Scalable Synthesis of Cortistatin A and Related Structures

Jun Shi, Georg Manolikakes,[†] Chien-Hung Yeh,[†] Carlos A. Guerrero, Ryan A. Shenvi, Hiroki Shigehisa,

and Phil S. Baran*

Contribution from the Department of Chemistry, The Scripps Research Institute,

10550 North Torrey Pines Road, La Jolla, California 92037

SUPPORTING INFORMATION

Table of Contents

General Experimentalpage	S-5
Scheme S-1page	S-6
Experimental Procedurespage	S-6 - S-47
Compound 25page	S-6
Compound 26 page	S-8
Compound 31 page	S-9
Compound 34 and 35page	S-10
Compound 24 page	S-12
Compound 79 page	S-12
Compound 80 page	S-13
Compound 76 page	S-14
Compound 23 page	S-15
Cortistatinone (22)page	S-16
¹⁶ Δ- Cortistatin A (101)page	S-17
Cortistatin A (11)page	S-18
Compound 27 page	S-19
Compound 29 page	S-20
Compound 30 page	S-21
Compound 31 page	S-22
Compound 32 page	S-22
Compound 36 page	S-23
Compound 38 page	S-24
Compound 40 page	S-25
Compound 45 page	S-26
Compound 48 page	S-27
Compound 49 page	S-28
Compound 52 page	S-29

[†] These authors contributed equally to this paper.

Compound 72	page	S-30
Compound 73	page	S-32
Compound 75	page	S-33
Compound 77	page	S-34
Compound 89	page	S-35
Compound 91	page	S-36
Compound 22	page	S-37
Compound 95	page	S-39
Compound 96	page	S-41
Compound 98	page	S-42
Compound 99	page	S-43
Compound 103	page	S-44
Compound 104	page	S-46
Compound 105	page	S-47
Reference	page	S-48
Spectra for Compounds	page	S-49 - S-124
Compound 26 ¹ H-NMR	page	S-49
Compound 26 ¹³ C-NMR	page	S-50
Compound 31 ¹ H-NMR	page	S-51
Compound 31 ¹³ C-NMR	page	S-52
Compound 34 ¹ H-NMR	page	S-53
Compound 34 ¹³ C-NMR	page	S-54
Compound 24 ¹ H-NMR	page	S-55
Compound 24 ¹³ C-NMR	page	S-56
Compound 79 ¹ H-NMR	page	S-57
Compound 79 ¹³ C-NMR	page	S-58
Compound 80 ¹ H-NMR	page	S-59
Compound 80 ¹³ C-NMR	page	S-60
Compound 92 ¹ H-NMR	page	S-61
Compound 92 ¹³ C-NMR	page	S-62
Compound 76 ¹ H-NMR	page	S-63
Compound 76 ¹³ C-NMR	page	S-64
Compound 22 ¹ H-NMR	page	S-65
Compound 22 ¹³ C-NMR	page	S-66
Compound 101 ¹ H-NMR	page	S-67
Compound 101 ¹³ C-NMR	page	S-68
Compound 11 ¹ H-NMR	page	S-69
Compound 11 ¹³ C-NMR	page	S-70
Comparisons of Natural and Synthetic Cortistatin A	page	S-71
Compound 35 ¹ H-NMR	page	S-72
Compound 35 ¹³ C-NMR	page	S-73
Compound 23 ¹ H-NMR	page	S-74
Compound 23 ¹³ C-NMR	page	S-75
Compound 27 ¹ H-NMR	page	S-76
Compound 27 ¹³ C-NMR	page	S-77
Compound 29 ¹ H-NMR	page	S-78

Compound 29 ¹³ C-NMRpage	S-79
Compound 30 ¹ H-NMR page	S-80
Compound 30 ¹³ C-NMRpage	S-81
Compound 32 ¹ H-NMR page	S-82
Compound 32 ¹³ C-NMRpage	S-83
Compound 36 ¹ H-NMR page	S-84
Compound 36 ¹³ C-NMRpage	S-85
Compound 38 ¹ H-NMR page	S-86
Compound 38 ¹³ C-NMRpage	S-87
Compound 40 ¹ H-NMR page	S-88
Compound 40 ¹³ C-NMRpage	S-89
Compound 45 ¹ H-NMR page	S-90
Compound 45 ¹³ C-NMRpage	S-91
Compound 48 ¹ H-NMR	S-92
Compound 48 ¹³ C-NMR	S-93
Compound 49 ¹ H-NMR	S-94
Compound 49 ¹³ C-NMRpage	S-95
Compound 52 ¹ H-NMR	S-96
Compound 52 ¹³ C-NMR	S-97
Compound 72 ¹ H-NMR	S-98
Compound 72 ¹³ C-NMR	S-99
Compound 73 ¹ H-NMR	S-100
Compound 73 ¹³ C-NMR	S-101
Compound 73 NOESY	S-102
Compound 75 ¹ H-NMR	S-103
Compound 75 ¹³ C-NMR	S-104
Compound 77 ¹ H-NMR	S-105
Compound 77 ¹³ C-NMR	S-106
Compound 89 ¹ H-NMR	S-107
Compound 89 ¹³ C-NMR	S-108
Compound 91 ¹ H-NMR	S-109
Compound 91 ¹³ C-NMR	S-110
Compound 95 ¹ H-NMR	S-111
Compound 95 ¹³ C-NMR	S-112
Compound 96 ¹ H-NMR	S-113
Compound 96 ¹³ C-NMR	S-114
Compound 98 ¹ H-NMR	S-115
Compound 98 ¹³ C-NMR	S-116
Compound 99 ¹ H-NMR	S-117
Compound 99 ¹³ C-NMR	S-118
Compound 103 ¹ H-NMR	S-119
Compound 103 ¹³ C-NMR	S-120
Compound 104 ¹ H-NMR	S-121
Compound 104 ¹³ C-NMR	S-122
Compound 105 ¹ H-NMR	S-123
Compound 105 ¹³ C-NMR	S-124
- 1 P ⁴ 8 ⁶	

X-ray Crystallographypag	e S-125–S-128
Compound 35pag	e S-125
Compound 40 pag	e S-126
Compound 77	e S-127
Compound 91 pag	e S-128

General procedures. All reactions were carried out under a nitrogen atmosphere with dry solvents using anhydrous conditions unless otherwise stated. Dry tetrahydrofuran (THF), diethyl ether, dichloromethane (CH₂Cl₂), benzene, toluene, methanol (MeOH), acetonitrile, 1,2-dimethoxyethane (DME), N,N-dimethylformamide (DMF), and triethylamine (Et₃N) were obtained by passing these previously degassed solvents through activated alumina columns. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as the visualizing agent and an acidic mixture of anisaldehyde, phosphomolybdic acid, or ceric ammonium molybdate, or basic aqueous potassium permangante $(KMnO_4)$, and heat as developing agents. E. Merck silica gel (60, particle size 0.043–0.063 mm) was used for flash column chromatography. Preparative thin layer chromatography (PTLC) separations were carried out on 0.25 or 0.5 mm E. Merck silica gel plates (60F-254). NMR spectra were recorded on Bruker DRX-600, DRX-500, and AMX-400 or Varian Inova-400 instruments and calibrated using residual undeuterated solvent as an internal reference (CHCl₃ @ 7.26 ppm ¹H NMR, 77.0 ppm ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad. High-resolution mass spectra (HRMS) were recorded on Agilent LC/MSD TOF time-of-flight mass spectrometer by electrospray ionization time of flight reflectron experiments. IR spectra were recorded on a Perkin Elmer Spectrum BX FTIR spectrometer. Melting points were recorded on a Fisher-Johns 12-144 melting point apparatus.

Scheme S-1: Synthesis of cortistatin A with improved conditions

Experimental

Compound 25: To a suspension of prednisone (53.3 g, 149 mmol) in anhydrous THF (496 mL, 0.3 M)

was added BH₃·THF (1 M in THF, 149 mL, 149 mmol, 1.0 equiv) *via* syringe over 30 min at 0 °C. After the reagent addition was complete, the cooling bath was removed. The suspension gradually turned into a clear solution. After 20 min, additional BH₃·THF (1 M in THF, 7.4 mL, 7.4 mmol, 0.05 equiv) was added. After another 20 minutes, all starting material had been consumed. The reaction was cooled to 0 °C and approximately 500 mL of 1:1 acetone:water was added slowly. Then NaIO₄ (159 g, 743 mmol, 5 equiv) was added over 5 min. The resulting suspension was stirred vigorously for 3 h at ambient temperature, during which the reaction thickened and became difficult to stir. After the reaction was complete, the suspension was filtered over Celite[®] and evaporated until the majority of acetone and THF had been removed. The resulting suspension was poured into a separatory funnel and the reaction vessel was rinsed repeatedly with EtOAc. The contents of the separatory funnel were diluted with 500 mL EtOAc. The separatory funnel was capped, shaken, and the layers were separated. The aqueous portion was extracted three more times with EtOAc (3 × 200 mL). The combined organic portions were washed with sat. aq. Na₂S₂O₃ (500 mL), water (500 mL) and sat. aq. NaCl (500 mL). The solution was dried over MgSO₄ and concentrated to give an off-white solid that was sufficiently pure for ketalization.

Note: the triol cleavage can be accomplished with as few as 2 equivalents of $NaIO_4$, but this requires stirring overnight for full consumption of the triol.

One fourth of the trione so produced was ketalized as follows: to this portion of crude trione as a suspension in toluene (620 mL, 0.06 M) was added ethylene glycol (52 mL, 929 mmol, 25 equiv) and *p*-TsOH·H₂O (513 mg, 2.69 mmol, 0.0725 equiv). The reaction vessel was incorporated into a standard Dean-Stark setup and immersed in an oil bath preheated to 135 °C and stirred vigorously. After 55 min, the reaction was lifted out of the oil bath and allowed to cool. The contents of the reaction vessel were poured into a separatory funnel and the reaction vessel was rinsed with EtOAc; this was also added to the separatory funnel. The layers were allowed to settle and the ethylene glycol was separated from the

organic layer. The organic layer was neutralized with sat. aq. NaHCO₃ (100 mL) and the layers were again separated. The aqueous portion was extracted twice with EtOAc (2×100 mL). The organic portions were combined, washed with sat. aq. NaCl (200 mL), dried over MgSO₄, and concentrated. The remaining trione was ketalized in the same manner and the crude portions were combined and crystallized from boiling EtOAc followed by cooling at 4 °C. The first crop of crystals was 37.25 g, the second was 7.63 g, and the third was 1.81 g, for a total of 46.69 g (92%) of the known title compound.

Note: the heating time for the ketalization is specific for the scale specified. The reaction was conducted in a 1 L round bottom flask immersed in a 190 mm (diameter) \times 100 mm (depth) oil bath. The heating time reflects a balance between full consumption of starting material and over-ketalization.

Compound 26: To a solution of dienone **25** (100 g, 292 mmol) in THF (292 mL, 1.0 M) was added 70% aq. TBHP (80 mL, 484 mmol, 2.0 equiv) and DBU (80 mL, 535 mmol, 1.83 equiv) and the reaction mixture was stirred at ambient temperature for 72 h. The reaction mixture was quenched by the addition of sat. aq. $Na_2S_2O_3$ (300 mL) and stirred vigorously for 2 h. The resulting biphasic mixture was extracted twice with EtOAc (2 × 600 mL). The combined organic phase was washed twice with sat. aq. $Na_2S_2O_3$ (2 × 200 mL) and once with water (200 mL) and sat. aq. NaCl (200 mL). It was then dried over MgSO₄ and concentrated *in vacuo*. The residue so obtained was purified by flash column chromatography (hexanes:EtOAc 2:1) furnishing epoxy enone **26** (85.8 g, 82%) as a white solid. Analytical data are identical to the original.¹

Compound 31: *i*. To a solution of compound **26** (20.2 g, 56 mmol) in CH_2Cl_2 (110 mL 0.5 M) was added NH₃ (112 mL, 2 M in EtOH, 224 mmol, 4 equiv) and Ti(O*i*-Pr)₄ (34 ml, 112 mmol, 2 equiv) The flask was capped tight with a septum and the reaction mixture stirred for 6-7 h at ambient temperature. Then NaBH₄ (2.12 g, 56 mmol, 1 equiv) was added slowly and stirring continued for 1 h. The reaction mixture was diluted with CH_2Cl_2 (110 ml) and poured slowly into a sat. aq. potassium sodium tartrate (200 ml). The resulting biphasic mixture was stirred vigorously for 16 h. Water (200 mL) was added and the phases were separated. The aqueous layer was extracted twice with CH_2Cl_2 (2 x 150 mL). The organic portions were combined, washed with sat. aq. NaCl (150 mL) and dried over MgSO₄ and concentrated *in vacuo*. The resulting off-white foam/solid is sufficiently pure for the formylation step.

ii. The crude amine from the previous reaction was dissolved in CH_2Cl_2 (190 mL, 0.3 M). To this solution were added in the following order at ambient temperature: formic acid (2.35 mL, 62 mmol, 1.1 equiv), 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT, 11.9 g, 68 mmol, 1.2 equiv) and DMAP (2.05 g, 16.8 mmol, 0.3 equiv). The resulting suspension was cooled to 0 °C and *N*-methyl-morpholine (6.8 mL, 62 mmol, 1.1 equiv) was added dropwise *via* syringe. The reaction was warmed to ambient temperature and stirred for 6 h. Then water (200 mL) was added to the reaction and the resulting biphasic mixture extracted twice with CH_2Cl_2 (2 x 150 mL). The combined organic portions were washed with sat. aq. NaCl (150 mL), dried over MgSO₄ and concentrated *in* vacuo. The residue so obtained was purified by flash column chromatography (silica gel, CH_2Cl_2 , acetone 4:1) furnishing formamide **31** (20.5 g, 95 %) as

a white foam. Analytical data are identical to the original.¹

Compounds 34 and 35: $Et_{3}N$ (76 mL, 550 mmol, 10 equiv) and HOAc (31.4 mL, 550 mmol, 10 equiv) were mixed in a sealed tube cooled with a water bath. The resulting solution was stirred for 10 min. Then the epoxide **31** (21.3 g, 55 mmol) was added, the tube sealed with a Teflon screwcap and the reaction heated to 130 °C for 16 h. After cooling to ambient temperature, the mixture was diluted with CH_2Cl_2 (500 mL) and washed with water (200 mL), 1 M HCl (200 mL), sat. aq. NaHCO₃ (200 mL), water (200 mL) and sat. aq. NaCl (200 mL). The organic portion was dried over MgSO₄ and concentrated. Purification of the crude residue by flash column chromatography (CH_2Cl_2 :acetone 6:1 to 2:1) yielded the desired product **34** (15.75 g,) together with the undesired regioisomer **35** (7.85 g, 17.6 mmol) and DMAP (220 mg, 1.8 mmol, 0.1 equiv) in toluene (88 ml, 0.2 M) was heated to reflux for 24 h. The reaction was allowed to cool and concentrated *in vacuo*. Purification of the crude residue by flash column of the crude residue by flash column formatography (CH_2Cl_2 :acetone 6:1 to 2:1) yielded the desired regioisomer **35** (7.85 g, 17.6 mmol) and DMAP (220 mg, 1.8 mmol, 0.1 equiv) in toluene (88 ml, 0.2 M) was heated to reflux for 24 h. The reaction was allowed to cool and concentrated *in vacuo*. Purification of the crude regioisomer **34** (5.0 g, 84% from **31**) along with **35** (2.4 g, 10% from **31**).

Compound 34:

 $R_f = 0.44 \ (1:1 \ \text{CH}_2 \text{Cl}_2: \text{acetone})$

 $[\alpha]_{\rm D} = +54.7 \circ (c = 0.5, \text{CHCl}_3)$

HRMS (m/z): calcd for C₂₄H₃₄NO₇ [M+H]⁺, 448.2330; found, 448.2329;

IR (film) $v_{\text{max}} = 3391, 2973, 2946, 1734, 1654, 1501, 1376, 1238, 1167, 1101, 1032 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 8.09 (s, 1 H), 5.72 (d, J = 9.0 Hz, 1H), 5.64 (d, J = 3.6 Hz, 1H), 5.37 (d, {

= 4.8 Hz, 1H), 4.50 (bs, 1 H), 4.00 (bs, 1 H), 3.94 – 3.88 (m, 2 H), 3.85 – 3.78 (m, 2 H), 3.45 (bs, 1 H),

2.49 (d, J = 12.0 Hz, 1 H), 2.38 – 2.33 (m, 1 H), 2.27 (d, J = 10.8 Hz, 1 H), 2.19 – 2.14 (m, 1 H), 2.04 –

2.01 (m, 4 H), 1.94 – 1.90 (m, 3 H), 1.93 (s, 3 H), 1.84 – 1.80 (m, 1 H), 1.46 (s, 3 H), 1.38 – 1.35 (m, 1

H), 1.14 – 1.08 (m, 1 H), 0.80 (s, 3 H);

¹³C NMR (150 MHz, CDCl₃) δ 210.2, 169.0, 160.2, 144.6, 117.6, 116.2, 75.2, 68.7, 65.3, 64.5, 57.5, 49.3, 49.2 (2 C), 46.9, 39.4, 36.5, 34.3, 32.1, 32.0, 22.2, 21.0, 19.5, 14.9.

Compound 35:

 $R_f = 0.43 (1:1 \text{ CH}_2\text{Cl}_2:\text{acetone})$

 $[\alpha]_{\rm D} = 118 \,^{\circ} (c = 0.5, \text{CHCl}_3)$

HRMS (*m*/*z*): calcd for C₂₄H₃₄NO₇ [M+H]⁺, 448.233; found, 448.2320;

IR (film) $v_{max} = 3380, 2973, 2923, 2845, 1734, 1698, 1664, 1501, 1436, 1375, 1313, 1239, 1053, 1033 cm⁻¹;$

¹H NMR (600 MHz, CDCl₃) δ 8.10 (s, 1 H), 5.66 (d, J = 3.9 Hz, 1H), 5.64 – 5.60 (m, 1 H), 5.37 (d, J = 4.8 Hz, 1 H), 4.54 – 4.49 (m, 1 H), 4.05 – 4.00 (m, 1 H), 3.96 – 3.88 (m, 2 H), 3.86 – 3.77 (m, 2 H), 3.03 (d, J = 4.7 Hz, 1 H), 2.51 (t, J = 11.4 Hz, 1 H), 2.41 – 2.33 (m, 1 H), 2.28 (t, J = 10.4 Hz, 1 H), 2.21 – 2.13 (m, 1 H), 2.08 – 1.97 (m, 3 H), 1.94 (s, 3 H), 1.94 – 1.86 (m, 2 H), 1.86 – 1.79 (m, 1 H), 1.78 (s, 1 H), 1.47 (s, 3 H), 1.41 – 1.34 (m, 1 H), 1.16 – 1.05 (m, 1 H), 0.81 (s, 3 H);

¹³C NMR (150 MHz, CDCl₃) δ 210.1, 168.9, 160.0, 144.7, 117.6, 116.2, 75.2, 68.8, 65.3, 64.6, 57.5, 49.3,

Compound 24: To a solution of compound **34** (3 g, 6.71 mmol, azeotroped with toluene twice) in THF (67 mL, 0.1 M) was added Co(acac)₂ (342 mg, 1.34 mmol, 0.20 equiv) and molecular sieves (4Å, 3.3 g, 1.1 wt equiv) . Fresh distilled PhSiH₃ (3.3 mL, 26.8 mmol, 4 equiv) was added slowly via sringepump over 8 h while bubbling O₂ through the stirred solution. Then the stirring was continued under an O₂ atmosphere (no bubbling) at ambient temperature for approximately 12 h. The suspension was then filtered over Celite[®], to remove the molecular sieves and to the resulting solution was added HC(OMe)₃ (21 mL, 191 mmol, 30 equiv) and *p*-TsOH·H₂O (680 mg, 3.6 mmol, 0.5 equiv). The mixture was stirred until full consumption of the intermediate (8–10 h) as judged by TLC analysis, MeOH (60 mL) was added followed by K₂CO₃ (7.8 g, 56.5 mmol, 8 equiv). The reaction was stirred at ambient temperature for 12 h. The reaction was then diluted with EtOAc (300 mL), washed with 1 M aq. HCl (60 mL), sat. aq. NaHCO₃ (100 mL), H₂O (80 mL), and sat. aq. NaCl (80 mL), dried over MgSO₄, and concentrated *in vacuo*. The residue so obtained was purified by flash column chromatorgraphy (CH₂Cl₂:acetone 5:1) furnishing **24** (1.9 g, 65%). Analytical data are identical to the original.¹

Compound 79: Alcohol **24** (1.01 g, 2.32 mmol) and PhI(OAc)₂ (3.74 g, 11.6 mmol, 5 equiv) were dissolved in CH₂Cl₂ (23 mL, 0.1 M) at room temperature under Ar. After cooling to -30° C, Br₂ (954 µL, 18.6 mmol, 8 equiv) was added. The temperature was maintained between -30 and -36° C with sunlamp irradiation (75 W, 18 inches above surface of cooling bath) for 10 hours. Irradiation was then halted, the reaction was diluted with ice-cold CH₂Cl₂ (200 mL), and the crude mixture was shaken with 10% aq. Na₂S₂O₃ (100 mL) until colorless. The aqueous layer was back-extracted twice with CH₂Cl₂ (2 × 100 mL), dried over MgSO₄, filtered, and concentrated *in vacuo* at 5 °C to about 40 mL. At 0 °C, imidazole (0.79 g, 11.7 mmol, 5 equiv) and TMSCl (1.5 mL, 11.7 mmol, 5 equiv) were added. After 15 minutes, the reaction was diluted with EtOAc (200 mL), washed with water (20 mL), then sat. aq. NaHCO₃ (20 mL), then sat. aq. NaCl (10 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (1:2 EtOAc:hexanes) afforded dibromide **79** (877 mg, 57%) as a white foam. Analytical data are identical to the original.¹

Compound 80: Dibromide **79** (2.3 g, 3.4 mmol) was dissolved in THF (70 mL, 0.05 M) and freshly flame-dried LiCl (719 mg, 17 mmol, 5 equiv) was added, followed by dry DBU (1.0 mL, 6.8 mmol, 2 equiv). The reaction mixture was stirred for 24 hours, at which point it was diluted with EtOAc (100 mL), washed with twice with water (100 mL), and once with brine (100 mL). The aqueous layer was extracted twice with CH_2Cl_2 ; these portions were added to the organic phase, which was dried with MgSO₄, filtered, and concentrated *in vacuo*. Flash colum Chromatography (1:3 EtOAc:hexanes) afforded

bromocylopropane **80** (1.7 g, 85%) as a colorless foam. Analytical data are identical to the original.¹

Compound 76: Bromocyclopropane **80** (1.5 g, 2.6 mmol) was dissolved in dry THF (128 ml, 0.02 M) under Ar and freshly distilled DMPU (14.3 ml) was added. The solution was bubbled with Ar for 30 min, after which SmI₂ (65 ml, 6.5 mmol, 0.1 M in THF, 2.5 equiv) was quickly added. After 10 min, the reaction was cooled to -78° C and a 0.12 M solution of 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) in CH₂Cl₂ (43.3 ml, 5.2 mmol, 2 equiv) was added. The reaction mixture was kept at -78° C over 1 h, at which point it was quenched with sat. aq. NaHCO₃ solution (100 ml). The aqueous layer was extracted four times with EtOAc (4 × 150 mL) and the combined organic portions were dried over MgSO₄, filtered, and concentrated *in vacuo*. Chromatography on silica (1:3 EtOAc:hexanes) furnished **92** as a white foam. **92** was dissolved in dry DMF (26 ml, 0.1 M) and to this solution were added LiBr (4.5 g, 52 mmol, 20 equiv) and Li₂CO₃ (3.8 mg, 52 mmol, 20 equiv). The reaction mixture was stirred at 60 °C for 1 h, at which point it was diluted with Et₂O (400 mL), washed with sat. aq. NaHCO₃ (100 mL) and H₂O (4 × 100 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. Chromatography on silica (1:2 EtOAc:hexanes) afforded dienone **76** (845 mg, 65%) as a white solid. Analytical data are identical to the original.¹

Compound 23: A freshly prepared solution of AlH₃ (34.2 mL, 17.1 mmol, 6 equiv, 0.5 M in THF) was added to dienone **76** (1.46 g, 2.85 mmol) in THF (28.5 mL, 0.1 M) at ambient temperature. After stirring vigorously for 1 h, methanol (28.5 mL) was added dropwise, followed by K_2CO_3 (1.97g, 14.3 mmol, 5 equiv). This suspension was then stirred for 12 h, at which point it was diluted with CH_2Cl_2 (100 mL) and sat. aq. sodium potassium tartrate (100 mL). The organic phase was removed and the aqueous layer extracted three more times with CH_2Cl_2 (3 × 100 mL). Drying over Na_2SO_4 , filtration, concentration *in vacuo*, and yielded **23** (1.0 g, 85%, 1:1 inseparable mixture of diastereomers) as a white foam.

Compound 23 (mixture of diastereomers):

 $R_f = 0.47$ (2:8 NEt₃: EtOAc)

 $[\alpha]_{\rm D} = +74.7 \circ (c = 1.6, \rm{CH}_2\rm{Cl}_2)$

HRMS (m/z): calcd for C₂₃H₃₆NO₆ [M+H]⁺, 422.2537; found, 422.2551;

IR (film) $v_{max} = 3368, 2942, 2878, 1699, 1458, 1303, 1096, 965, 734 \text{ cm}^{-1}$;

Diastereomer 23-1

¹H NMR (600 MHz, CD₃OD) δ 6.19 (s, 1 H), 4.29 – 4.26 (m, 2 H), 4.12 – 4.10 (m, 1 H), 3.95 – 3.90 (m, 4 H), 2.86 – 2.80 (m, 1 H), 2.49 (s, 6 H), 2.37 – 2.10 (m, 4 H), 2.05 – 1.61 (m, 6 H), 1.57 – 1.36 (m, 3 H), 0.96 (s, 3 H);

¹³C NMR (150 MHz, CD₃OD) δ 147.4, 140.8, 132.4, 129.9, 119.8, 83.4, 74.7, 71.7, 71.4, 66.8, 66.3, 65.6, 49.7, 48.9, 43.2, 42.9, 41.3, 39.0, 35.9, 35.2, 25.5, 23.7, 15.0;

Diastereomer 23-2

¹H NMR (600 MHz, CD₃OD) δ 6.03 (s, 1 H), 4.25 – 4.19 (m, 2 H), 4.09 – 4.07 (m, 1 H), 3.99 – 3.80 (m, 4 H), 2.63 – 2.57 (m, 1 H), 2.47 (s, 6 H), 2.31 – 2.09 (m, 4 H), 2.07 – 1.61 (m, 6 H), 1.57 – 1.36 (m, 4 H), 0.81 (s, 3 H);

¹³C NMR (150 MHz, CD₃OD) δ 145.7, 141.1, 130.6, 129.8, 119.7, 83.1, 74.6, 71.5, 71.3, 66.7, 66.4, 65.6, 48.8, 45.2, 43.3, 42.9, 41.4, 40.6, 36.2, 35.5, 25.5, 23.7, 16.1.

Cortistatinone (22): To a solution of **23** (1.02g, 2.42 mmol) in MeCN (484 mL, 0.005 M) was added BiCl₃ (1.52 g, 4.84 mmol, 2 equiv) and the reaction was warmed to 40 °C for 2 h. Then, additional BiCl₃ (762 mg, 2.42 mmol, 1 equiv) was added to the reaction mixture at 40 °C for 30 min. Then, H₂O (150 mL) and BiCl₃ (1.52 g, 4.84 mmol, 2 equiv) was added to the reaction mixture at 40 °C. After 4 h, sat. aq. NaHCO₃ (300 mL) was added to the reaction and the mixture extracted three times with EtOAc (3 × 500 mL). The combined organic portions were washed sat. aq. NaCl (500 mL), dried over Na₂SO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (silica gel, MeOH:CH₂Cl₂:Et₃N 90:10:1) furnishing compound **22** (642 mg, 73%)as a white foam. Analytical data are identical to the original.¹

Compound 101: To a solution of cortistatinone (22) (200 mg, 0.56 mmol) in absolute EtOH (9.3 mL, 0.06 M) were added hydrazine monohydrate (0.28 mL, 5.6 mmol, 10 equiv) and Et₃N (0.78 mL, 5.6 mmol, 10 equiv). The reaction was immersed in a preheated oil bath at 50 °C for 6 h, after which the reaction was allowed to cool and the solvent removed in vacuo. The residue so obtained was dissolved in THF (9.3 mL, 0.06 M), and Et₃N (0.23 mL, 1.68 mmol, 3 equiv) was added. A stock solution of I₂ (283 mg, 1.12 mmol, 2 equiv) in THF (2.83 mL) was prepared and added dropwise to the reaction mixture; addition was halted when the iodine was not decolorized after 30 sec. The reaction was then diluted with EtOAc (50 mL) and washed with sat. aq. Na₂S₂O₃ (50 mL). The aqueous layer was extracted four times with EtOAc (4 × 50 mL). The combined organic portions were washed with sat. aq. NaCl (10 mL), dried over MgSO4, filtered, and concentrated in vacuo to furnish vinyl iodide which was carried forward directly without purification. The residue from the previous reaction (yield assumed to be quantitative) was dissolved in DMSO (9.3 mL, 0.06 M). To this solution was added 7-trimethylstannylisoquinoline (164 mg, 0.56 mmol, 1 equiv), CuCl (554 mg, 5.6 mmol, 10 equiv), LiCl (235 mg, 5.6 mmol, 10 equiv) and Pd(PPh₃)₄ (323 mg, 0.28 mmol, 0.5 equiv). The reaction was degassed by bubbling argon through the solution for 10 min. It was then immersed in a preheated oil bath at 60°C for 1 h. The reaction was then diluted with EtOAc (25 mL) and washed with 5% aq. NH₄OH. The aqueous layer was extracted four times (4×25 ml) with EtOAc. The combined organic portions were washed wth sat. aq. NaCl (25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue so obtained was purified by (silica, NH3 deactivation; 10% MeOH :

CH₂Cl₂) furnishing vinylisoquinoline **101** (145 mg, 55% from cortistatinone **22**) as a yellow foam. Analytical data are identical to the original.¹

(+)-Cortistatin A (1): For this procedure, Raney nickel (1.0 g) was washed with H₂O (3×5 mL), sat. aq. Rochelle's salt (3×5 mL), H₂O (5×5 mL), MeOH (3×5 mL), and H₂O again (3×5 mL, all supernatants were removed with pipette) after which it was stored under H₂O (10 mL). To **101** (10 mg, 63 µmol) in *i*-PrOH (3 mL) and H₂O (0.3 mL), was added the washed Raney nickel (100 mg, 10 wt. equiv, which includes water). The heterogeneous reaction was warmed to 60 °C while stirring vigorously for 30 min, at which point the reaction had progressed to approximately 50% conversion, as judged by LCMS. Removal of the supernatant, followed by washing of the Raney nickel catalyst with 1:1 MeOH:EtOAc (20 mL), and concentration of the combined filtrates yielded a colorless residue, which was purified by HPLC (Eclipse XDB-C8 column, 9.4 mm × 25 cm; gradient = $1\% \rightarrow 30\%$ MeCN:H₂O over 30 min), yielding recovered **26** (15 mg) and (+)-cortistatin A (2.3 mg, 50% conversion, 50% brsm) as a white solid. Analytical data are identical to the original.¹

Compound 27: To a solution of compound **26** (1.00 g, 2.8 mmol) in THF (28 mL, 0.1 M) at -78 °C was added dropwise a solution of L-Selectride (4.2 mL, 1.0 M THF solution, 4.2 mmol, 1.5 equiv). After 30 minutes, 40 mL of sat. aq. NH₄Cl were added at -78 °C. The reaction mixture was allowed to warm to ambient temperature, after which it was diluted H₂O (100 mL) and EtOAc (100 mL) and extracted. The aqueous portion was extracted a second time with EtOAc (50 mL). The combined organic portions were washed with sat. aq. NaCl (100 mL), dried over anhydrous MgSO₄, and concentrated. The residue was purified by column chromatography (1:1 hexanes:EtOAc) furnishing compound **27** (959 mg, 20:1 diastereomeric mixture, 95 %) as a white solid (data reported for major diastereomer only).

 $R_f = 0.24$ (1:1 hexanes:EtOAc)

 $[\alpha]_{\rm D} = +102^{\circ} (c = 0.1, \text{CHCl}_3)$

m.p. = 78–80 °C

HRMS (m/z): calcd for C₂₁H₂₈O₅Na [M+Na]⁺, 383.1829; found, 383.1829;

IR (film) $v_{\text{max}} = 3452, 2970, 2929, 2886, 1703, 1458, 1434, 1384, 1313, 1276, 1228, 1172, 1104, 1038$ cm⁻¹:

¹H NMR (600 MHz, CDCl₃) δ 5.17 – 5.11 (m, 1 H), 4.33 – 4.29 (m, 1 H), 4.02 (d, *J* = 4.3 Hz, 1 H), 3.96 – 3.88 (m, 2 H), 3.85 – 3.78 (m, 2 H), 3.49 (td, *J* = 5.9, 2.5 Hz, 1H), 2.69 (d, *J* = 12.4 Hz, 1 H), 2.32 – 2.18 (m, 2 H), 2.12 – 1.98 (m, 4 H), 1.96 – 1.88 (m, 1 H), 1.86 – 1.74 (m, 4 H), 1.42 – 1.32 (m, 1 H), 1.29 (s, 3 H), 1.15 – 1.06 (m, 1 H), 0.84 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 210.7, 141.4, 118.8, 117.6, 65.4, 64.6 (2 C), 59.9, 57.6, 56.3, 49.8, 49.2, 48.8, 37.3, 37.0, 34.2, 31.8, 31.6, 22.2, 17.9, 14.9.

Compound 29: To a solution of compound **27** (400 mg, 1.1 mmol) in anhydrous CH_2Cl_2 (11 mL, 0.1 M) at ambient temperature were added *p*-toluenesulfonyl chloride (630 mg, 3.3 mmol, 3 equiv), *i*-Pr₂EtN (0.96 mL, 5.5 mmol, 5 equiv), and DMAP (134 mg, 1.1 mmol, 1 equiv). The reaction was allowed to stir at ambient temperature for 16 h, after which it was diluted with 30 mL of H_2O and extracted with EtOAc (3 x 25 mL). The combined organic portions were washed with sat. aq. NaHCO₃ (30 mL) and sat. aq. NaCl (30 mL), dried over MgSO₄. The solvent was removed *in vacuo* and the crude material purified by silica gel flash chromatography (4:1 hexanes:EtOAc) to afford compound **29** (330 mg, 79 %, 9:1 mixture of diastereomers) as a white solid (data reported for major diastereomer only).

 $R_f = 0.35$ (3:1 hexanes:EtOAc)

 $[\alpha]_{\rm D} = -21.0$ ° (c = 0.1, CHCl₃)

m.p. = 138–141 °C

HRMS (m/z): calcd for C₂₁H₂₈ClO₄ [M+H]⁺, 379.1671; found, 379.1671;

IR (film) $v_{max} = 2971, 2938, 2883, 1742, 1703, 1662, 1457, 1437, 1384, 1207, 1174, 1104, 1053, 1042$ cm⁻¹;

¹H NMR (600 MHz, CDCl₃) δ 5.35 – 5.31 (m, 1 H), 4.76 – 4.72 (m, 1 H), 3.96 (d, *J* = 3.9 Hz, 1 H), 3.95 – 3.88 (m, 2 H), 3.85 – 3.78 (m, 2 H), 3.47 – 3.45 (m, 1 H), 2.68 (d, *J* = 12.5 Hz, 1 H), 2.39 – 2.21 (m, 2 H), 2.16 – 1.98 (m, 4 H), 1.96 – 1.76 (m, 4 H), 1.44 (s, 3 H), 1.39 – 1.32 (m, 1 H), 1.15 – 1.05 (m, 1 H), 0.84 (s, 3 H);

¹³C NMR (150 MHz, CDCl₃) δ 210.4, 142.6, 117.6, 115.9, 65.4, 64.6, 57.5, 57.4, 55.0, 51.6, 49.8, 49.2,

48.7, 38.00, 36.9, 34.2, 31.7, 31.6, 22.1, 17.8, 14.9.

Compound 30: To a solution of compound **29** (95 mg, 0.25 mmol) in DMF (2.5 mL, 0.1 M) at ambient temperature was added sodium azide (82 mg, 1.25 mmol, 5 equiv). The reaction was allowed to stir at ambient temperature for 14 h, after which it was diluted with 35 mL of EtOAc The resulting mixture was washed twice with H_2O and sat. aq. NaCl and dried over MgSO₄. The solvent was removed *in vacuo* and the crude material purified by silica gel flash chromatography (3:1 hexanes:EtOAc) to afford compound **30** (91 mg, 94 %, 9:1 mixture of diastereomers) as a white solid.

 $R_f = 0.38$ (3:1 hexanes:EtOAc)

 $[\alpha]_{\rm D} = 167 \circ (c = 0.1, \text{CHCl}_3)$

m.p. = 185–189 °C

HRMS (m/z): calcd for C₂₁H₂₈N₃O₄ [M+H]⁺, 386.2074; found, 386.2076;

IR (film) $v_{\text{max}} = 2971$, 2941, 2884, 2097, 1703, 1669, 1458, 1438, 1383, 1313, 1208, 1174, 1104, 1053, 1040 cm⁻¹;

¹H NMR (600 MHz, CDCl₃) δ 5.17 – 5.13 (m, 1 H), 3.95 – 3.87 (m, 4 H), 3.85 – 3.78 (m, 2 H), 3.56 – 3.52 (m, 1 H), 2.70 (d, *J* = 12.4, 1 H), 2.31 – 2.24 (m, 2 H), 2.21 – 2.15 (m, 1 H), 2.11 – 1.99 (m, 3 H), 1.95 – 1.78 (m, 4 H), 1.39 – 1.34 (m, 1 H), 1.32 (s, 3 H), 1.19 – 1.11 (m, 1 H), 0.84 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 210.7, 144.5, 117.5, 113.5, 65.4, 64.6, 57.9, 57.7, 55.3, 55.1, 49.7, 49.2,

48.6, 37.4, 37.0, 34.1, 32.1, 31.7, 22.2, 17.8, 14.9.

Compound 31: Compound **30** (250 mg, 0.65 mmol) was dissolved THF (13 mL) and H₂O (1.3 mL). PPh₃ (1.7 g, 6.5 mmol, 10 equiv) was added and the reaction stirred at ambient temperature for 5 h. The reaction mixture was filtered through Celite[®] and concentrated *in vacuo*. The residue so obtained was dissolved in EtOCHO (13 mL, 0.5 M) and heated to reflux. After 2 h, the volatiles were removed *in vacuo* and the resulting residue was purified by flash column chromatography (CH₂Cl₂acetone 4:1) furnishing formamide **31** (105 mg, 42 %) as a white foam. Analytical data are identical to the original.¹

Compound 32: Epoxide **31** (50 mg, 0.13 mmol) was dissolved in 1.3 mL TFA. The resulting solution was heated to 60 °C for 14 h. After cooling to ambient temperature, the solution was slowly poured onto 1 M NaOH (25 mL) and the resulting mixture stirred for 1 h. The mixture was extracted three times with CH_2Cl_2 (3 x 15 mL). The combined organic portions were washed with sat. aq. NaCl (25 mL), dried over $MgSO_4$ and concentrated *in* vacuo. The residue so obtained was purified by flash column chromatography (1:1 CH₂Cl₂:acetone) furnishing compound **32** (37 mg, 93 %) as a white foam.

$$R_f = 0.41 \ (1:1 \ \text{CH}_2\text{Cl}_2:\text{acetone})$$

$$[\alpha]_{\rm D} = 79.1 \,^{\circ} (c = 0.5, \, \text{CHCl}_3)$$

HRMS (*m*/*z*): calcd for C₂₀H₂₆NO₄ [M+H]⁺, 344.1856; found, 344.1842;

IR (film) $v_{\text{max}} = 3342, 2961, 2925, 2850, 1737, 1664, 1533, 1450, 1371, 1252, 1212, 1179, 1103, 1008$ cm⁻¹;

¹H NMR (600 MHz, CDCl₃) δ 8.29 (s, 1 H), 5.81 (d, *J* = 6.3, 1 H), 5.19 (s, 1 H), 4.45 – 4.37 (m, 1 H), 4.32 (t, *J* = 8.1 Hz, 1 H), 3.47 (dd, *J* = 10.2, 8.4 Hz, 1 H), 2.54 (dd, *J* = 19.5, 8.9 Hz, 1 H), 2.35 – 2.15 (m, 5 H), 2.12 – 2.03 (m, 3 H), 1.71 – 1.56 (m, 3 H), 1.49 – 1.41 (m, 1 H), 1.26 (s, 3 H), 0.99 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 219.7, 162.0, 146.8, 144.4, 118.3, 115.6, 92.8, 75.1, 50.1, 49.5, 48.1, 48.0,

37.0, 34.6, 31.3, 31.0, 29.6, 24.8, 21.8, 14.6.

Compound 36: *i*. To a solution of compound **29** (95 mg, 0.25 mmol) in acetone (2.5 mL, 0.1 M) were added K_2CO_3 (69 mg, 0.5 mmol, 2 equiv) and thiophenol (39 μ L, 0.38 mmol, 1.5 equiv). The resulting mixture was heated to 65 °C for 15 h. After cooling to ambient temperature, the solvent was removed *in vacuo*. The obtained residue was taken up in H₂O and extracted three times with EtOAc (3 x 15 mL). The combined organic portions were washed with sat. aq. NaCl and dried over MgSO₄. The solvent was removed *in vacuo* and the crude material purified by silica gel flash chromatography (3:1 hexanes:EtOAc) to afford compound **SI-2** (102 mg, 96 %, 9:1 mixture of diastereomers) as a white solid. *ii*. A solution of compound **SI-2** (100 mg, 0.22 mmol) in CH₂Cl₂ (2.2 mL, 0.1 M) was cooled to 0 °C. *m*-CPBA (60 mg, purity 70 %, 0.24 mmol, 1.1 equiv) was added and the reaction was stirred for at 0 °C. After 1 h the mixture was poured onto 10 % aqueous Na₂S₂O₃ and the resulting biphasic mixture was extracted three times with EtOAc (3 x 15 mL). The combined organic portions were washed with a substitute organic portion was stirred for at 0 °C. After 1 h the mixture was poured onto 10 % aqueous Na₂S₂O₃ and the resulting biphasic mixture was extracted three times with EtOAc (3 x 15 mL). The combined organic portions were washed with sat. aq. NaHCO₃ (30 mL), sat. aq. NaCl (30 mL) and dried over MgSO₄. The solvent was removed *in vacuo* and

the crude material purified by silica gel flash chromatography (3:1 hexanes:EtOAc) to afford a mixture of diastereomers **36** (98 mg, 94 %) as a white foam (data reported for major diastereomer only).

 $R_f = 0.21$ (1:1 EtOAc:hexanes)

 $[\alpha]_{\rm D} = +118.5 \circ (c = 0.2, \text{CH}_2\text{Cl}_2)$

HRMS (m/z): calcd for C₂₇H₃₃O₅S [M+H]⁺, 469.2043; found, 469.2034;

IR (film) $v_{\text{max}} = 2973, 2938, 2880, 1703, 1443, 1313, 1171, 1103, 1044, 1019, 753, 690 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 7.83 – 7.80 (m, 2 H), 7.56 – 7.53 (m, 3 H), 5.67 – 5.64 (m, 1 H), 3.96 – 3.87 (m, 3 H), 3.86 – 3.77 (m, 3 H), 3.52 (dd, *J* = 5.9, 2.9 Hz, 1 H), 2.77 – 2.72 (m, 1 H), 2.70 (d, *J* = 12.4, 1 H), 2.32 – 2.22 (m, 2 H), 2.12 – 1.98 (m, 3 H), 1.94 – 1.74 (m, 4 H), 1.39 – 1.33 (m, 1 H), 1.32 (s, 3 H), 1.23 – 1.12 (m, 1 H), 0.84 (s, 3 H);

¹³C NMR (150 MHz, CDCl₃) δ 210.7, 144.7, 142.0, 131.7, 129.2 (2 C), 125.0 (2 C), 117.5, 110.0, 65.4, 64.6, 64.5, 58.8, 57.8, 49.9, 49.5, 49.2, 48.6, 37.4, 37.0, 34.1, 32.0, 31.9, 22.1, 17.8, 15.0.

Compound 38: *i*. A solution of compound **27** (200 mg, 0.55 mmol) in CH_2Cl_2 (5.5 mL, 0.1 M) was cooled to 0 °C. *m*-CPBA (190 mg, purity 70 %, 0.24 mmol, 1.4 equiv) was added and the reaction was stirred for at 0 °C. After 1 h the mixture was poured onto 10 % aqueous $Na_2S_2O_3$ (30 mL) and the resulting biphasic mixture was extracted three times with EtOAc (3 x 25 mL). The combined organic portions were washed with sat. aq. NaHCO₃ (30 mL), sat. aq. NaCl (30 mL), dried over MgSO₄ and the volatiles removed *in vacuo* to yield the crude *bis*-epoxide **SI-3**.

ii. The aforementioned crude bis-epoxide SI-3 was dissolved in CH₂Cl₂ (11 mL, 0.05 M). DMP (257 mg,

0.61 mmol, 1.1 equiv) was added and the mixture stirred for 2 h at ambient temperature. Then the mixture was poured onto 10 % aq. Na₂S₂O₃ (30 mL) and the resulting biphasic mixture was extracted three times with EtOAc (3 x 25 mL). The combined organic portions were washed with sat. aq. NaHCO₃ (30 mL), sat. aq. NaCl (30 mL), dried over MgSO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (hexanes:EtOAc 2:1) furnishing compound **38** (185 mg, 90 % over two steps) as a white foam.

 $R_f = 0.41$ (1:1 EtOAc:hexanes)

 $[\alpha]_{\rm D} = +59^{\circ} (c = 0.1, \text{CH}_2\text{Cl}_2)$

HRMS (m/z): calcd for C₂₁H₂₇O₆ [M+H]⁺, 375.1802; found, 375.1800;

IR (film) $v_{\text{max}} = 2944, 2878, 1702, 1173, 1105, 1033, 922, 771 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 4.26 (d, *J* = 4.3 Hz, 1 H), 3.98 – 3.90 (m, 2 H), 3.87 – 3.79 (m, 2 H), 3.36 (dd, *J* = 4.3, 2.5 Hz, 1 H), 3.25 (d, *J* = 2.5 Hz, 1 H), 2.86 (d, *J* = 11.4 Hz, 1 H), 2.79 (d, *J* = 12.1 Hz, 1 H), 2.26 – 2.18 (m, 2 H), 2.13 (d, *J* = 12.1 Hz, 1 H), 2.05 (ddd, *J* = 15.0, 11.8, 3.5 Hz, 1 H), 1.99 – 1.92 (m, 2 H), 1.89 – 1.81 (m, 2 H), 1.57 (ddd, *J* = 15.0, 11.8, 3.5 Hz, 1 H), 1.41 – 1.32 (m, 4 H), 1.04 – 0.99 (m, 1 H), 0.863 (s, 3 H);

¹³C NMR (150 MHz, CDCl₃) δ 210.5, 200.4, 117.3, 73.8, 65.4, 64.6, 64.3, 63.1, 56.6, 55.8, 49.6, 49.5, 48.6, 36.7, 36.7, 34.2, 30.6, 28.6, 22.1, 17.0, 15.0.

Compund 40: To a solution of compound **31** (100 mg, 0.26 mmol) in THF (5.5 mL, 0.05 M) was added Co(acac)₂ (13.4 mg, 52 μ mol, 0.2 equiv). The reaction mixture was saturated with O₂ by bubbling O₂

through the stirred solution for 30 min. Then freshly distilled PhSiH₃ (0.15 mL, 1.1 mmol, 4 equiv) was added over 5 min. Stirring was continued under an static O₂-atmosphere (no bubbling) for 12 h. The reaction was then diluted with EtOAc (25 mL), washed with 1 M aq. HCl (10 mL), sat. aq. NaHCO₃ (10 mL), H₂O (10 mL), and sat. aq. NaCl (10 mL), dried over MgSO₄, and concentrated *in vacuo*. The residue so obtained was purified by flash column chromatography (CH₂Cl₂:acetone 5:1) furnishing **40** (79 mg, 75%) as a white foam.

 $R_f = 0.31$ (2:1 CH₂Cl₂:acetone)

 $[\alpha]_{\rm D} = +22.5 \circ (c = 0.2, \text{CH}_2\text{Cl}_2)$

m.p. = 134–138 °C

HRMS (*m*/*z*): calcd for C₂₂H₃₂NO₆ [M+H]⁺, 406.2224; found, 406.2233;

IR (film) $v_{\text{max}} = 3324, 2947, 2875, 1702, 1671, 1526, 1385, 1167, 1056, 1028, 753 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1 H), 5.89 (d, *J* = 8.9 Hz, 1 H), 4.84 (dd, *J* = 17.1, 9.0 Hz, 1 H), 3.95 – 3.89 (m, 2 H), 3.84 – 3.79 (m, 2 H), 3.51 (d, *J* = 3.8 Hz, 1 H), 3.34 (s, 1 H), 2.65 (d, *J* = 13.1 Hz, 1 H), 2.27(d, *J* = 11.4 Hz, 1 H), 2.12(d, *J* = 13.0 Hz, 1 H), 2.06 – 1.95 (m, 2 H), 1.94 – 1.87 (m, 1 H), 1.82 – 1.76 (m, 1 H), 1.74 (s, 1 H), 1.72 – 1.63 (m, 3 H), 1.61 – 1.42 (m, 3 H), 1.39 – 1.30 (m, 1 H), 1.27 (s, 3 H), 1.12 – 1.02 (m, 1 H), 0.81 (s, 3 H);

¹³C NMR (150 MHz, CDCl₃) δ 209.9, 160.8, 117.7, 72.7, 65.4, 64.6, 61.6, 57.1, 56.9, 49.0, 49.0, 48.5, 43.0, 38.0, 37.0, 35.7, 34.1, 34.0, 27.9, 22.2, 15.0, 14.5.

Compound 45: Compound **34** (250 mg, 0.56 mmol) was dissolved in 5.6 mL anhydrous benzene (0.1 M) and the temperature adjusted to 20 °C (waterbath). Burgess reagent (148 mg, 0.62 mmol, 1.1 equiv) was added and the reaction stirred at 20 °C for 30 min. The reaction was diluted with EtOAc (20 mL) and washed with sat. aq. NaHCO₃. The aqueous phase was extracted two times with EtOAc (2 x 25 mL). The combined organic portions were washed sat. aq. NaCl (20 mL), dried over MgSO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (1:1 hexanes:EtOAc) furnishing compound **45** (206 mg, 86 %) as a white foam.

 $R_f = 0.35$ (1:1 EtOAc:hexanes)

 $[\alpha]_{\rm D} = +159^{\circ} (c = 0.1, \text{CH}_2\text{Cl}_2)$

HRMS (m/z): calcd for C₂₄H₃₂NO₆ [M+H]⁺, 430.2224; found, 430.2224;

IR (film) $v_{\text{max}} = 2948, 2140, 1748, 1702, 1372, 1220, 1052, 1033, 772 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 5.38 (d, *J* = 3.5 Hz, 1 H), 5.24 (dd, *J* = 5.4, 3.6 Hz, 1 H), 4.35 (t, *J* = 5.6 Hz, 1 H), 4.07 (dd, *J* = 6.4, 3.4 Hz, 1 H), 3.96 – 3.88 (m, 2 H), 3.89 – 3.77 (m, 2 H), 2.72 – 2.68 (m, 2 H), 2.64 (d, *J* = 11.3 Hz, 1 H), 2.35 – 2.26 (m, 1 H), 2.19 – 2.15 (m, 1 H), 2.13 – 2.00 (m, 6 H), 1.96 – 1.87 (m, 3 H), 1.85 – 1.79 (m, 1 H), 1.40 – 1.32 (m, 4 H), 1.26 – 1.18 (m, 1 H), 0.82 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 213.1, 169.5, 156.6, 146.4, 117.5, 112.9, 71.7, 71.5, 65.4, 64.6, 57.4, 50.3, 49.5, 49.4, 48.8, 41.4, 36.9, 34.2, 31.9, 31.8, 22.2, 20.9, 19.3, 15.0.

Compound 48: To a degassed solution of compound **45** (115 mg, 0.27 mmol) in anhydrous benzene (5 mL, 0.05 M) was added Cu₂O (39 mg, 0.27 mmol, 1 equiv). The resulting mixture was heated to 80 °C for 1 h. After cooling to ambient temperature the mixture was diluted with CH_2Cl_2 (15 mL) and filtered through a layer of Celite[®]. Purification of the crude residue obtained after concentration *in vacuo* was performed by flash column chromatography (CH₂Cl₂:acetone 7:1) yielded compound **48** (72 mg, 63 %).

 $R_f = 0.48$ (4:1 CH₂Cl₂:acetone)

 $[\alpha]_{\rm D} = +120^{\circ} (c = 0.2, \text{CH}_2\text{Cl}_2)$

HRMS (m/z): calcd for C₂₄H₃₂NO₆ [M+H]⁺, 430.2224; found, 430.2223;

IR (film) $v_{\text{max}} = 3386, 2946, 1738, 1703, 1644, 1371, 1235, 1175, 1104, 754 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 6.82 (s, 1 H), 5.71 (d, *J* = 6.1 Hz, 1 H), 5.22 (dd, *J* = 4.2, 2.8 Hz, 1 H), 5.15 – 5.11 (m, 1 H), 3.96 – 3.87 (m, 2 H), 3.85 – 3.79 (m, 3 H), 2.65 (d, *J* = 12.5 Hz, 1 H), 2.31 – 2.23 (m, 1 H), 2.17 – 2.10 (m, 2 H), 2.08 (s, 1 H), 2.06 (s, 3 H), 2.04 – 1.98 (m, 2 H), 1.97 – 1.85 (m, 3 H), 1.84 – 1.77 (m, 1 H), 1.41 – 1.32 (m, 4 H), 1.11 – 1.02 (m, 1 H), 0.86 – 0.81(s, 3 H);

¹³C NMR (150 MHz, CDCl₃) δ 210.4, 169.7, 148.9, 142.9, 120.4, 117.6, 74.6, 66.1, 65.4, 64.6, 58.1, 49.3, 49.2, 48.9, 47.5, 43.3, 36.3, 34.2, 32.1, 31.2, 22.2, 21.1, 18.6, 15.0.

Compound 49: To a solution of compound **48** (65 mg, 0.15 mmol) in THF (3.0 mL, 0.05 M) was added Mn(acac)₂ (7.6 mg, 30 μ mol, 0.2 equiv). The reaction mixture was saturated with O₂ by bubbling O₂ through the stirred solution for 30 min. Then, freshly distilled PhSiH₃ (74 μ L, 0.6 mmol, 4 equiv) was added at once. The mixture was heated to 50 °C. Stirring was continued at this temperature under an

static O_2 -atmosphere (no bubbling) for 6 h. The reaction was then diluted with EtOAc (15 mL), washed with 1 M aq. HCl (10 mL), sat. aq. NaHCO₃ (10 mL), H₂O (10 mL), and sat. aq. NaCl (10 mL), dried over MgSO₄, and concentrated *in vacuo*. The residue so obtained was purified by flash column chromatography (CH₂Cl₂:acetone 4:1) furnishing **49** (52 mg, 78%) as a white foam.

 $R_f = 0.28 (4:1 \text{ CH}_2\text{Cl}_2:\text{acetone})$ $[\alpha]_D = +13 \circ (c = 0.2, \text{ CH}_2\text{Cl}_2)$

IR (film) $v_{\text{max}} = 1744, 1701, 1236, 1175, 1109, 755 \text{ cm}^{-1};$

HRMS (m/z): calcd for C₂₄H₃₄NO₇ [M+H]⁺, 448.2335; found, 448.2333;

¹H NMR (600 MHz, CDCl₃) δ 5.41 (s, 1 H), 5.32 (s, 1 H), 4.72 – 4.68 (m, 1 H), 3.97 – 3.88 (m, 2 H), 3.84 – 3.78 (m, 2 H), 3.31 (d, *J* = 11.4 Hz, 2 H), 2.70 (d, *J* = 12.5 Hz, 1 H), 2.22 – 2.15 (m, 2 H), 2.09 (s, 3 H), 2.07 – 1.99 (m, 3 H), 1.96 – 1.89 (m, 1 H), 1.88 – 1.79 (m, 3 H), 1.72 – 1.63 (m, 1 H), 1.55 – 1.47 (m, 2 H), 1.42 – 1.29 (m, 2 H), 1.25 (s, 3 H), 0.80 (s, 3 H);

¹³C NMR (150 MHz, CDCl₃) δ 212.7, 170.4, 118.6, 98.2, 75.7, 72.8, 72.3, 66.3, 65.5, 54.0, 50.7, 50.3, 49.7, 47.9, 40.0, 36.3, 35.1, 33.1, 32.0, 25.6, 23.0, 22.1, 16.0, 15.8.

Compound 52: To a solution of compound **34** (112 mg, 0.25 mmol) in THF (5.0 mL, 0.05 M) was added $Co(acac)_2$ (12.8 mg, 50 μ mol, 0.2 equiv). The reaction mixture was saturated with O_2 by bubbling O_2 through the stirred solution for 30 min. Then freshly distilled PhSiH₃ (0.14 mL, 1.0 mmol, 4 equiv) was added over 5 min. Stirring was continued under an static O_2 -atmosphere (no bubbling) for 12 h. The reaction was then diluted with EtOAc (25 mL), washed with 1 M aq. HCl (10 mL), sat. aq. NaHCO₃ (10

SI-30

mL), H_2O (10 mL), and sat. aq. NaCl (10 mL), dried over MgSO₄, and concentrated *in vacuo*. The residue so obtained was purified by flash column chromatography (CH₂Cl₂:acetone 3:1) furnishing **52** (99 mg, 85%) as a white foam.

 $R_f = 0.21 (90:10:2 \text{ CH}_2\text{Cl}_2:\text{MeOH:Et}_3\text{N})$ $[\alpha]_D = -19 \circ (c = 0.1, \text{CH}_2\text{Cl}_2)$

HRMS (m/z): calcd for C₂₄H₃₆NO₈ [M+H]⁺, 466.2435; found, 466.2432;

IR (film) $v_{\text{max}} = 3388, 2942, 2879, 1735, 1702, 1665, 1503, 1432, 1382, 1239, 1175, 1112, 1050, 771 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 8.06 (s, 1 H), 5.13 – 5.07 (m, 1 H), 4.55 – 4.51 (m, 1 H), 4.30 – 4.20 (m, 2 H), 3.96 – 3.88 (m, 2 H), 3.86 – 3.78 (m, 2 H), 2.91 (d, *J* = 11.3 Hz, 1 H), 2.71 (d, *J* = 12.5 Hz, 1 H), 2.22 – 2.11 (m, 2 H), 2.07 (s, 3 H), 2.05 – 1.98 (m, 2 H), 1.96 – 1.85 (m, 2 H), 1.87 – 1.78 (m, 3 H), 1.69 – 1.50 (m, 4 H), 1.46 – 1.38 (m, 1 H), 1.37 – 1.30 (m, 1 H), 1.19 (s, 3 H), 0.78 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 212.2, 170.3, 160.7, 117.7, 75.6, 75.4, 73.4, 65.4, 64.6, 52.0, 49.7, 49.5, 49.0, 44.9, 41.4, 35.9, 35.6, 34.2, 33.8, 25.3, 22.1, 21.3, 16.2, 15.0.

Compound 72: *i*. Alcohol **24** (103 mg, 0.24 mmol) and PhI(OAc)₂ (153 mg, 0.47 mmol, 2 equiv) were dissolved in CH₂Cl₂ (2.4 mL, 0.1 M) at room temperature under Ar. After cooling to -10 °C, Br₂ (19 µL, 0.72 mmol, 3 equiv) was added and the reaction mixture was irradiated with a sunlamp (100 W) for 5 min. Irradiation was then halted, the reaction was diluted with ice-cold CH₂Cl₂ (30 mL), and the crude mixture was washed with 10% Na₂S₂O₃ (50 mL) until colorless. The aqueous layer was back-extracted twice with CH₂Cl₂ (20 mL), dried with MgSO₄, filtered, and concentrated *in vacuo* at 5 °C to about 10

mL. At 0 °C, imidazole (82 mg, 1.2 mmol, 5 equiv) and TMSCl (152 μ L, 1.2 mmol, 5 equiv) were added. After 15 minutes, the reaction was diluted with EtOAc (50 mL), washed with water (20 mL), then NaHCO₃ (sat. aq.) (20 mL), then brine, dried with MgSO₄, filtered, and concentrated *in vacuo*. Chromatography on silica (2:5 EtOAc:hexanes) afforded bromide **70** (107 mg, 77%) as a white foam. *ii*. bromide **70** (207 mg, 0.19 mmol) was dissolved in THF (3.8 mL, 0.05 M) and freshly flame-dried LiCl (40 mg, 0.95 mmol, 5 equiv) was added, followed by dry DBU (57 μ L, 0.38 mmol, 2 equiv). The reaction mixture was stirred for 24 hours, at which point it was diluted with EtOAc (30 mL), washed with twice with water (10 mL), and once with brine (10 mL). The aqueous layer was extracted twice with CH₂Cl₂ (2 × 20 mL); these portions were added to the organic phase, which was dried with MgSO₄, filtered, and concentrated *in vacuo*. Chromatography on silica (1:2 EtOAc:hexanes) afforded cylopropane **72** (79 mg, 83%) as a colorless foam.

 $R_f = 0.41$ (1:1 EtOAc:hexanes)

 $[\alpha]_{\rm D} = +47 \circ (c = 0.1, \text{CH}_2\text{Cl}_2)$

HRMS (*m*/*z*): calcd for C₂₆H₃₈NO₇Si [M+H]⁺, 504.2412; found, 504.2406;

IR (film) $v_{\text{max}} = 2950, 2880, 1682, 1425, 1253, 1123, 1008, 844, 757 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 8.20 (s, 1 H), 5.81 (s, 1H), 4.57 (brs, 1 H), 4.12 (d, *J* = 2.3 Hz, 1 H), 3.98 – 3.80 (m, 4 H), 2.72 (dd, *J* = 15.2, 0.9 Hz, 1H), 2.34 (d, *J* = 15.2 Hz, 1H), 2.22 (dd, *J* = 13.1, 2.4 Hz, 1H), 2.21 – 2.15 (m, 1 H), 2.11 – 2.07 (m, 1 H), 2.00 – 1.90 (m, 2 H), 1.89 – 1.81 (m, 3 H), 1.79 (dd, *J* = 13.0, 3.3 Hz, 1H), 1.64 – 1.50 (m, 2 H), 1.43 – 1.29 (m, 3 H), 0.91 (s, 3 H), 0.87 (d, *J* = 4.9 Hz, 1H), 0.71 (s, 9H);

¹³C NMR (150 MHz, CDCl₃) δ 209.4, 157.7, 118.3, 96.9, 72.8, 70.1, 67.6, 65.4, 64.6, 50.6, 49.7, 47.3, 46.1, 37.9, 36.5, 33.8, 33.6, 32.4, 30.7, 27.0, 24.2, 22.1, 15.2, -0.1 (3 C).

Compound 73: A freshly prepared solution of AlH₃ (2.2 mL, 1.1 mmol, 5 equiv, 0.5 M in THF) was added to **72** (51 mg, 0.11 mmol) in THF (1.1 mL, 0.1 M) at ambient temperature. After stirring vigorously for 1 h, methanol (0.6 mL) was added dropwise, followed by K_2CO_3 (60 mg, 0.44 mmol, 4 equiv). This suspension was then stirred for 12 h. Then, the reaction mixture was diluted with CH₂Cl₂ (30 mL) and sat. aq. sodium potassium tartrate (10 mL). The organic phase was removed and the aqueous layer extracted two more times with CH₂Cl₂ (30 mL). Drying over MgSO₄, filtration, concentration *in vacuo*, and chromatography on silica (100:10:1 MeOH:CH₂Cl₂:NH₃H₂O) yielded **73** (34 mg, 74%) as white foam.

 $R_f = 0.41 (90:10:2 \text{ CH}_2\text{Cl}_2:\text{MeOH: NH}_3\text{H}_2\text{O})$

 $[\alpha]_{\rm D} = +34^{\circ} (c = 0.5, \rm CH_2Cl_2)$

HRMS (m/z): calcd for C₂₃H₃₈NO₆ [M+H]⁺, 424.2694; found 424.2696;

IR (film) $v_{max} = 3398, 2936, 2875, 2783, 1456, 1165, 1100, 1054, 1038, 967, 897 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CD₃OD) δ 4.27 – 4.25 (m, 1 H), 3.87 – 3.75 (m, 5 H), 3.47 – 3.43 (m, 1 H), 2.90 – 2.85 (m, 1 H), 2.50 (s, 6 H), 2.18 – 2.03 (m, 3 H), 1.98 – 1.89 (m, 2 H), 1.82 – 1.65 (m, 3 H), 1.56 – 1.40 (m, 5 H), 1.32 – 1.24 (m, 1 H), 1.07 (s, 3 H), 0.88 (d, *J* = 5.6 Hz, 1 H), 0.74 (d, *J* = 5.6 Hz, 1 H); ¹³C NMR (150 MHz, CD₃OD) δ 120.8, 81.0, 73.6, 73.2, 72.9, 66.1, 65.6, 65.3, 64.4, 49.3, 46.9, 42.2, 38.1, 35.6, 34.9, 34.7, 34.6, 32.9, 31.9, 24.1, 21.3, 20.2, 17.2.

Compound 75: Cyclopropane **72** (50 mg, 0.1 mmol) was dissolved in CH_3CN (2 mL, 0.05 M) under Ar and freshly distilled DMPU (0.22 mL) was added. The solution was bubbled with Ar for 10 min, after which SmI_2 (3.0 mL, 0.3 mmol, 3.0 equiv, 0.1 M in THF) was quickly added. After stirring for 10 min at ambient temperature sat. aq. NH_4Cl (10 mL) was added and the biphasic mixture extracted three times with EtOAc (3 x 15 mL). The combined organic portions were washed sat. aq. NaCl (30 mL), dried over $MgSO_4$ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (1:1 hexanes:EtOAc) furnishing compound **75** (42 mg, 84 %) as a white foam (data report for major diastereomer only).

 $R_f = 0.41$ (1:1 EtOAc:hexanes) $[\alpha]_D = +27^{\circ} (c = 0.2, CH_2Cl_2)$

HRMS (m/z): calcd for C₂₆H₄₀NO₇Si [M+H]⁺, 506.2568; found, 506.2580;

IR (film) $\nu_{max} = 3360, 2952, 2884, 1711, 1679, 1431, 1319, 1254, 1124, 1030, 1004, 876, 844, 757 cm⁻¹;$ $¹H NMR (600 MHz, CDCl₃) <math>\delta$ 8.18 (s, 1 H), 5.78 (s, 1 H), 4.50 (s, 1 H), 4.05 – 3.75 (m, 4 H), 2.74 – 2.60 (m, 2 H), 2.26 (d, J = 13.6, 1 H), 2.17 – 1.95 (m, 6 H), 1.94 – 1.80 (m, 4 H), 1.76 – 1.65 (m, 2 H), 1.54 – 1.21 (m, 5 H), 0.79 (s, 3 H), 0.19 (s, 9 H);

¹³C NMR (150 MHz, CDCl₃) δ 211.5, 176.6, 157.5, 117.6, 96.9, 77.5, 66.7, 65.9, 65.4, 64.5, 59.5, 49.4, 48.5, 47.5, 47.0, 43.9, 41.0, 33.7, 29.7, 27.5, 25.0, 22.5, 15.2, - 0.1 (3 C).

Compound 77: *i*. Cyclopropane **72** (50 mg, 0.1 mmol) was dissolved in CH₃CN (1.8 mL, 0.05 M) under Ar and freshly distilled DMPU (0.2 mL) was added. The solution was bubbled with Ar for 10 min, after which SmI₂ (3.0 mL, 0.3 mmol, 3.0 equiv, 0.1 M in THF) was quickly added. After stirring for 10 min at ambient temperature the mixture was cooled to 0 °C. PhSeBr (2 mL, 0.4 mmol, 4 equiv, 0.2 M in CH₃CN) was added and stirring was continued for 30 min at 0 °C and then for 1 h at ambient temperature. Sat. aq. NaHCO₃ (15 mL) was added to the reaction and the mixture extracted three times with EtOAc (3 x 15 mL). The combined organic portions were washed sat. aq. NaCl, dried over MgSO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (silica gel, hexane/EtOAc 1:1) furnishing compound **SI-4** (43 mg) as a white foam.

ii. A solution of compound **SI-4** (43 mg) in CH₃Cl (3 mL) and sat. aq. NH₄Cl (1 mL) was cooled to 0 °C. H_2O_2 (30% aqueous solution, 1 mL) was added dropwise. Stirring was continued at this temperature for 30 min. The reaction was diluted with H₂O and extracted three times with CH₂Cl₂ (3 x 15 mL). The combined organic portions were washed sat. aq. NaCl, dried over MgSO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (1:1 hexanes:EtOAc) furnishing compound **77** (28 mg, 56 % over two steps) as a white solid.

 $R_f = 0.31$ (1:1 EtOAc:hexanes) $[\alpha]_D = +37.3 \circ (c = 0.3, CH_2Cl_2)$

m.p. = 93–96 °C

HRMS (m/z): calcd for C₂₆H₃₈NO₇Si [M+H]⁺, 504.2412; found, 504.2414;

IR (film) $v_{max} = 2950, 2890, 1660, 1616, 1427, 1253, 1124, 1081, 1031, 1001, 874, 844, 753 \text{ cm}^{-1}$;

SI-35

¹H NMR (600 MHz, CDCl₃) δ 8.18 (s, 1 H), 5.76 (s, 1 H), 4.56 (s, 1 H), 4.10 – 3.81 (m, 4 H), 3.08 (s, 1 H), 2.88 (d, *J* = 15.1 Hz, 1 H), 2.71 (d, *J* = 13.0 Hz, 1 H), 2.62 (d, *J* = 16.1 Hz, 1 H), 2.41 – 2.21 (m, 3 H), 2.20 – 2.01 (m, 3 H), 2.20 – 1.90 (m, 2 H), 1.70 – 1.60 (m, 2 H), 1.44 (t, *J* = 13.4 Hz, 1 H), 0.86 (s, 3 H), 0.18 (s, 9 H);

¹³C NMR (150 MHz, CDCl₃) δ 197.8, 176.6, 160.0, 157.5, 136.3, 117.7, 96.4, 77.6, 75.3, 66.5, 65.5, 64.6, 48.5, 47.3, 46.5, 43.9, 37.1, 33.3, 27.2, 24.2, 23.7, 22.5, 14.7, - 0.1 (3 C).

Compound 89: *i*. compound **80** (25 mg, 42 μ mol) was dissolved in THF (0.4 M LiCl in THF solution, 2.1 ml) under Ar. The solution was bubbled with Ar for 10 min, after which SmI₂ (1.3 mL, 0.13 mmol, 2.5 equiv, 0.1 M in THF) was quickly added. After stirring for 5 min at ambient temperature, sat. aq. NaHCO₃ (15 mL) was added to the reaction and the mixture extracted three times with EtOAc (3 x 15 mL). The combined organic portions were washed sat. aq. NaCl (30 mL), dried over MgSO₄ and the volatiles removed *in vacuo*. The compound **88** was used in crude form for the next reaction directly.

ii. **88** was was dissolved in MeOH (2.1 ml) and NaBH₄ (1.6 mg, 44 μ mol, 1.05 equiv) was added. After stirring for 5 min at ambient temperature, sat. aq. NaHCO₃ (15 mL) was added to the reaction and the mixture extracted three times with EtOAc (3 x 15 mL). The combined organic portions were washed sat. aq. NaCl, dried over MgSO₄ and the volatiles removed *in vacuo*. The residue was then dissolved in CH₂Cl₂ (2.1 ml) and pyridine (10 μ L, 0.126 mmol, 3 equiv) was added. At 0 °C, SOCl₂ (5 μ L, 63 μ mol, 1.5 equiv) was added into reaction mixture and then warmed up to ambient temperature for 30 min. Sat. aq. NaHCO₃ (15 mL) was added to the reaction and the mixture extracted three times with EtOAc (3 x 15

mL). The combined organic portions were washed sat. aq. NaCl (30 mL), dried over MgSO₄ and the volatiles removed *in vacuo*.

iii. A freshly prepared solution of AlH₃ (0.42 mL, 0.2 mmol, 5 equiv, 0.5 M in THF) was added to abovementioned residue in THF (2.1 mL) at ambient temperature. After stirring vigorously for 30 min, the reaction mixture was diluted with CH_2Cl_2 (25 mL) and sat. aq. sodium potassium tartrate (10 mL). The organic phase was removed and the aqueous layer extracted two more times with CH_2Cl_2 (10 mL). Drying over MgSO₄, filtration, concentration *in vacuo*, and chromatography on silica (100:10:1 MeOH:CH₂Cl₂:NH₃H₂O) yielded **89** (4 mg, 23% overall yield) as a white foam.

 $R_f = 0.35$ (MeOH: CH₂Cl₂:NH₄OH = 100:10:1)

 $[\alpha]_{\rm D} = +1.6$ ° (c = 0.12, CH₂Cl₂)

HRMS (m/z): calcd for C₂₃H₃₆NO₅ [M+H]⁺, 406.2588; found, 406.2599;

IR (film) $v_{\text{max}} = 3367, 2890, 1458, 1174, 1101, 1038, 1027, 951 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 6.18 (s, 1 H), 5.85 (t, *J* = 2.5 Hz, 1 H), 4.32 (brs, 1 H), 4.16 (d, *J* = 3.7 Hz, 1 H), 3.97 – 3.80 (m, 5 H), 2.63 (bs, 1H), 2.57 (s, 6 H), 2.52 – 2.42 (m, 2 H), 2.14 – 2.03 (m, 2 H), 2.02 – 1.90 (m, 3 H), 1.88 – 1.76 (m, 3 H), 1.75 – 1.62 (m, 4 H), 1.38 – 1.25 (m, 2 H), 0.84 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 137.8, 136.4, 135.9, 132.9, 118.7, 81.6, 73.2, 68.8, 66.4, 65.2, 64.5, 46.1,

44.4, 44.0, 43.4, 35.2, 33.6, 33.0, 29.7, 24.3, 23.3, 14.9.

Compound 91: Compound **80** (25 mg, 42 μ mol) was dissolved in THF (2.1 mL, 0.02 M) under Ar and freshly distilled DMPU (0.23 mL) was added. The solution was bubbled with Ar for 10 min, after which

SmI₂ (1.3 mL, 0.13 mmol, 2.5 equiv, 0.1 M in THF) was quickly added. After stirring for 5 min at ambient temperature, the reaction mixture was bubbled with O_2 for 5 min. Then, sat. aq. NaHCO₃ (15 mL) was added to the reaction and the mixture extracted three times with EtOAc (3 x 15 mL). The combined organic portions were washed sat. aq. NaCl (30 mL), dried over MgSO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (hexanes:EtOAc 1:1) furnishing compound **91** (16 mg, 72%) as a white foam.

 $R_f = 0.25$ (1:1 EtOAc:hexanes)

 $[\alpha]_{\rm D} = +6.2$ ° (c = 1.07, CH₂Cl₂)

HRMS (m/z): calcd for C₂₆H₃₈NO₈Si [M+H]⁺, 542.2181; found, 542.2187;

IR (film) $v_{\text{max}} = 3462, 1685, 1316, 1087, 999, 686 \text{ cm}^{-1}$;

m.p. = 165–168 °C

¹H NMR (600 MHz, CDCl₃) δ 8.19 (s, 1 H), 6.64 (d, *J* = 2.7 Hz, 1 H), 5.77 (s, 1 H), 4.37 (s, 1 H), 4.18 – 4.15 (m, 1 H), 4.01 – 3.80 (m, 4 H), 3.57 (s, 1 H), 3.10 – 3.05 (m, 1 H), 2.64 – 2.59 (m, 1 H), 2.41 – 2.26 (m, 2 H), 2.21 – 2.09 (m, 3 H), 2.06 – 1.86 (m, 4 H), 1.79 – 1.52 (m, 3 H), 1.45 – 1.35 (m, 1 H), 0.89 (s, 3 H), 0.13 (s, 9 H);

¹³C NMR (150 MHz, CDCl₃) δ 199.5, 157.5, 138.4, 118.0, 95.6, 79.7, 70.1, 67.7, 66.5, 64.6, 64.5, 48.4, 46.7, 46.5, 46.1, 39.5, 39.3, 33.7, 33.3, 28.1, 24.0, 21.0, 15.5, -0.4 (3 C).

Compound 22: i. Compound **23** (50 mg, 0.12 mmol) was dissolved in CH_2Cl_2 (2.3 mL, 0.05 M), followed by the addition of Et_3N (664 μ L, 4.8 mmol, 40 equiv), Ac_2O (226 μ L, 2.4 mmol, 20 equiv), and

DMAP (1.5 mg, 0.012 mmol, 0.1 equiv). After 3 h, the reaction mixture was diluted with CH_2Cl_2 (5 mL) and sat. aq. NaHCO₃ (1 mL). The organic phase was removed and the aqueous layer extracted two more times with CH_2Cl_2 (2 × 5 mL). Drying over Na₂SO₄, filtration, concentration *in vacuo*, and flash solumnchromatography (silica gel, 10% MeOH:EtOAc) yielded **93** (61 mg, 93%, mixture of diastereomers) as a white foam.

ii. To a solution of triacetate **93** (13 mg, 0.024 mmol) in PhH (4.7 mL, 0.005 M) was added 2,6-di-*t*butylpyridine (10.7 μ L, 0.047 mmol, 2 equiv) and MgBr2•Et2O (6.7 mg, 0.026 mmol, 1.1 equiv; dissolved in 0.26 mL MeCN) and the reaction was warmed to 78 °C. After 1 h, the reaction mixture was cooled to ambient temperature and filtered through Celite[®], which was rinsed with two portions of EtOAc (2 × 2 mL). Concentration *in vacuo* delivered a yellow residue, which was immediately dissolved in butanone and water (1:1, 2.4 mL, 0.01 M) and heated at 90 °C with pyridinium *p*-toluenesulfonate (PPTS, 30 mg, 0.12 mmol, 5 equiv). After 2 h, the reaction was cooled to ambient temperature and K₂CO₃ was added. After 5 h, the reaction was concentrated *in vacuo*, and the residue was dissolved in CH₂Cl₂ (2 mL) and sat. aq. NaCl (1 mL) was added. The aqueous layer was extracted 5 times with CH₂Cl₂ (5 × 3 mL), and the combined organics were passed through a plug of Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography (silica gel, MeOH:CH₂Cl₂:Et₃N 90:10:1) furnishing compound **22** as a white foam (7.1 mg, 82%). Analytical data are identical to the original.¹

SI-39

General procedure: To a solution of **23** (1 equiv) in MeCN (0.005 M) was added acid (4 equiv) and the reaction was warmed to 40 °C. After 2 h, H₂O was added to the reaction mixture at 40 °C. After 4 h, sat. aq. NaHCO₃ was added to the reaction and the mixture extracted three times with EtOAc. The combined organic portions were washed sat. aq. NaCl, dried over Na₂SO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (silica gel, MeOH:CH₂Cl₂:Et₃N 90:10:1) furnishing compound **22** as a white foam. Analytical data are identical to the original.¹

Sc(OTf)₃: **23**(19 mg, 0.045 mmol), Sc(OTf)₃ (88 mg, 0.18 mmol), MeCN (4.5 mL), H₂O (1.5 mL), **22** (2 mg, 12%);

InCl₃: **23**(19 mg, 0.045 mmol), InCl₃ (40 mg, 0.18 mmol), MeCN (9 mL), H₂O (2.7 mL), **22** (9 mg, 56%);

MgBr₂·Et₂O: **23**(19 mg, 0.045 mmol), MgBr₂·Et₂O (46 mg, 0.18 mmol), MeCN (9 mL), H₂O (2.7 mL), **22** (0 mg, 0%);

BiCl₃: **23**(19 mg, 0.045 mmol), BiCl₃ (56 mg, 0.18 mmol), MeCN (9 mL), H₂O (2.7 mL), **22** (12 mg, 73%);

HCl (1 M): 23(19 mg, 0.045 mmol), HCl (0.18 mL, 1 M), MeCN (9 mL), H₂O (2.7 mL), 22 (6.5 mg, 40%);

Zn(OTf)₂: **23**(19 mg, 0.045 mmol), Zn(OTf)₂ (66 mg, 0.18 mmol), MeCN (4.5 mL), H₂O (2.7 mL), **22** (0 mg, 0%).

Compound 95: i. 24 (250 mg, 0.6 mmol) was dissolved in actone and water (4:1, 5.8 mL, 0.1 M) and heated at 80 °C with pyridinium p-toluenesulfonate (PPTS, 145 mg, 0.6 mmol, 1 equiv). After 30 min, the reaction was cooled to ambient temperature and sat. aq. NaHCO₃ (20 mL) was added three times with EtOAc (3×20 mL). The combined organic portions were washed sat. aq. NaCl (30 mL), dried over Na_2SO_4 and the volatiles removed *in vacuo*. The resulting foam SI-5 is sufficiently pure for the next step. *ii.* To a solution of the residue SI-5 from previous reaction (234 mg, 0.6 mol) in absolute EtOH (10 mL, 0.06 M) were added hydrazine monohydrate (583 µL, 12 mmol, 20 equiv) and Et₃N (3.2 mL, 24 mmol, 40 equiv). The reaction was immersed in a preheated oil bath at 50 °C for 2 h, after which the reaction was allowed to cool and the solvent removed in vacuo. The residue so obtained was dissolved in THF (10 mL, 0.06 M), and Et₃N (251 µL, 1.8 mmol, 3 equiv) was added. A stock solution of I₂ (305 mg, 1.2 mmol, 2 equiv) in THF (2 mL) was prepared and added dropwise to the reaction mixture; addition was halted when the iodine was not decolorized after 30 sec. The reaction was then diluted with EtOAc (15 mL) and washed with sat. aq. $Na_2S_2O_3(15 \text{ mL})$. The aqueous layer was extracted four times with EtOAc $(4 \times 10 \text{ mL})$. The combined organic portions were washed with sat. aq. NaCl (10 mL), dried over MgSO4, filtered, and concentrated in vacuo. The residue so obtained was purified by flash column chromatography (3:7 EtOAc:hexanes) furnishing compound **95** (228 mg, 70%) as a white foam.

 $R_f = 0.53$ (1:4 hexanes: EtOAc)

 $[\alpha]_{\rm D} = +34.1$ ° (c = 0.8, CH₂Cl₂)

HRMS (*m*/*z*): calcd for C₂₁H₂₇INO₅ [M+H]⁺, 500.0928; found, 500.0941;

IR (film) $v_{\text{max}} = 3391, 2927, 1667, 1577, 1328, 1264, 1107, 987, 889, 670 \text{ cm}^{-1}$;

SI-41

¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1 H), 6.22 – 6.19 (m, 1 H), 5.77 (s, 1 H), 4.89 – 4.86 (m, 1 H), 4.59 (s, 1 H), 4.25 – 4.21 (m, 1 H), 3.16 (d, *J* = 11.0, 1 H), 2.42 – 2.25 (m, 4 H), 2.14 – 2.00 (m, 2 H), 1.77 – 1.49 (m, 4 H), 1.39 (s, 3 H), 1.25 – 1.14 (m, 1 H), 0.95 – 0.86 (m, 2 H), 0.69 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 210.2, 157.4, 138.3, 107.9, 96.2, 74.7, 68.7, 55.0, 54.9, 53.3, 53.2, 46.8, 42.8, 39.5, 36.6, 34.3, 31.8, 29.6, 25.0, 16.9, 14.9.

Compound 96: *i.* **95** (110 mg, 0.22 mmol) was dissolved in DMF (3.7 mL, 0.06 M). To this solution was added 7-trimethylstannylisoquinoline **105** (65 mg, 0.22 mmol, 1 equiv), CuCl (218 mg, 2.2 mmol, 10 equiv), LiCl (93 mg, 2.2 mmol, 10 equiv) and Pd(PPh₃)₄ (127 mg, 0.11 mol, 0.5 equiv). The reaction was degassed by bubbling argon through the solution for 10 min. It was then immersed in a preheated oil bath at 60°C for 1 h. The reaction was then diluted with CH_2Cl_2 (15 mL) and washed with 5% aq. NH_4OH . The aqueous layer was extracted four times (4 × 50 ml) with CH_2Cl_2 . The combined organic portions were washed with sat. aq. NaCl (15 mL), dried over MgSO4, filtered, and concentrated *in vacuo*. The residue so obtained was purified by flash column chromatography (3:7 EtOAc:hexanes) furnishing compound **SI-6** (55 mg, 53%).

ii. **SI-6** (5 mg, 10 µmol) was dissolved in EtOAc and MeOH (0.5 mL, 1:1 EtOAc :MeOH, 0.02 M). To this solution was added 10% Pd/C (16.5 mg, 15 µmol, 1.5 equiv), and bubbling H₂ through the stirred solution for 10 min. Then Stirring was continued under an static H₂-atmosphere for 2 h. The reaction mixture was filter through the silica pad, then purified by PTLC (EtOAc:hexanes 4:1) which afforded **96** (1.4 mg, 28%) as a clear oil.

 $R_f = 0.29$ (EtOAc)

 $[\alpha]_{\rm D} = -3^{\circ} (c = 0.1, \rm CH_2 Cl_2)$

HRMS (m/z): calcd for C₃₀H₃₅N₂O₅ [M+H]⁺, 503.2546; found, 503.2535;

IR (film) $v_{\text{max}} = 2922, 2852, 1739, 1684, 1456, 1376, 1259, 1049, 797, 718 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 9.24 (bs, 1 H), 8.52 (bs, 1 H), 8.18 (s, 1 H), 7.79 – 7.72 (m, 2 H), 7.71 – 7.59 (m, 1 H), 7.49 (d, *J* = 8.6 Hz, 1 H), 5.80 (s, 1 H), 4.78 (d, *J* = 2.6 Hz, 1 H), 4.60 (s, 1 H), 4.24 (s, 1 H), 3.28 (d, *J* = 11.2 Hz, 1 H), 3.17 (t, *J* = 9.7 Hz, 1 H), 2.56 – 2.42 (m, 2 H), 2.41 – 2.30 (m, 3 H), 2.25 – 2.16 (m, 3 H), 2.16 – 2.08 (m, 2 H), 2.08 – 1.94 (m, 2 H), 1.74 –1.59 (m, 3 H), 1.37 (s, 3 H), 0.46 (s, 3 H);

¹³C NMR (150 MHz, CDCl₃) 210.8, 157.3, 152.2, 142.5, 138.9, 134.8, 131.8, 126.2, 126.1, 125.9, 120.2, 96.3, 77.4, 74.7, 68.7, 55.9, 55.4, 54.5, 53.4, 48.2, 46.8, 39.2, 35.6, 31.9, 29.7, 29.6, 26.4, 25.6, 24.0, 13.9.

Compound 98: **80** (50 mg, 86 µmol) was dissolved in actone and water (4:1, 0.86 mL, 0.1 M) and heated at 80 °C with pyridinium *p*-toluenesulfonate (PPTS, 16 mg, 86 µmol, 1 equiv). After 30 min, the reaction was cooled to ambient temperature and sat. aq. NaHCO₃ (20 mL) was added three times with EtOAc (3 × 20 mL). The combined organic portions were washed sat. aq. NaCl (30 mL), dried over Na₂SO₄ and the volatiles removed *in vacuo*. To a solution of the residue in absolute EtOH (1.4 mL, 0.06 M) were added hydrazine monohydrate (83 µL, 1.7 mmol, 20 equiv) and Et₃N (480 µL, 3.4 mmol, 40 equiv). The reaction was immersed in a preheated oil bath at 50 °C for 2 h, after which the reaction was allowed to cool and the solvent removed *in vacuo*. The residue **SI-7** so obtained was dissolved in THF (1.4 mL, 0.06

M), and Et₃N (36 μ L, 258 mmol, 3 equiv) was added. A stock solution of I₂ (44 mg, 172 μ mol, 2 equiv) in THF (0.14 mL) was prepared and added dropwise to the reaction mixture; addition was halted when the iodine was not decolorized after 30 sec. The reaction was then diluted with EtOAc (5 mL) and washed with sat. aq. Na₂S₂O₃ (5 mL). The aqueous layer was extracted four times with EtOAc (4 × 10 mL). The combined organic portions were washed with sat. aq. NaCl (10 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue so obtained was purified by flash column chromatography furnishing compound **98** (EtOAc:hexanes 3:7).

 $R_f = 0.69$ (1:4 hexanes: EtOAc)

 $[\alpha]_{\rm D} = +39.5$ ° (c = 1.2, CH_2Cl_2)

HRMS (*m*/*z*): calcd for C₂₁H₂₄BrINO₅ [M+H]⁺, 575.9877; found, 575.9893;

IR (film) $v_{\text{max}} = 3407, 3051, 1672, 1583, 1328, 1304, 1108, 1066, 873, 827, 766, 678 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 8.21 (s, 1 H), 6.17 (bs, 1 H), 5.85 (s, 1 H), 5.44 (d, *J* = 3.7 Hz, 1 H), 4.71 (bs, 1 H), 4.29 (t, *J* = 3.4 Hz, 1H), 3.47 (s, 1 H), 2.56 – 2.32 (m, 3 H), 2.22 – 2.13 (m, 2 H), 2.10 – 2.03 (m, 1 H), 1.92 – 1.82 (m, 1 H), 1.73 – 1.51 (m, 3 H), 1.50 – 1.43 (s, 3 H), 1.39 – 1.20 (m, 2 H), 0.94 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 204.7, 157.6, 137.7, 137.6, 107.4, 96.5, 91.0, 72.3, 69.1, 67.2, 54.6, 52.6, 49.2, 45.7, 40.0, 39.7 37.2, 35.0, 32.9, 31.9, 21.2, 18.0.

Compound 99: The abovementioned **98** was dissolved in DMF (1.43 mL, 0.06 M). To this solution was added 7-trimethylstannylisoquinoline **105** (25 mg, 86 µmol, 1 equiv), CuCl (85 mg, 860 µmol, 10 equiv),

LiCl (36 mg, 860 µmol, 10 equiv) and Pd(PPh₃)₄ (50 mg, 43 µmol, 0.5 equiv). The reaction was degassed by bubbling argon through the solution for 10 min. It was then immersed in a preheated oil bath at 60°C for 1 h. The reaction was then diluted with EtOAc (5 mL) and washed with 5% aq. NH₄OH. The aqueous layer was extracted four times (4 × 5 ml) with EtOAc. The combined organic portions were washed wth sat. aq. NaCl (5 mL), dried over MgSO4, filtered, and concentrated *in vacuo*. The residue so obtained was purified by PTLC (MeOH : CH₂Cl₂ 9:1) furnishing **99** (8 mg, 16% from **80**) as a yellow foam.

 $R_f = 0.32$ (EtOAc)

 $[\alpha]_{\rm D} = +10.2$ ° (c = 0.4, CH₂Cl₂)

HRMS (m/z): calcd for C₃₀H₃₀BrN₂O₅ [M+H]⁺, 577.1332; found, 577.1314;

IR (film) $v_{\text{max}} = 3335, 2927, 2853, 1679, 1443, 1110, 1038, 936 \text{ cm}^{-1}$;

¹H NMR (600 MHz, CDCl₃) δ 9.25 (s, 1 H), 8.51-8.50 (m, 1H), 8.22 (s, 1 H), 7.88 (s, 1 H), 7.77 (s, 2 H), 7.63 (d, *J* = 5.6 Hz, 1H), 6.96 (s, 1 H), 6.30 – 6.21 (m, 1 H), 5.78 (s, 1 H), 5.48 (d, *J* = 3.9 Hz, 1H), 4.74 (s, 1 H), 4.30 (s, 1 H), 3.55 (s, 1 H), 3.13 (d, *J* = 17.5 Hz, 1H), 2.81 – 2.74 (m, 2 H), 2.64 – 2.57 (m, 1 H), 2.58 – 2.46 (m, 1 H), 2.43 – 2.27 (m, 2 H), 2.09 – 2.01 (m, 2 H), 1.90 – 1.71 (m, 2 H), 1.65 – 1.52 (m, 2 H), 1.38 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 205.5, 157.6, 152.6, 150.3, 142.9, 135.0, 134.3, 129.7, 128.8, 128.6, 126.7, 123.8, 120.2, 96.5, 72.5, 69.4, 67.3, 55.2, 54.1, 46.3, 40.1, 39.2, 36.9, 33.0, 29.9, 29.7, 29.6, 22.7, 21.3, 19.2.

Compound 103: **102** (10 g, 75 mmol) was dissolved in CH_2Cl_2 (150 mL, 0.5 M). NBS (15 g, 82.5 mmol, 1.1 equiv) was slowly added and the reaction mixture was stirred for 30 min at ambient temperature. To

SI-45

this mixture 30 % NaOH (50 ml, 5 equiv) was added and the resulting biphasic mixture was stirred vigorously for 1 h. The organic layer was washed H₂O (200 ml) and 1 M HCl (200 mL). The acid extracts were basified to pH = 10 with 1 M NaOH (220 mL) and extracted with CH₂Cl₂ (2 × 400 mL). The organic portions was washed with sat. aq. NaCl (500 mL), dried over MgSO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (CH₂Cl₂:MeOH 15:1) furnishing compound **SI-8** (9 g, 92 %) as a colorless oil.²

ii. KNO₃ (10.5 g, 103 mmol, 1.5 equiv) was dissolved in H₂SO₄ (95-98%, 69 mL, 1 M). To this mixture **SI-8** (9 g, 69 mmol) was added at 0 °C and slowly warmed up to ambient temperature over 2 h. It was then immersed in a preheated oil bath at 60 °C for 4 h, after which the mixture was basified to pH = 10 with 3 M NaOH (500 mL) and extracted three times with $CH_2Cl_2(3 \times 500 \text{ mL})$. The organic portions was washed with sat. aq. NaCl (500 mL), dried over MgSO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (1:1 EtOAc:Hexanes) furnishing compound **SI-9** (8.8 g, 72 %) as a colorless oil.

iii. A mixture of **SI-9** (8.8 g, 50 mmol) and MnO_2 (30 g, 350 mmol, 7 equiv) in toluene (250 ml, 0.2 M) was heated to reflux for 2 h. The reaction was allowed to cool, filtered through Celite[®] and concentrated *in vacuo*. Purification of the crude residue by flash column chromatography (2:1 EtOAc:hexanes) yielded **103** (7.9 g, 91 %) as a yellow solid.

 $R_f = 0.64$ (EtOAc)

HRMS (m/z): calcd for C₉H₇N₂O₂ [M+H]⁺, 175.0502; found, 175.0499;

IR (film) $v_{\text{max}} = 3074$, 1666, 1629, 1582, 1135, 850, 803, 733 cm⁻¹;

m.p. = 67–68 °C

¹H NMR (500 MHz, CDCl₃) δ 9.48 (s, 1 H), 8.94 (d, *J* = 2.0 Hz, 1 H), 8.75 (s, 1 H), 8.46 (dd, *J* = 9.0, 2.2 Hz, 1 H), 7.99 (d, *J* = 9.0 Hz, 1 H), 7.78 (d, *J* = 5.5 Hz, 1 H);

¹³C NMR (125 MHz, CDCl₃) δ 154.2, 146.5, 138.1, 128.5 (2 C), 124.4 (2 C), 123.7 (2 C).

Compound 104: 103 (7.9 g, 46 mmol) was dissolved in MeOH (460 mL, 0.1 M). To this solution was added 10% Pd/C (790 mg, 10 wt%), and H_2 was bubbled through the stirred solution for 1 h. Stirring was continued under a static H_2 -atmosphere for 2 h. The reaction mixture was filtered through the silica pad and concentrated *in vacuo*. This residue **SI-10** is sufficiently pure for the next step.

ii. **SI-10** was dissolved in H₂O (11.5 mL, 0.25 M) and HBr (48%, 11.5 mL, 0.25 M). To this mixture aq. 2.5 M NaNO₃ solution (20 mL, 50.6 mmol, 1.1 equiv) was added at 0 °C. After addition, this mixture was cannulated to a solution of CuBr (7.9 g, 55.2 mmol, 1.2 equiv) in HBr (48%, 11.5 mL) which was preheated at 75 °C. After cannulation, the mixture was cooled to ambient temperature and stirred for 12 h. The mixture was basified with 3 M NaOH (500 mL) to pH = 10 and extracted with CH_2Cl_2 three times (3 × 500 mL). The organic portion was washed with sat. aq. NaCl (700 mL), dried over MgSO₄ and the volatiles removed *in vacuo*. The residue so obtained was purified by flash column chromatography (EtOAc:hexanes 1:1) furnishing compound **104** (6.0 g, 63 % over 2 steps) as a white solid.³

 $R_f = 0.69$ (1:1 hexanes: EtOAc)

HRMS (*m*/*z*): calcd for C₉H₇BrN [M+H]⁺, 207.9756; found, 207.9763;

IR (film) $v_{\text{max}} = 3407, 1661, 1572, 878, 835, 741, 674 \text{ cm}^{-1}$;

m.p. = 174–178 °C

¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 1 H), 8.54 (d, *J* = 5.2 Hz, 1 H), 8.08 (s, 1 H), 7.75 – 7.70 (m, 1 H), 7.66 (d, *J* = 8.7 Hz, 1 H), 7.59 (d, *J* = 5.4 Hz, 1 H);

¹³C NMR (100 MHz, CDCl₃) δ 151.3, 143.4, 134.1, 133.7, 129.6, 128.1 (2 C), 120.8, 120.1.

SI-47

Compound 105: To a solution of **104** (1.8 g, 8.6 mmol) in PhH (17 ml, 0.5 M) was added LiCl (2.2 g, 51.6 mmol, 6 equiv), $Pd(PPh_3)_4$ (993 mg, 0.86 mmol, 0.1 equiv) and hexamethylditin (3.0 g, 9.0 mmol, 1.05 equiv). The solution was bubbled with Ar in a sonicator for 10 min. The reaction was then warmed to 105 °C. After 1 h, the reaction was diluted by EtOAc (100 ml), filterd through Celite[®] and rinsed with two portions of EtOAc (2 x 50 mL). The organic portion was washed with sat. aq. NaHCO₃ (100 ml) and brine (100 ml), dried with MgSO₄, filtered, and concentrated *in vacuo*. Chromatography on silica (1:2 Et₂O:hexanes) afforded **104** (2.2 g, 88%) as a white solid. Analytical data are identical to the original.¹

Reference:

- (1) Shenvi, R. A.; Guerrero, C. A.; Shi, J.; Li, C.-C.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 7241–7243.
- (2) Askin, D.; Angst, C.; Danishefsky, S. J. Org. Chem. 1987, 52, 622-635.
- (3) McCoubrey, A.; Mathieson, D. W. J. Chem. Soc. 1951, 2851–2853.