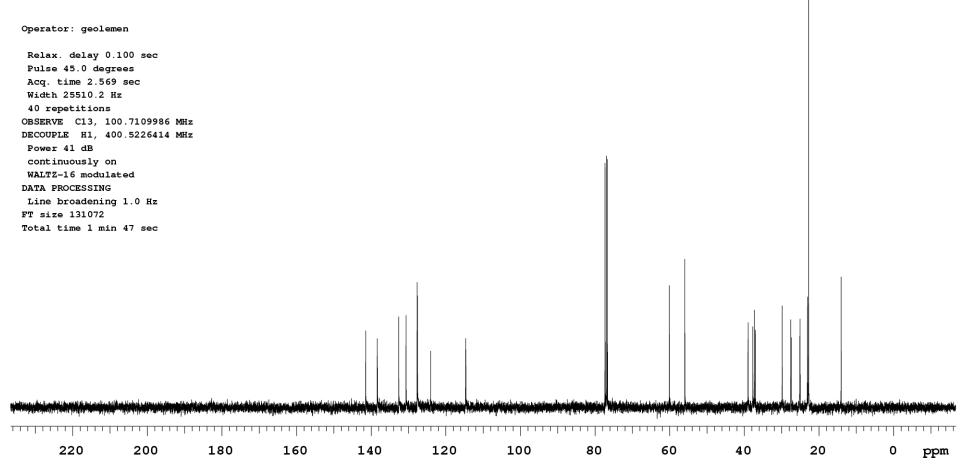
FidFile: gsl-VIII-76-2carbon


Pulse Sequence: CARBON (s2pul) Solvent: cdcl3 Data collected on: Dec 18 2010


Operator: geolemen

Relax. delay 0.100 sec Pulse 45.0 degrees Acq. time 2.569 sec Width 25510.2 Hz 1512 repetitions OBSERVE C13, 100.7109994 MHz DECOUPLE H1, 400.5226414 MHz Power 41 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 131072 Total time 1 hr, 7 min


Sample Name:


Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:

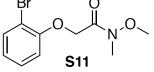
FidFile: gsl-VIII-84-2carbon

Pulse Sequence: CARBON (s2pul) Solvent: cdcl3 Data collected on: Dec 18 2010

gsl-VIII-104-2					VARIAN	
Sample Name:				I	Br O S11	
Data Collected on:					Br O	
Te-vnmrs500 Archive directory:						N_0
Sample directory:					S11	-
FidFile: gsl-VIII-104-2						
Pulse Sequence: PROTON (s2pu	1)			1		
Solvent: CDC13				1		
Data collected on: Feb 16 20	11					
Operator: geolemen						
Relax. delay 0.500 sec Pulse 45.0 degrees						
Acq. time 4.089 sec						
Width 8012.8 Hz						
4 repetitions		,				
OBSERVE H1, 500.0931679 MH DATA PROCESSING	Z					
Line broadening 0.3 Hz						
FT size 65536						
Total time 0 min 28 sec						
		111	/			
10	10	o		A.	2 0	
12	10	8 6		4	2 -0	ppm
0.00		Υ Υ Υ 0 97	년 2 00	부 부 289		
0.00		0.97	2.00	2.88		

0.91 1.92

2.99


S59

gsl-VIII-104-2 carbon

Sample Name:

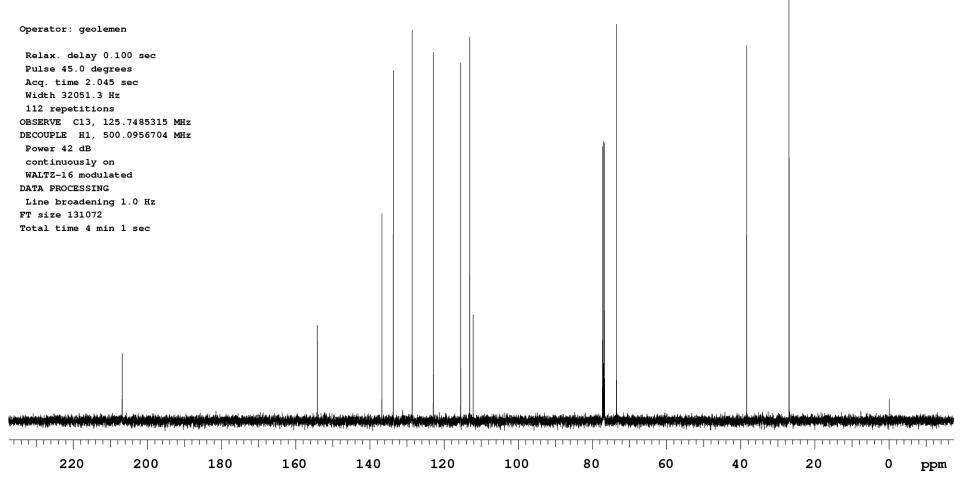
Data Collected on: Te-vnmrs500 Archive directory:

Sample directory:

Operator: geolemen Relax. delay 0.100 sec Fulce 30.0 degrees Acq. time 2.045 sec Width 32051.3 Ht 2488 repetitions OBSERVE C13, 125.7485305 MHz DECOUDLS H1, 500.0356704 MHz Power 42 dB continuously on NALTZ-16 modulated DATA PROCESSING Line broadning 1.0 Hz F7 size 131072 Total time 1 hr, 29 min			 	 	 	 	
	Relax. delay 0.100 sec Pulse 30.0 degrees Acq. time 2.045 sec Width 32051.3 Hz 2488 repetitions OBSERVE C13, 125.7485305 MHz DECOUPLE H1, 500.0956704 MHz Power 42 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 131072						
)degreepulse					
FidFile: gsl-VIII-104-2carbon30degreepulse Pulse Sequence: CARBON (s2pul)							

	gsl-VIII-105-2 Sample Name:					VARIAN 🏓	
	Data Collected on: Te-vnmrs500 Archive directory:					Br O	//
	Sample directory:					S12	
	FidFile: gsl-VIII-105-2						
	Pulse Sequence: PROTON (s2pul) Solvent: CDC13 Data collected on: Feb 16 2011			(
	Operator: geolemen						
	Relax. delay 0.500 sec Pulse 45.0 degrees Acq. time 4.089 sec Width 8012.8 Hz 4 repetitions OBSERVE H1, 500.0931691 MHz DATA PROCESSING						
	Line broadening 0.3 Hz FT size 65536						
	Total time 0 min 28 sec						
_							
Г					1 1 1 1 1 1 1 1 1 1		
	12 10 8		6	4	2	_	pm
		ΥΥΥΥ 1.20 1.09 1.00 1.06	いいしょう いっぽう いっぽう いっぽう いっぽう いっぽう いっぽう いっぽう いっぽ	2.32	부 부 2.23 2.25		

gsl-VIII-105-2 carbon

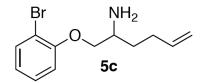

Sample Name:

Data Collected on: Te-vnmrs500 Archive directory:

Sample directory:

FidFile: gsl-VIII-105-2carbon

Pulse Sequence: CARBON (s2pul) Solvent: CDC13 Data collected on: Feb 16 2011

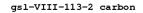

Sample Name:

Data Collected on: Te-vnmrs500 Archive directory:

Sample directory:

FidFile: gsl-VIII-113-2

Pulse Sequence: PROTON (s2pul) Solvent: CDC13 Data collected on: Feb 22 2011 VARIAN 🗱


perator: geolemen Relax. delay 0.500 sec Pulse 45.0 degrees Acg. time 4.089 sec Width 8012.8 Hz 4 repetitions BSEENVE H1, 500.0931664 MHz ATA PROCESSING Line broadening 0.3 Hz T size 65536 otal time 0 min 28 sec
Pulse 45.0 degrees Acq. time 4.089 sec Width 8012.8 Hz 4 repetitions BSERVE H1, 500.0931664 MHz ATA PROCESSING Line broadening 0.3 Hz T size 65536
Acq. time 4.089 sec Width 8012.8 Hz 4 repetitions BSERVE H1, 500.0931664 MHz ATA PROCESSING Line broadening 0.3 Hz T size 65536
Width 8012.8 Hz 4 repetitions BSERVE H1, 500.0931664 MHz ATA PROCESSING Line broadening 0.3 Hz T size 65536
4 repetitions BSERVE H1, 500.0931664 MHz ATA PROCESSING Line broadening 0.3 Hz T size 65536
BSERVE H1, 500.0931664 MHz ATA PROCESSING Line broadening 0.3 Hz T size 65536
Line broadening 0.3 Hz T size 65536
T size 65536
12 10 8 6 4 2 -0 ppm
.00 1.17 1.00 1.08 1.09 2.33 3.32

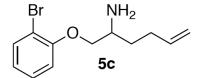
1.03

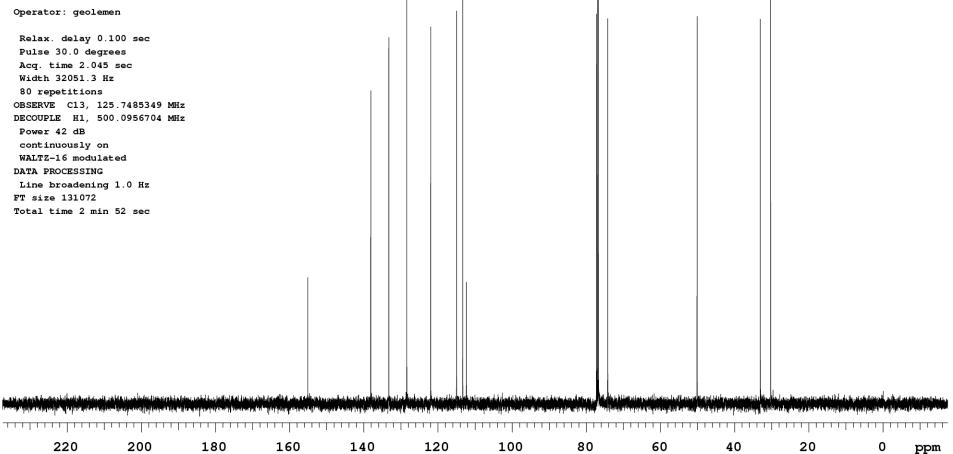
1.16 1.06

1.23

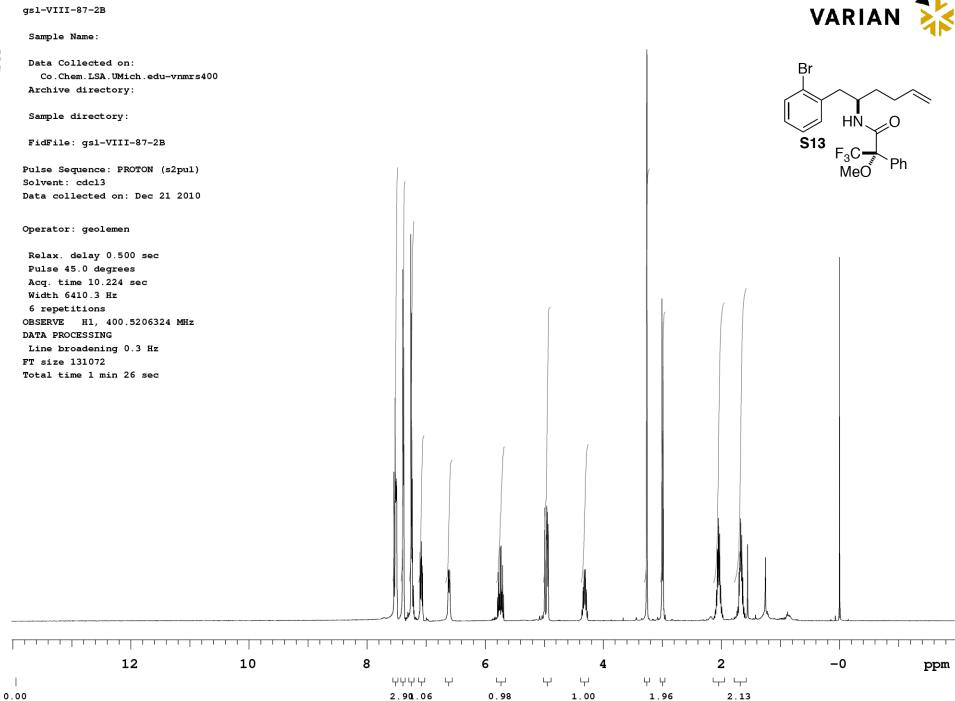
0.99 2.22

Sample Name:


Data Collected on: Te-vnmrs500 Archive directory:


Sample directory:

Pulse Sequence: CARBON (s2pul) Solvent: CDC13 Data collected on: Feb 22 2011


FidFile: gsl-VIII-113-2carbon

gsl-VIII-87-2B

3.020.61 0.89

1.99

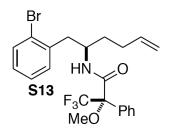
2.99

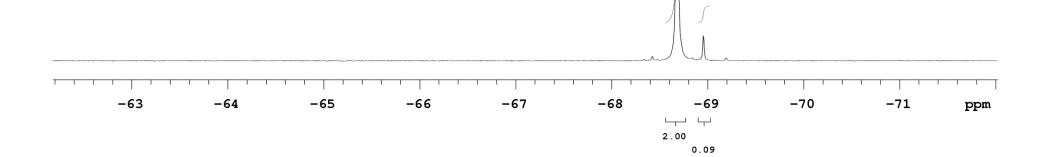
2.02

gsl-VIII-87-2A racemic

Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:


Sample directory:


FidFile: gsl-VIII-87-2Bfluorine

Pulse Sequence: FLUORINE (s2pul) Solvent: cdcl3 Data collected on: Dec 21 2010

Temp. 25.0 C / 298.1 K Operator: geolemen

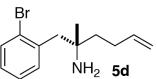
Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 0.734 sec Width 89285.7 Hz 16 repetitions OBSERVE F19, 376.8659204 MHz DATA PROCESSING Line broadening 1.5 Hz FT size 131072 Total time 0 min 31 sec VARIAN 🔽

	gsl-VII-198-2 Sample Name:				VARIAN 🔆
	Data Collected on: Te-vnmrs500 Archive directory:				Br
	Sample directory:				NH ₂ 5d
	FidFile: gsl-VII-198-2				
	Pulse Sequence: PROTON (s2pul) Solvent: CDCl3 Data collected on: Jan 27 2011				
	Operator: geolemen				
	Relax. delay 0.500 sec Pulse 45.0 degrees Acq. time 4.089 sec Width 8012.8 Hz 4 repetitions OBSERVE H1, 500.0931686 MHz				
	DATA PROCESSING Line broadening 0.3 Hz				
	FT size 65536 Total time 0 min 28 sec				
_					
Ι	12 10 0.00	8 ¥ ¥ ¥ 2.30 0.91 0.97	6	4 2 4 4 2 4 4 2 2.30 1.98 2.12 2.25 3.68	-0 ppm

gsl-VII-198-2 carbon

Sample Name:

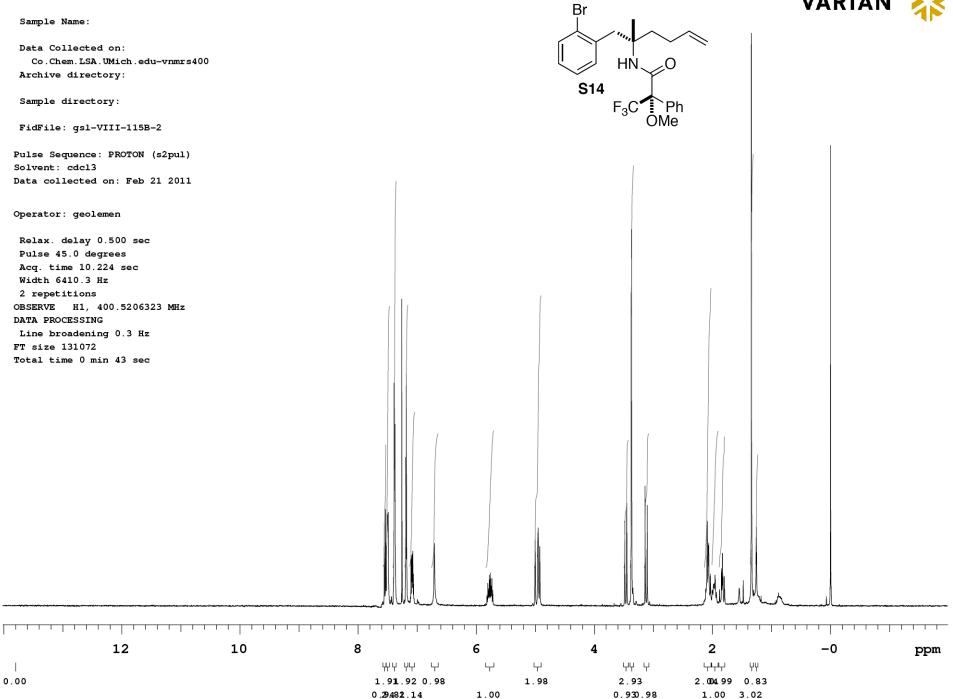
Data Collected on: Te-vnmrs500 Archive directory:


Sample directory:

FidFile: gsl-VII-198-2carbon

Pulse Sequence: CARBON (s2pul) Solvent: CDC13 Data collected on: Jan 27 2011

Operator: geolemen



Relax. delay 0.100 sec												
Pulse 45.0 degrees												
Acq. time 2.045 sec												
Width 32051.3 Hz												
504 repetitions												
BSERVE C13, 125.7485295 MH:												
ECOUPLE H1, 500.0956704 MH	z											
Power 42 dB												
continuously on												
WALTZ-16 modulated												
ATA PROCESSING												
Line broadening 1.0 Hz			1.					1				
T size 131072 otal time 18 min												
	territe in Male and a same show only being the first	الأحماء والمركاة أعلامتها ومقطعة أوجامته والمتكر والمتكر	the second s	and the second se	and all the party of the state of the last of the	and the state of t	and the second of the second states in the second	in the second	مال بمقط بين المؤلوب والكرية مخ وطائلها	and the second se	in an interior of the state while shift and shift	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OW
220 200	180	160	140	120	100		60		4 0	 20	0	

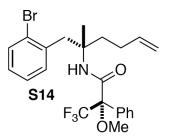
gsl-VIII-115B-2frac8-20

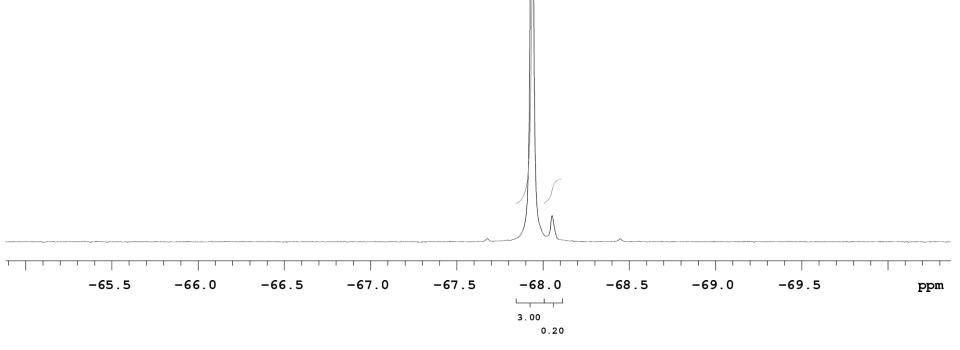
gsl-VIII-115A-2

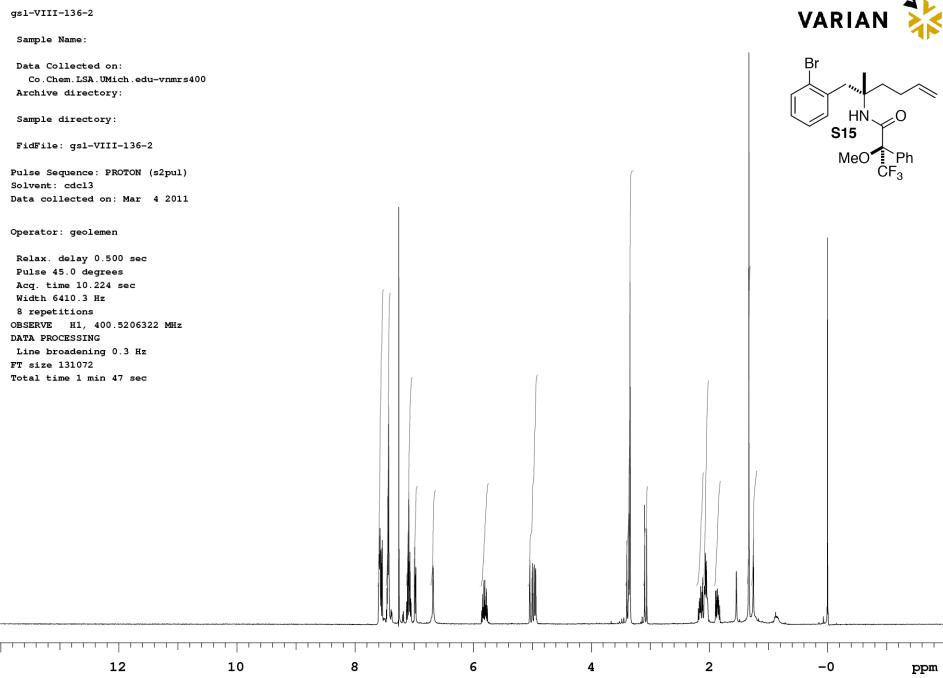
Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:


FidFile: gsl-VIII-115B-2fluorine


Pulse Sequence: FLUORINE (s2pul) Solvent: cdcl3 Data collected on: Feb 21 2011


Operator: geolemen

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 0.734 sec Width 89285.7 Hz 32 repetitions OBSERVE F19, 376.8659278 MHz DATA PROCESSING Line broadening 1.5 Hz FT size 131072 Total time 0 min 59 sec

Ο.

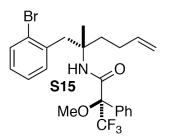
	12	10	8	6	4	2	-0
1			누나 누나 누	나 나	Ly Ly	╘┰┹┲┘╘┰┘╴┝╟┖┰┘	
0.00			2.85 0.98	1.00	4.04	1.11.02 1.13	
			2.88 2.030.93	2.05	0.97	2.00 3.13	

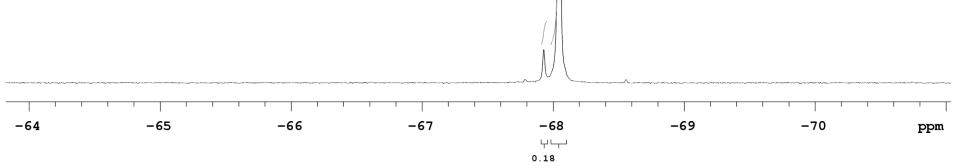
gsl-VIII-136-2

Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:


FidFile: gs-VIII-136-2fluorine


Pulse Sequence: FLUORINE (s2pul) Solvent: cdcl3 Data collected on: Mar 4 2011

Operator: geolemen

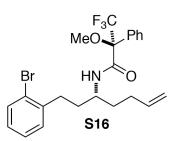

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 0.734 sec Width 89285.7 Hz 32 repetitions OBSERVE F19, 376.8659248 MHz DATA PROCESSING Line broadening 1.5 Hz FT size 131072 Total time 0 min 59 sec

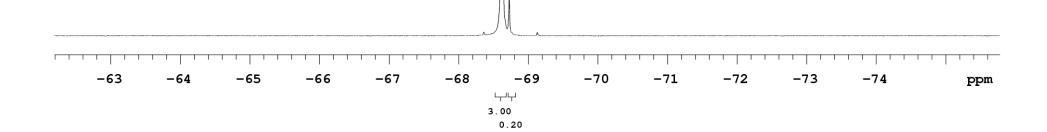
3.00

gs1-VII-196-2

Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

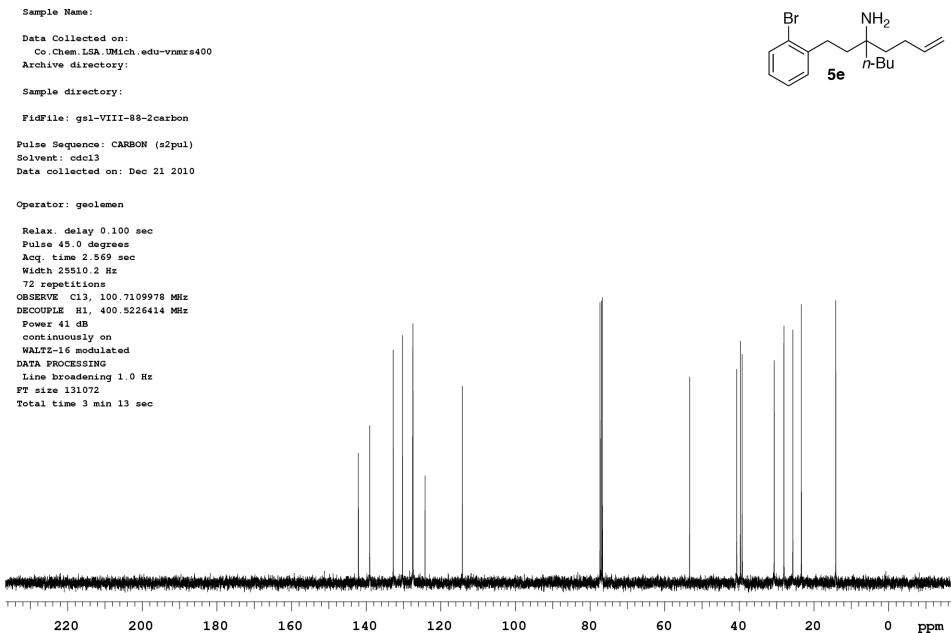

Sample directory:


FidFile: gsl-VII-196-2fluorine

Pulse Sequence: FLUORINE (s2pul) Solvent: cdcl3 Data collected on: Dec 1 2010

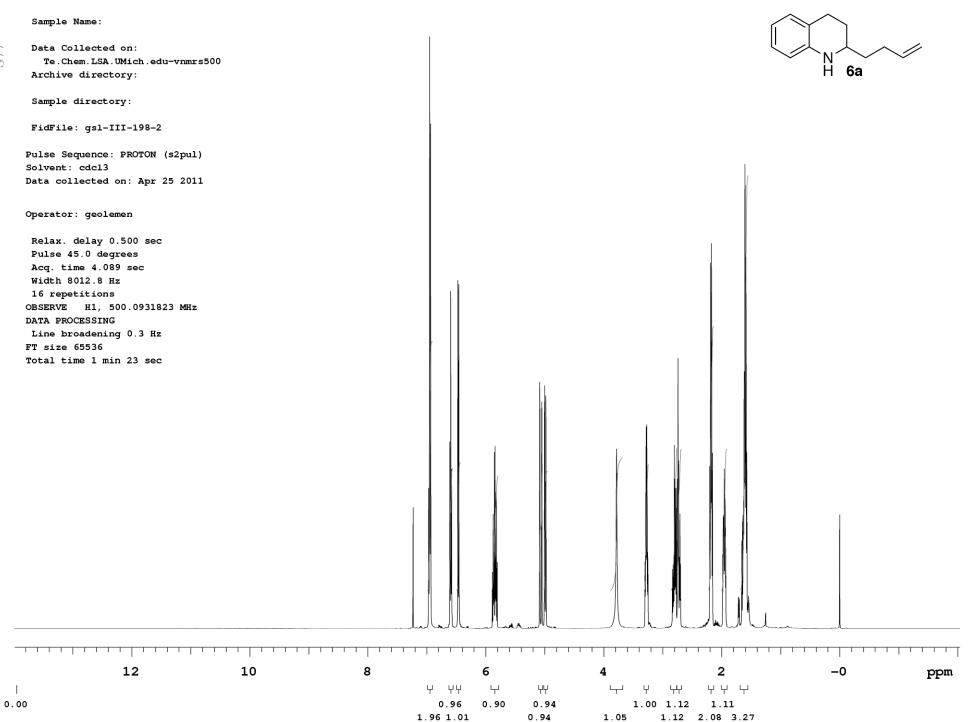
Temp. 25.0 C / 298.1 K Operator: geolemen

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 0.734 sec Width 89285.7 Hz 16 repetitions OBSERVE F19, 376.8659384 MHz DATA PROCESSING Line broadening 1.5 Hz FT size 131072 Total time 0 min 31 sec VARIAN 🔆



VARIAN gsl-VIII-88-2 NH_2 Br Sample Name: n-Bu Data Collected on: 5e Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory: Sample directory: FidFile: gsl-VIII-88-2 Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Dec 21 2010 Operator: geolemen Relax. delay 0.500 sec Pulse 45.0 degrees Acq. time 10.224 sec Width 6410.3 Hz 6 repetitions OBSERVE H1, 400.5206283 MHz DATA PROCESSING Line broadening 0.3 Hz FT size 131072 Total time 1 min 26 sec . 12 10 o ~ ~ ppm

	12	10	8	6		4	2	-0
1			ΨΨΨ	Ϋ́	ЧY	Ŷ	Ŷ	└┰╂┰╂┰┺╌┰═╝┖┰┚
0.00			1.93	1.00	0.98		1.98	2.41483.03
			0.95 0.96		1.01	1.92		2.0988.81

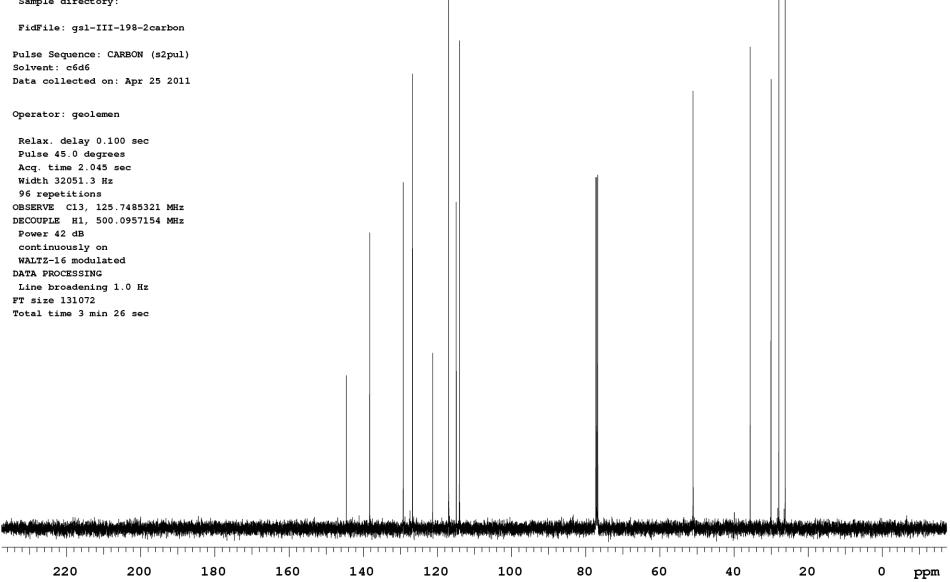

gsl-VIII-88-2 carbon

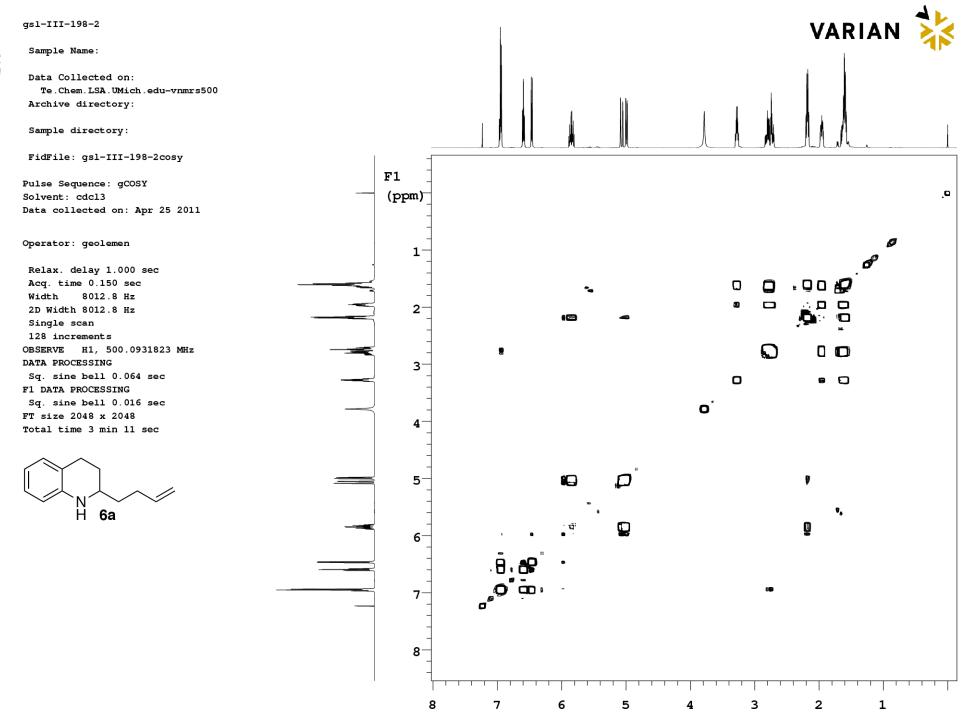
S76

VARIAN 👬

gsl-III-198-2

gsl-VIII-164-2


Sample	Name:
--------	-------

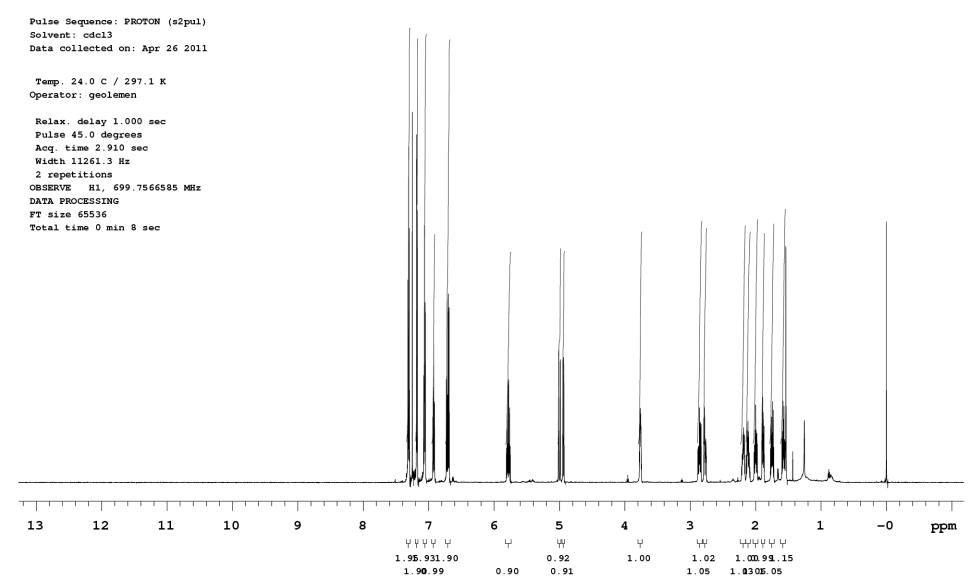

S78

Data Collected on: Te.Chem.LSA.UMich.edu-vnmrs500 Archive directory:

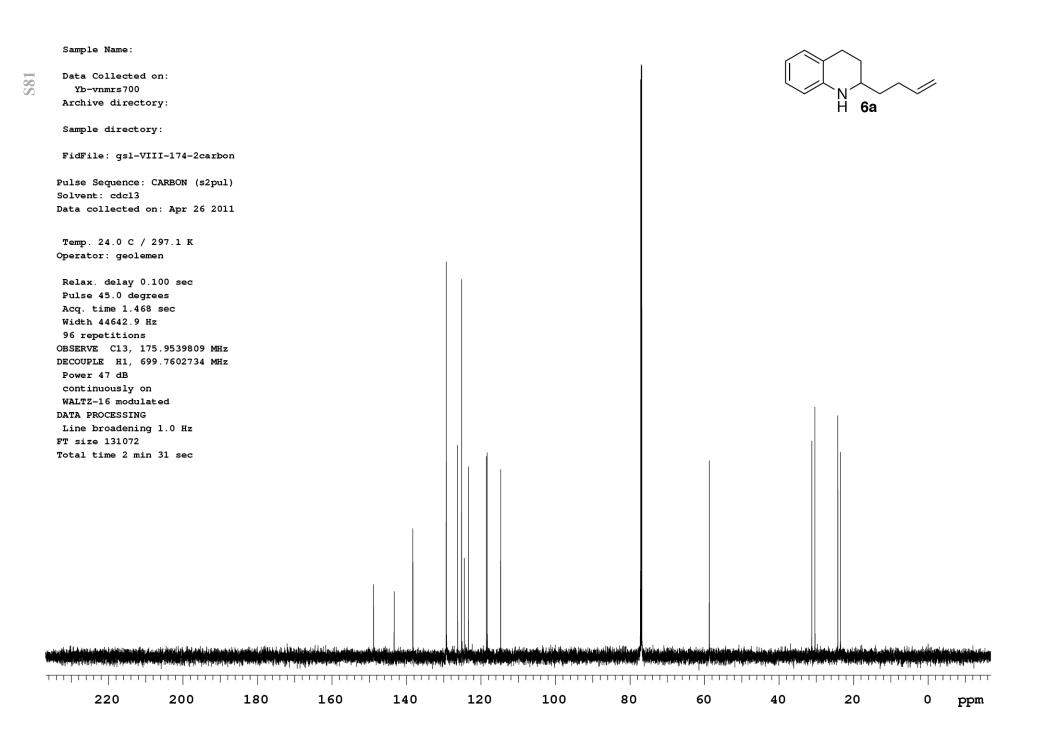
Sample directory:

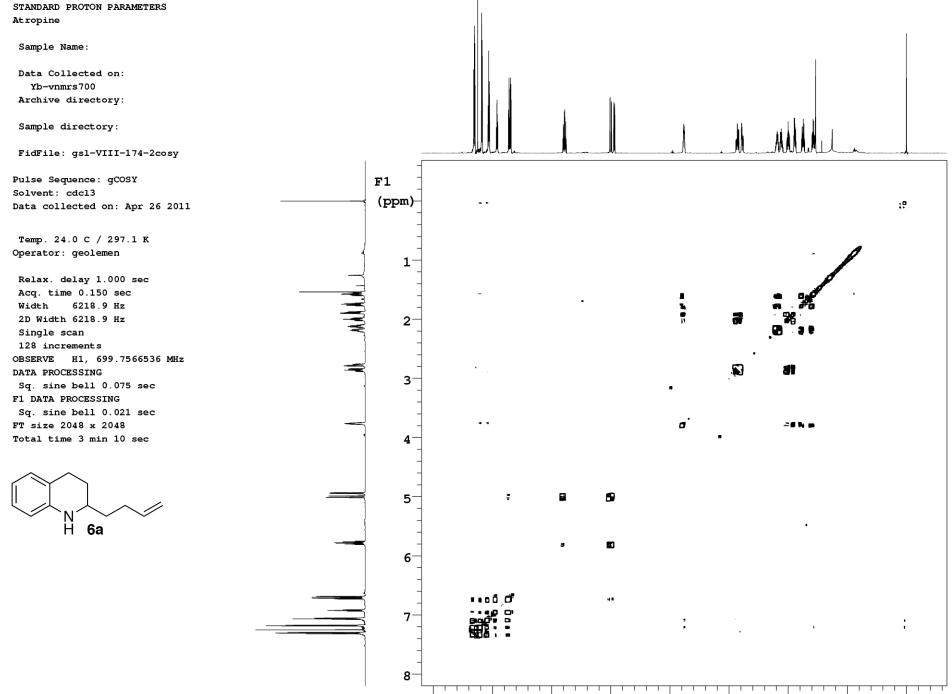
N 6a

F2 (ppm)


STANDARD PROTON PARAMETERS Atropine

Sample Name:


Data Collected on: Yb-vnmrs700 Archive directory:


Sample directory:

FidFile: gsl-VIII-174-2frac11-24

N H 6a

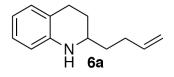
F2 (ppm)

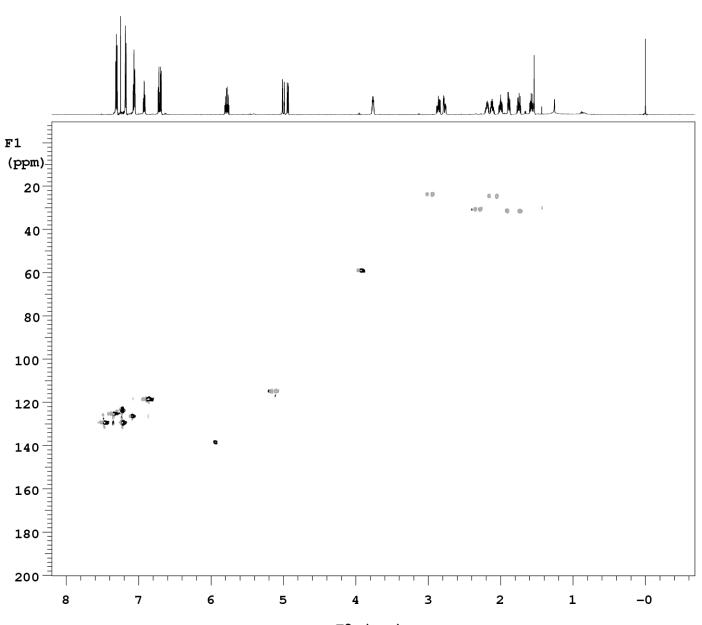
-0

STANDARD PROTON PARAMETERS Atropine

Sample Name:

S83


Data Collected on: Yb-vnmrs700 Archive directory:


Sample directory:

FidFile: gsl-VIII-174-2hsqc

Pulse Sequence: gHSQC Solvent: cdcl3 Data collected on: Apr 26 2011

Temp. 24.0 C / 297.1 K Operator: geolemen Relax. delay 1.000 sec Acq. time 0.150 sec Width 6218.9 Hz 2D Width 36951.5 Hz 2 repetitions 2 x 64 increments OBSERVE H1, 699.7566536 MHz DECOUPLE C13, 175.9706957 MHz Power 38 dB on during acquisition off during delay W40_autoxbb modulated DATA PROCESSING Gauss apodization 0.069 sec F1 DATA PROCESSING Gauss apodization 0.004 sec FT size 2048 x 2048 Total time 10 min

F2 (ppm)