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This Web Appendix contains supplementary material for Meta Analysis of Functional

Neuroimaging Data via Bayesian Spatial Point Processes, by Jian Kang, Timothy D. John-

son, Thomas E. Nichols and Tor D. Wager

A Spatial Point Processes

The Cox process was introduced by Cox (1955) as the doubly stochastic Poisson process.

For our purposes, suppose Z(s) is a non-negative random field defined on the brain, B ⊂ R3.

If, conditional on λ(s), X is a Poisson process with intensity λ(s), denoted Poisson(B, λ),

then (marginally) X is said to be a Cox process driven by λ. If X is a Cox process driven

by λ and λ is restricted to be a constant function, we call X a homogeneous Cox process.

Now, suppose [X | λ] ∼ Poisson(B, λ). The density of this measure with respect to Lesbesgue

measure on B does not exist. However, the density (or Radon-Nikodym derivative) does exist

with respect to the probability measure induced by the unit rate Poisson process defined on

B (Møller and Waagepetersen 2004) and is

π(x | λ) = exp

[
|B| −

∫
B
λ(s)ds

]∏
x∈x

λ(x)

where |B| denotes the volume of B. If, further, we attach a mark, mx ∈ M to each point

x ∈ X, then (X,M ) = {(x,mx) : x ∈ X,mx ∈ M} is a marked Cox process with intensity

ρ : B ×M→ R+ ∪ {0}. If the Mx are independent and identically distributed with density

π(m) and are also independent of the process X, then ρ(s,m) = λ(s)π(m). Now consider a

point process X. Conditional on X = x, suppose that associated with each x ∈ x is a process

Yx centered at x and that these processes are independent of one another. Then ∪x∈xYx is an

independent cluster process. Scatter noise and outliers are often modeled by a homogeneous

Poisson process with intensity ε independently of all yx (van Lieshout and Baddeley 2002).

Then the independent cluster process has modified intensity λ(·; x) = ε+
∑

x∈x fx(·;x).
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B Probability Equivalence Assumption

The probability equivalence assumption: the probability that a type 0 focus in study c clusters

about a population center z ∈ z and the probability that a study center in study c clusters

about the same population center are equal over all studies, for c = 1, . . . , C. Let x, y be

two points in the brain B, then we have

Pr(x ∈ X0
cz | x ∈ X0

c) = Pr(y ∈ Ycz | y ∈ Yc)

Pr(x ∈ X0
cz)

Pr(x ∈ X0
c)

=
Pr(y ∈ Ycz)

Pr(y ∈ Yc)

E[I(x ∈ X0
cz)]

E[I(x ∈ X0
c)]

=
E[I(y ∈ Ycz)]

E[I(y ∈ Yc)]
(B.1)

E[NX0
cz

(B)]

E[NX0
c
(B)]

=
E[NYcz(B)]

E[NYc(B)]
, (B.2)

where (B.2) follows from (B.1) by the following argument. Suppose there are two point

processes A,B ⊂ S and B 6= ∅, for any two points ξ, η ∈ S, then Pr(ξ ∈ A) = Pr(η ∈ A)

and Pr(ξ ∈ B) = Pr(η ∈ B) > 0, thus,

Pr(ξ ∈ A)

Pr(ξ ∈ B)
=

Pr(η ∈ A)

Pr(η ∈ B)
⇒ E[I(ξ ∈ A)]

E[I(ξ ∈ B)]
=
E[I(η ∈ A)]

E[I(η ∈ B)]
≡ R.

Therefore,

E[NA(S)]

E[NB(S)]
=

∑
η∈S E[I(η ∈ A)]∑
η∈S E[I(η ∈ B)]

=

∑
η∈S R · E[I(η ∈ B)]∑
η∈S E[I(η ∈ B)]

= R =
E[I(ξ ∈ A)]

E[I(ξ ∈ B)]
, for any ξ ∈ S,

where N•(S) =
∑

a∈S I(a ∈ •).

According to the definitions of X0
c , X0

cz, Yc and Ycz and the intensity function (3) and

(6) in Section 2.2, (B.2) implies, for c = 1, . . . , C,

pz ≡
θ1cΦ(B; z,Σz)

ε1c|B|+
∑

z∈z θ1cΦ(B; z,Σz)
=

θ2cΦ(B; z,Σz)

ε2c|B|+
∑

z∈z θ2cΦ(B; z,Σz)
. (B.3)

By routine calculations, we have

θ1c

ε1c
=
θ2c

ε2c
=

1

|B|

(
Φ(B; z,Σz)

pz
−
∑
z′∈z

Φ(B; z′,Σ′z)

)
≡ qz. (B.4)
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From the definition of θ and ε in equation (8) in Section 2.2, we have

θ

ε
=

∑C
c=1(θ1c + θ2c)∑C
c=1(ε1c + ε2c)

=

∑C
c=1 qz(ε1c + ε2c)∑C
c=1(ε1c + ε2c)

= qz =
θ1c

ε1c
=
θ2c

ε2c
. (B.5)

This further implies that we can define ρ1c and ρ2c as follows:

ρ1c ≡
ε1c
ε

=
θ1c

θ
, ρ2c ≡

ε2c
ε

=
θ2c

θ
, (B.6)

such that

C∑
c=1

(ρ1c + ρ2c) =

∑C
c=1(θ1c + θ2c)

θ
=

∑C
c=1(ε1c + ε2c)

ε
= 1. (B.7)

Write ρ = (ρ11, · · · , ρ1C , ρ21, · · · , ρ2C). The parameter set {ε1c, θ1c, ε2c, θ2c}Cc=1 can be now be

reparametrized by {ρ, θ, ε}. Thus, the number of parameters is reduced by 2C − 1.

C Algorithm Details

In this section, we provide algorithm details and pseudo code. We first present the posterior

distribution, and then discuss the details of the continuous time spatial birth-and-death pro-

cesses for simulating from the posterior study activation center processes and the posterior

population center process. We also provide details on updating all parameters in the hybrid

MCMC algorithm. We then discuss some issues on Normal and Student-t probability com-

putations, show how to estimate the posterior intensity function for the population center

process and the 95% credible ellipsoids.

C.1 Posterior Distribution

The joint posterior of model parameters, including latent variables, is

π[δ1, . . . , δC , (y,Ψ)1, . . . , (y,Ψ)C , (z,Σ), ε,θ,η, β,T | x1, . . .xC ]

∝
C∏
c=1

{
π [(x, δ)c | ε1c, θ1c, ηc, (z,Σ), (y,Ψ)c] π(ε1c)π(ηc)π(θ1c)

}
×

C∏
c=1

{
π [(y,Ψ)c | ε2c, θ2c, (z,Σ)]π(ε2c)π(θ2c)

}
× π [(z,Σ) | β,T ] π(β)π(T ), (C.1)
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where ε = (ε11, . . . , ε1C , ε21, . . . , ε2C), θ = (θ11, . . . , θ1C , θ21, . . . , θ2C) and η = (η1, · · · , ηC).

With the probability equivalence assumption, we have that εdc = ρdcε and θdc = ρdcθ for

d = 1, 2 and c = 1, . . . , C, Thus, (C.1) is equivalent to

π[δ1, . . . , δC , (y,Ψ)1, . . . , (y,Ψ)C , (z,Σ),ρ,η, β,T | x1, . . .xC ]

∝
C∏
c=1

{
π [(x, δ)c | ρ1c, ηc, (z,Σ), (y,Ψ)c] π(ηc)

}
×

C∏
c=1

{
π [(y,Ψ)c | ρ2c, (z,Σ)]

}
π(ρ)× π [(z,Σ) | β,T ] π(β)π(T ). (C.2)

This is proportional to

C∏
c=1

π [x0
c | ρ1c, (z,Σ)

] ∏
x∈x0

c

π(δx = 0)

×
C∏
c=1

π [x1
c | ηc, (y,Ψ)c

] ∏
x∈x1

c

π(δx = 1)π(ηc)

×
C∏
c=1

{
π [(y,Ψ)c | ρ2c, (z,Σ)]

}
π(ρ)× π [(z,Σ) | β,T ] π(β)π(T ). (C.3)

We propose an hybrid algorithm with two continuous time spatial birth-and-death pro-

cesses embedded in a standard MCMC algorithm to sample from the posterior (C.3).

C.2 Imputation of Missing Type Indicators

The full conditional distribution of δc is

π[δc | ·] ∝
1∏
d=0

π[xdc | ·]
∏
x∈xdc

π(δx = d)

 ∝
1∏
d=0

∏
x∈xdc

λd1c(x; ·)π(δx = d).

Furthermore, the full conditional probability mass function of δx for each x ∈ xc is π[δx =

d | ·] ∝ λd1c(x; ·)π(δx = d) for d = 0, 1. We set π(δx = d) = 0.5, thus,

π[δx = d | ·] =
λd1c(x; ·)
λ1c(x; ·)

, for d = 0, 1. (C.4)
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C.3 Spatial Birth-and-Death Processes

The spatial birth-and-death process (Preston 1975, Møller and Waagepetersen 2004), a con-

tinuous time Markov process whose transitions are either births or deaths, can be used to

simulate spatial point processes.

C.3.1 General Procedure

Suppose we wish to construct a spatial birth-and-death process to simulate a latent point

process A from its posterior π(a | u), where u is data. Preston (1975) showed that if the

birth and death rates satisfy the detailed balance equation

π(a | u)b(a, ξ) = π(a ∪ {ξ} | u)d(a ∪ {ξ}, {ξ}), (C.5)

then the chain is time reversible and that the spatial birth-and-death process has a unique

equilibrium distribution π(a | u) to which it converges in distribution from any initial state.

In (C.5) b(a, ξ) is the birth rate for adding a new point ξ to the current configuration, a,

of the point process A, and d(a, ξ) denotes the death rate for removing a point ξ from a.

We adopt the birth rate suggested by van Lieshout and Baddeley (2002) using a mixture

intensity, i.e. b(a, ξ) =
∑

u∈u h(ξ;u), where h(ξ; ·) is an intensity function. To satisfy the

detailed balance equation, the death rate for removing ξ from a is d(a, ξ) = [π(a/{ξ} |

u)/π(a | u)]
∑

u∈u h(ξ;u). Let B(a) =
∫
b(a, ξ)dξ denote the total birth rate. Note that

B(a) does not depend on a. Write B = B(a). Let D(a) =
∑

a∈a d(a; a) denote the total

death rate. Given current state a, after an exponentially distributed time with rate B+D(a),

a birth is proposed with probability B/{B +D(a)} by sampling ξ from the mixture density∑
u∈u h(ξ;u)/B. A death is proposed with probability D(a)/{B+D(a)} and the point a ∈ a

is removed with probability d(a; a)/D(a).
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C.3.2 Details for Simulating the Posterior Study Activation Center Processes

From (C.2), for c = 1, . . . , C, the full conditional posterior distribution of a marked study

activation center process for study c is

π[(y,Ψ)c | ·] ∝ π[x1
c | ηc, (y,Ψ)c]× π[(y,Ψ)c | ρ2c, (z,Σ)],

for which we construct a spatial birth-and-death process using the birth rate

bc[(y,Ψ)c, (y,Ψy)] =
∑
x∈x1

c

ηcφ3(y;x,Ψy)π(Ψy), (C.6)

where φ3(ξ;µ,Σ) denotes the 3D normal density at ξ with mean µ and covariance matrix

Σ. The death rate for removing (y,Ψy) ∈ (y,Ψ)c is then

dc[(y,Ψ)c, (y,Ψy)]

=
π[x1

c | ηc, (y,Ψ)c/{(y,Ψy)}] · π[(y,Ψ)c/{(y,Ψy)} | ρ2c, (z,Σ)]

π[x1
c | ηc, (y,Ψ)c] · π[(y,Ψ)c | ρ2c, (z,Σ)]

∑
x∈xc

ηcφ3(y;x,Ψy)π(Ψy)

=
exp{ηcΦ3(·; y,Ψy)}∏

x∈x1
c

[
1 + ηcφ3(x;y,Ψy)

λ1
1c(x;·)−ηcφ3(x;y,Ψy)

] · ηc∑x∈xc
φ3(y;x,Ψy)

λ2c(y; ·)
, (C.7)

where Φ3(· | µ,Σ) =
∫
B φ3(ξ | µ,Σ)dξ, is 3D normal probability over the brain B with mean

µ and covariance matrix Σ. Using (C.6), the total birth rate is

Bc =

∫
B

∫
M

∑
x∈x1

c

ηcφ3(y;x,Ψy)π(Ψy)dΨydy = ηc
∑
x∈x1

c

T3(·;x,S/(d− 2), d), (C.8)

whereM is the space of 3×3 symmetric positive definite matrices. T3(·;µ,S, d) is student-t

probability over the brain B with mean µ, scale matrix S and d degrees of freedom. The

total death rate is given by

Dc[(y,Ψ)c] =
∑

(y,Ψy)∈(y,Ψ)c

dc[(y,Ψ)c, (y,Ψy)]. (C.9)

For a birth, we draw a new point (y,Ψy) from

bc[(y,Ψ)c, (y,Ψy)]

Bc

=
∑
x∈x1

c

{
φ3(y;x,Ψy)π(Ψy)

T3(·;x,S/(d− 2), d)
· T3(·;x,S/(d− 2), d)∑

x′∈x1
c
T3(·;x′,S/(d− 2), d)

}
, (C.10)
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To draw from this mixture distribution, first draw

Ψy ∼ W−1(S, d), (C.11)

then draw y from the following mixture distribution,

[y | Ψy] ∼
∑
x∈x1

c

vxNB(x,Ψy), (C.12)

where NB(µ,Σ) denotes the 3D normal distribution truncated to B with mean µ and covari-

ance matrix Σ, and the weight vx = T3(·;x,S/(d− 2), d)/Bc.

The simulation time for this spatial birth-and-death process at each iteration of the

hybrid algorithm is set to 1/Bc, and the number of points in yc is initially set to zero.

C.3.3 Details for Simulating the Posterior Population Center Process

Note that (B.6) implies that the intensity functions for Xc
0, Yc and Y, say, λ0

1c, λ2c and λ

have the following relationships: λ0
1c(y; ·) = ρ1cλ(y; ·) and λ2c(y; ·) = ρ2cλ(y; ·). Thus,

C∏
c=1

{
π[x0

c | ρ1c, (z,Σ)] · π[yc | ρ2c, (z,Σ)]
}

∝
C∏
c=1

exp

{
−
∫
B
λ0

1c(x; ·) + λ2c(x; ·)dx
} ∏
x∈x0

c

λ0
1c(x; ·)

∏
y∈yc

λ2c(y; ·)


∝ π[y | (z,Σ)] ·

C∏
c=1

{
ρ

n(x0
c)

1c ρ
n(yc)
2c

}
.

This implies that (C.3), the full joint posterior, is proportional to

C∏
c=1

{
π
[
x1
c | ηc, (yc,Ψc)

]
π(ηc)ρ

n(x0
c)

1c ρ
n(yc)
2c

}∏
y∈y

π(Ψy)×

π(ρ)π [y | (z,Σ)]π [z | β] π(β)π(T )
∏
z∈z

π(Σ | T ). (C.13)

Thus, the full conditional posterior distribution of the population center process is

π[(z,Σ) | ·] ∝ π[y | (z,Σ)]π[z | β]
∏
z∈z

π(Σz | T ),
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for which we construct a spatial birth-and-death process using the birth rate,

b[(z,Σ), (z,Σz)] = βπ(Σz | T )

[
1 +

θ

ε

∑
y∈y

φ3(y; z,Σz)

]
, (C.14)

and the death rate, for removing a point (z,Σz) ∈ (z,Σ), is

d[(z,Σ), (z,Σz)] =
exp{θΦ3(·; z,Σz)}∏

y∈y

[
1 + θφ3(y;z,Σz)

λ(y;·)−θφ3(y;z,Σz)

] [1 +
θ

ε

∑
y∈y

φ3(y; z,Σz)

]
. (C.15)

The total birth rate is

B =

∫
B

∫
M
b[(z,Σ), (z,Σz)]dΣzdz = β

[
|B|+ θ

ε

∑
y∈y

T3(·; y,T /(ν − 2), ν − 2)

]
(C.16)

and the total death rate is

D(z,Σ) =
∑
z∈z

d[(z,Σ), (z,Σz)] (C.17)

For a birth, we draw a new point (z,Σz) from the mixture density

b[(z,Σ), (z,Σz)]

B
=
∑
y∈y

{
β|B|π(Σz)

B
+

φ3(y; z,Σz)π(Σz)

T3(·; y, T
ν−2

, ν − 2)

βT3(·; y, T
ν−2

, ν − 2)

B

}
. (C.18)

This implies that we first draw

Σz ∼ W−1(S, ν), (C.19)

then draw z from the following mixture distribution,

[z | Σz] ∼ w∅UB +
∑
y∈y

wyNB(y,Σz), (C.20)

where UB denotes the uniform distribution over the brain B, and the weight wy = β|B|/B

when y = ∅ and wy = βB−1T3(·; y,T /(ν − 2), ν − 2) if y ∈ y.

The total simulation time for this spatial birth-and-death process at each iteration of the

hybrid algorithm is set to 1/B and number of points in the population center process is set

to zero as the initial state.
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C.4 Standard MCMC Updates

Upon exiting the spatial birth-and-death processes, conditional on the number of points

in Yc and Z, we use a standard MCMC algorithm to update the study activation center

processes parameters and population center process parameters, i.e. (y,Ψ)c and (z,Σ), as

well as η, ρ, β and T .

C.4.1 Update (y,Ψ)c given NYc(B) = nc

Define a latent indicator variable αx ∈ yc with prior π(αx = y) = 1/nc for each x ∈ X1
c

and y ∈ yc, such that X1
cy = {x ∈ X1

c ;αx = y}. Recall that X1
cy is a process defined in

Section 2.1 with intensity function ηcφ3(x; y,Ψy). Write αc = {αx, x ∈ X1
c}. Note that

π[x1
c ,αc | λ1

1c] ∝
∏

y∈y π[xcy | ηc, y,Ψy]. Then the full conditional distribution of (y,Ψ)c

and αc is π[(y,Ψ)c,αc | ·] ∝
∏

y∈yc

{
π[xcy | ηc,Ψy]π(Ψy)

}
π[yc | ρ2c, (z,Σ)]. This further

implies the full conditional of y ∈ yc is

π[y | ·] ∝ exp{−ηcΦ3(·; y,Ψy)}λ2c(y; ·)φ3

y;

∑
x∈x1

c

xI(αx = y)∑
x∈x1

c

I(αx = y)
,

Ψy∑
x∈x1

c

I(αx = y)

 .

Thus to update y ∈ yc, draw

y∗ ∼ NB

[∑
x∈x1

c
xI(αx = y)∑

x∈x1
c
I(αx = y)

,
Ψy∑

x∈x1
c
I(αx = y)

]
, (C.21)

and accept with probability

min

{
1, exp{ηc[Φ3(·; y,Ψy)− Φ3(·; y∗,Ψy)]}

λ2(y∗; ·)
λ2(y; ·)

}
. (C.22)

The full conditional of Ψy is

π[Ψy | ·] ∝ exp{−ηcΦ3(·; y,Ψy)}π(Ψy)φ3

y;

∑
x∈x1

c

xI(αx = y)∑
x∈x1

c

I(αx = y)
,

Ψy∑
x∈x1

c

I(αx = y)

 .

Thus to update Ψy, draw

Ψ∗y ∼ W−1

S +
∑
x∈xc1

(x− y)(x− y)TI(αx = y), d+
∑
x∈x1

c

I(αx = y)

 , (C.23)
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and accept with probability

min
{

1, exp{−ηc[Φ3(·; y,Ψ∗y)− Φ3(·; y,Ψy)]}
}
. (C.24)

To update αx, we have

π[αx = y | ·] =
φ3(x; y,Ψy)∑

y′∈yc
φ3(x; y′,Ψy′)

∀ y ∈ yc. (C.25)

C.4.2 Update (z,Σ) given NZ(B) = m

Define a latent indicator variable γy ∈ z∪{∅} with prior π(γy = z) = 1/(m+ 1) for each z ∈

z∪{∅} and y ∈ Y such that Ycz = {y ∈ Y; γy = z}. From Section 2.1, Yc∅ is a homogeneous

Poisson process with constant intensity ε and Ycz for z ∈ Z is a point process with intensity

θφ3(y; z,Σz). Write γ = {γy, y ∈ Y}. Note that π[(y,γ) | ·] ∝ π[yc∅]
∏

z∈z π[ycz | z,Σz].

Then the joint posterior distribution of (z,Σ) and γ given all other parameters is

π[(z,Σ),γ | ·] ∝
∏
z∈z

{
π[ycz | z,Σz]π[Σz]

}
π[z | β].

Thus the full conditional of z ∈ z is

π[z | ·] ∝ exp{−θΦ3(·; z,Σz)}φ3

(
z;

∑
y∈y yI(γy = z)∑
y∈y I(γy = z)

,
Σz∑

y∈y I(γy = z)

)
.

Thus to update z ∈ z, draw

z∗ ∼ NB

[∑
y∈y yI(γy = z)∑
y∈y I(γy = z)

,
Σz∑

y∈y I(γy = z)

]
, (C.26)

and accept with probability

min{1, exp{θ[Φ3(·, z,Σz)− Φ3(·, z∗,Σz)]}}. (C.27)

The full conditional of Σz is

π[Σz | ·] ∝ exp{−θΦ3(·; z,Σz)}π(Σz | T )φ3

z;

∑
y∈y

yI(γy = z)∑
y∈y

I(γy = z)
,

Σz∑
y∈y

I(γy = z)

 .
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Thus update Σz by first drawing

Σ∗z ∼ W−1

[
T +

∑
y∈y

(y − z)(y − z)TI(γy = z), ν +
∑
y∈y

I(γy = z)

]
, (C.28)

and accept with probability

min{1, exp{θ[Φ3(·, z,Σz)− Φ3(·, z,Σ∗z)]}}. (C.29)

To update each γy for y ∈ Y, we have

π[γy = ∅ | ·] =
ε

ε+ θ
∑

z′∈z φ3(y; z′,Σz′)
(C.30)

π[γy = z | ·] =
θφ3(y; z,Σz)

ε+ θ
∑

z′∈z φ3(y; z′,Σz′)
∀ z ∈ z, (C.31)

C.4.3 Update η, ρ, β and T

The full conditional for ηc for c = 1, 2, . . . , C is

π[ηc | ·] ∝ π[x1
c | ηc, (y,Ψ)c]π(ηc) ∝ exp

−ηc
∑
y∈yc

Φ3(·; y,Ψy) + bη

 ηn(x1
c)+aη

c , (C.32)

Thus to update ηc draw

ηc ∼ G

∑
y∈yc

Φ3(·; y,Ψy) + bη,n(x1
c) + aη

 , (C.33)

According to (C.13), the full conditional for ρ is

π[ρ | ·] ∝
C∏
c=1

{
ρ

n(x0
c)

1c ρ
n(yc)
2c

}
π(ρ) ∝

C∏
c=1

{
ρ

n(x0
c)+α1c

1c ρ
n(yc)+α2c

2c

}
, (C.34)

Thus update ρ by drawing

ρ ∼ D[n(x0
1) + α11, . . . ,n(x0

C) + α1C ,n(y1) + α21, . . . ,n(yC) + α2C ]. (C.35)

The full conditional for β is π[β | ·] ∝ exp {−β(|B|+ bβ)} βn(z)+aβ . Thus draw

β ∼ G[n(z) + αβ, |B|+ bβ]. (C.36)

The full conditional of T is π[T | ·] ∝ π(T )
∏

z∈z π(Σz | T ). Therefore, draw

T ∼ W−1

[
(T−1

0 +
∑
z∈z

Σ−1
z ), ν0 + νn(z)

]
. (C.37)
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C.5 Normal and T Probability Computation

The total birth rate and death rate in the spatial birth-and-death process, as well as many

standard MCMC updates involve the evaluation of 3D normal and student-t probabilities

over the brain. It is difficult to directly evaluate these probabilities over arbitrary regions

such as the brain. Thus, we resort to Monte Carlo simulation of these probabilities. Since

more than half of the normal and t probabilities in our motivating example are close to 1 we

consider the following approximation. If the 99% credible ellipsoid of the target distribution

lies completely within the brain we set the probability to 0.995, otherwise, we estimate it via

Monte Carlo simulation. We set the Monte Carlo sample size n = 500 using the estimated

standard error,
√
p(1− p)/n, where p is the true probability. This results in a maximum

absolute value of the Monte Carlo error (twice the standard error) of 0.05 when p = 0.5.

C.6 Posterior Intensity Estimation

Let (z(k),Σ(k)) be the posterior draw of the population center process at the kth iteration

after burn-in, for k = 1, . . . , K. To obtain its intensity function, we combine all of the draws

of locations, i.e. ∪Kk=1z
(k), which are then smoothed with a mixture of Dirichlet process priors

model (a non-parametric Bayesian model used for density smoothing/estimation, Escobar

and West (1995)). We rescale the density by multiplying the posterior mean number of

population centers, i.e.
∑K

k=1 n(z(k))/K to estimate the intensity.

Also, using (z(k),Σ(k)), we estimate the activation center process intensity function by

K−1
∑K

k=1 λ(y; z(k),Σ(k)), where λ(y; ·) is defined by equation (9) in Section 2.2.

Let ρ(k) be the posterior draw at the kth iteration after burn-in. To obtain a posterior

predictive intensity λ̃ for a new study, given ρ(k) and (z(k),Σ(k)), we randomly pick c(k) ∈

{1, . . . , C}, then simulate a Poisson point process y
(kl)
0 with intensity ρ

(k)

1c(k)
λ(y; z(k),Σ(k)), for

l = 1, 2, . . . , L. For the kth iteration, λ̃(k) with a voxel v is estimated by

λ̃(k)(y; ·) =

∑L
l=1

∑
y0∈y(kl) I[y0 ∈ v]

L|v|
, for y ∈ v,

12



Then λ̃(y; ) is estimated by
∑K

k=1 λ̃
(k)(y; ·)/K.

C.7 Credible Ellipsoid Computation

Conditional on the event that there is exactly one population center, z ∈ Z, in the region

of interest, the posterior distribution of z can be approximated by a normal distribution

N(µz,Λz), where (µz,Λz) can be simulated via a mixture of Dirichlet process priors model

based on the posterior sample of Z. The 95% credible ellipsoid for the population centers

is CRp
z = {x : (x − µz)

TΛ−1
z (x − µz) ≤ χ2

0.95,3}, where χ2
0.95,3 is the 0.95 quantile of χ2

distribution with 3 degrees of freedom.

Conditional on the same event, the posterior distribution of an activation center y ∈

(Yz = ∪Cc=1Ycz) that is associated with the population center z located in the region of

interest, is a normal distribution with mean z and covariance matrix Σz, which can be

estimated using the posterior draws of the population center process. Thus, the 95% credible

ellipsoid for the activation centers is CRa
z = {x : (x− z)TΣ−1

z (x− z) ≤ χ2
0.95,3}.

C.8 Pseudo Code

Starting with an initial state of all the parameters, repeat the following steps for a pre-

specified total number of iterations:

1. Update δ according to (C.4).

2. For c = 1, . . . , C, run the spatial birth-and-death process for study center processes.

2.1. Compute Bc according to (C.8); set τc = 1/Bc; set t = 0; set (y,Ψ)c = ({∅}, {∅});

2.2. Compute dc[·, (y,Ψy)] for all (y,Ψy) ∈ (y,Ψ)c and Dc according to (C.7) and

(C.9).

2.3. Draw r ∼ U [0, 1]. If r < Bc/(Bc+Dc), then draw (y,Ψy) according to (C.11) and

(C.12), and set (y,Ψ)c = (y ∪ {y},Ψ ∪ {Ψy})c, else select (y,Ψy) from (y,Ψ)c

with probability dc[·, (y,Ψy)]/Dc and set (y,Ψ)c = (y\{y},Ψ\{Ψy})c.

13



2.4. Draw a sojourn time s from an exponential distribution with rate Bc + Dc; set

t = t+ s, if t < τc, then go to 2.2.

3. Update each (y,Ψy) ∈ (y,Ψ)c, for c = 1, . . . , C based on (C.21) and (C.23).

4. Update ηc, for c = 1, . . . , C according to (C.33).

5. Update ρ from (C.35).

6. Run the spatial birth-and-death process for the posterior population center process:

6.1. Compute B based on (C.16); set τc = 1/B; set t = 0; set (z,Σ) = ({∅}, {∅}).

6.2. Compute d[·, (z,Σz)] for all (z,Σz) ∈ (z,Σ) and D based on (C.15) and (C.17).

6.3. Draw r ∼ U [0, 1]. If r < B/(B + D), then draw (z,Σz) according to (C.19) and

(C.20), and set (z,Σ) = (z ∪ {z},Σ ∪ {Σz}), else select (z,Σz) from (z,Σ) with

probability d[·, (z,Σz)]/D and set (z,Σ) = (z\{z},Σ\{Σz}).

6.4. Draw a sojourn time s from an exponential distribution with rate B + D; set

t = t+ s; if t < τ , then go to 6.2.

7. Update each (z,Σz) ∈ (z,Σ) based on (C.26) and (C.28).

8. Update β from (C.36).

9. Update T from (C.37).

D Simulation Studies

In this section, we conduct two simulation studies. In the first, we investigate the sensitivity

of the prior parameter settings in our model for the emotion data. In the second, we study

sensitivity of the model specification by simulating three data sets based on different models.

14



D.1 Sensitivity to Priors

Our primary interest is how the posterior inference (including the number, location and

variability) of the population centers varies with different informative prior specifications.

We keep the non-informative priors that ρ ∼ D(0.5, . . . , 0.5) and ηc ∼ G(0.001, 0.001) for any

c = 1, 2, · · · , C and let β|B| ∼ G(aβ, 0.001), which implies that var(β|B|)/E(β|B|) = 1000,

thus the prior for β is relatively vague. We consider nine scenarios where scenario 1 has

the same prior set up as in Section 3 in the manuscript, other scenarios vary the settings of

E[NZ(B)], E[NA(B)]/E[NY(B)], E[NUc(B)], E[Σz] and E[Ψy] (see Table 1 for a summary

of the different scenarios), where Uc = Yc ∪X0
c , is the activation centers in study c, Y =

∪Cc=1Uc, represents the activation centers over all studies, and A = ∪Cc=1 ∪z∈z (Xcz ∪Ycz),

denotes the activation centers that cluster at the population level.

Table 1: Sensitivity Analysis Priors.

Scenario aE[NZ(B)] bE[NUc(B))] c E[NA(B)]
E[NY(B)]

E[Σz] E[Ψy] T 0
dθ dε|B|

1 30 5.0 0.80 4I I 0.8I 58.27 437.00
2 25 5.0 0.80 4I I 0.8I 69.92 437.00
3 35 5.0 0.80 4I I 0.8I 49.94 437.00
4 30 5.0 0.75 4I I 0.8I 54.62 546.25
5 30 5.0 0.85 4I I 0.8I 61.91 327.75
6 30 5.0 0.80 8I I 1.6I 58.27 437.00
7 30 5.5 0.80 4I I 0.8I 64.09 480.70
8 30 4.5 0.80 4I I 0.8I 52.44 393.30
9 30 5.0 0.80 4I 2I 0.8 I 58.27 437.00

a A priori expected number of population centers.
b A priori expected number of activation centers per study.
c A priori proportion of act. centers that cluster about a population center.
d Derived values from footnotes a, b and c.

We simulate the posterior distribution with 20,000 iterations after a burn-in of 2,000

iterations. Table 2 shows descriptive statistics on the posterior distribution of the number

of population centers after burn-in. As anticipated, scenarios 2 and 7 result in a decrease in

the posterior mode of the number of the population centers. This is because scenario 2 has
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a smaller prior mean number of population centers while scenario 7 has a larger prior mean

number of activation centers that clusters about population centers. However, the change is

not dramatic. The posterior mode of the number of population centers for all nine scenarios

is around 42, with a range from 36 to 49.

Table 2: The summary statistics on the posterior number of population centers

Scenario Min Max Mean s.d. Mode
1 38 47 42.60 1.4 42
2 32 40 35.90 1.2 36
3 44 55 49.10 1.5 49
4 37 48 42.40 1.4 42
5 38 47 42.50 1.4 42
6 37 49 42.60 1.5 43
7 34 42 37.60 1.3 37
8 43 55 48.30 1.6 48
9 36 45 40.10 1.3 40

In Figure 1 we compare sensitivity of the activation center posterior intensity, and in

Figure 2 we compare sensitivity of the population center posterior intensity. Figure 3 com-

pares the marginal credible ellipses for both population centers and activation centers. From

these figures, we see that the posterior expected intensities and marginal credible ellipses

are qualitatively quite similar. Table 3 summarizes the estimated location (x, y, z), the Eu-

clidean distance in locations between scenario 1 and other scenarios, the volume of the 95%

credible ellipsoid and the volume of the 95% credible interval of population centers as well

as activation centers conditional on the population centers located in the amygdalae. The

estimated number of population centers and the estimated volume of the credible ellipsoids

is somewhat sensitive to the choice of prior on β, θ and ε, but the posterior intensity and the

estimated location of the population centers are stable to various prior specifications. The

maximum distance in credible ellipsoid locations for population center between scenario 1

and other scenarios is around 1mm (0.5 voxel).
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Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 1

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 2

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 3

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 4

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 5

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 6

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 7

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 8

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 9

0 0.0872 0.174 0.262 0.349

Figure 1: Sensitivity analysis results: comparisons of the posterior activation center intensity
on 11 slices of the brain from Z = −42mm to Z = 58mm.
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Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 1

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 2

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 3

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 4

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 5

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 6

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 7

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 8

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 9

0 0.00088 0.00176 0.00264 0.00352

Figure 2: Sensitivity analysis results: comparisons of the population center intensity on 11
slices of the brain from Z = −42mm to Z = 58mm.
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Scenario 1 Scenario 2 Scenario 3

Scenario 4 Scenario 5 Scenario 6

Scenario 7 Scenario 8 Scenario 9

Figure 3: Sensitivity analysis results: comparisons of the 95% marginal credible ellipses of
both population centers (blue circles) and activation centers (yellow circles).
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Table 3: The estimated location (x, y, z), the Euclidean distance in locations between sce-
nario 1 and other scenarios (Dist.), the volume of 95% credible ellipsoid and the volume
95% credible interval of population center as well as activation centers conditional on the
population centers located in the amygdalae.

Scenario Amygdala Region Location (x, y, z) Dist. Volume 95% CI

1

L. Pop. Ctr. (-18.8, -6.9,-19.8) 0.00 86.80 [80.1, 94.1]
L. Act. Ctr. (-20.8, -6.0,-19.0) 0.00 12885.80 [6093.0, 47684.1]
R. Pop. Ctr. ( 23.2, -6.2,-20.3) 0.00 35.70 [33.1, 38.6]
R. Act. Ctr. ( 23.2, -6.3,-19.9) 0.00 8299.00 [4623.9, 13586.7]

2

L. Pop. Ctr. (-19.0, -6.6,-19.8) 0.30 60.00 [55.4, 64.8]
L. Act. Ctr. (-20.3, -6.4,-19.1) 0.60 12582.80 [6736.1, 41708.8]
R. Pop. Ctr. ( 23.4, -6.5,-20.0) 0.40 35.10 [32.5, 37.9]
R. Act. Ctr. ( 23.3, -6.4,-19.8) 0.10 9118.20 [5332.8, 13965.5]

3

L. Pop. Ctr. (-18.5, -7.0,-19.8) 0.30 123.90 [110.7, 142.5]
L. Act. Ctr. (-20.8, -5.6,-19.0) 0.40 11782.70 [5488.1, 35089.0]
R. Pop. Ctr. ( 23.7, -6.8,-20.3) 0.80 71.60 [65.0, 78.6]
R. Act. Ctr. ( 23.1, -6.3,-19.7) 0.20 8217.70 [4272.6, 14578.1]

4

L. Pop. Ctr. (-18.5, -6.6,-20.3) 0.60 160.80 [91.4, 193.0]
L. Act. Ctr. (-21.0, -5.8,-19.1) 0.30 12420.30 [5881.2, 44945.2]
R. Pop. Ctr. ( 23.2, -6.3,-20.2) 0.20 41.50 [37.2, 63.4]
R. Act. Ctr. ( 23.2, -6.2,-19.9) 0.10 8229.20 [4449.7, 14538.9]

5

L. Pop. Ctr. (-18.9, -6.8,-19.8) 0.10 75.40 [69.4, 82.0]
L. Act. Ctr. (-20.5, -6.1,-19.2) 0.40 12651.90 [6244.3, 43772.6]
R. Pop. Ctr. ( 23.3, -6.4,-20.0) 0.40 42.80 [37.7, 103.2]
R. Act. Ctr. ( 23.3, -6.3,-19.7) 0.20 8929.50 [4907.4, 14888.7]

6

L. Pop. Ctr. (-18.7, -6.8,-19.7) 0.20 88.20 [81.1, 95.9]
L. Act. Ctr. (-20.6, -6.0,-19.1) 0.20 13065.90 [6560.5, 41233.8]
R. Pop. Ctr. ( 23.3, -6.3,-20.2) 0.20 44.40 [41.1, 48.0]
R. Act. Ctr. ( 23.3, -6.2,-19.8) 0.20 9638.40 [5371.7, 16713.5]

7

L. Pop. Ctr. (-19.0, -6.8,-19.8) 0.20 83.10 [76.4, 90.2]
L. Act. Ctr. (-20.6, -6.0,-19.1) 0.20 12590.50 [6323.7, 41233.9]
R. Pop. Ctr. ( 23.3, -6.4,-20.1) 0.30 33.80 [31.4, 36.5]
R. Act. Ctr. ( 23.3, -6.3,-19.9) 0.10 8043.00 [4966.5, 12771.3]

8

L. Pop. Ctr. (-18.2, -6.3,-19.5) 0.90 147.90 [119.0, 252.6]
L. Act. Ctr. (-20.8, -5.8,-19.0) 0.10 12408.30 [5566.6, 42291.3]
R. Pop. Ctr. ( 23.6, -6.8,-19.3) 1.20 86.60 [78.1, 95.0]
R. Act. Ctr. ( 23.1, -6.3,-19.7) 0.20 8537.70 [4473.1, 13830.1]

9

L. Pop. Ctr. (-18.3, -7.0,-20.3) 0.60 133.50 [98.8, 151.5]
L. Act. Ctr. (-20.7, -5.9,-19.2) 0.20 13087.00 [6236.0, 44717.0]
R. Pop. Ctr. ( 23.4, -6.6,-19.8) 0.70 42.60 [36.6, 65.4]
R. Act. Ctr. ( 23.3, -6.3,-19.8) 0.20 8358.00 [4868.9, 13905.9]
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D.2 Sensitivity to Model Specification

Simulation A: We simulate data, or foci, x, the centers of activation regions, y, and

the population centers from our model with the following parameters. The mean number of

population centers is β|B| = 5 and the number of studies is C = 15. For each study, we set the

mean number of study centers associated with the population centers as (1−
∑C

c=1 ρ1c)θ/C =

1/15, where ρ1c = 8/125 and θ = 50. The mean number of foci, per population center, that

do not cluster with a study center is
∑C

c=1 ρ1cθ/C = 4/3. The mean number of the multiple

foci per activation region is ηc = 5, for all c = 1, . . . , C. The mean number of activation

centers that do not cluster is ε|B| = 30. The covariance matrix that describes the variability

of activation centers about population centers is set to Σz = 9I for all z ∈ z. The covariance

matrix for multiply reported foci that cluster about study centers is Ψy = I for all y ∈ y.

Based on the above settings, the mean number of observed foci is 315. The simulated data are

shown in Figure 4. The hyper prior values are E[β|B|] = 2, θ = 100, ε|B| = 50, E(ηc) = 10,

E(ρ1c) = 0.03 for all c = 1, · · · , C, E[Σz] = 4I, for all z ∈ z and E(Ψy) = I for all y ∈ y.

Results: The posterior mean number of population centers is 5. The estimated posterior

marginal intensity function of the activation centers is shown in Figure 4 from which we can

identify the 5 clusters. Also, we can see that the data and the intensity are well matched.

The estimated posterior marginal intensity function of the population centers is also shown

in Figure 4. Clearly, the intensity is highly concentrated around the 5 true population

locations.

We conclude that if the data are generated from our model, then our method provides

very accurate results even when then priors are biased from the truth. Next, we investigate

how the proposed method is robust to model mis-specification.

Simulation B: We set population centers z = {z1, z2}, where z1 = (22,−6,−18) and

z2 = (−20,−6,−18), i.e. the centers of the amygdalae. For each population center zi ∈

z, i = 1, 2, we draw 50 foci and 5 study centers from a uniform distribution over spheres
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Figure 4: Simulation A results: the images in the first column show the simulated foci
(white points) and the true locations of population centers (red X), projected unto the XY,
XZ and YZ plane for the top, middle and bottom, respectively. The images in the middle
column show the posterior intensity of the activation centers, integrated over the Z, Y and
X directions for the top, middle and bottom, respectively. The images in the last column
show the posterior intensity of the population centers, each integrated over one dimension
as in the middle column.
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with centers zi and radius RΣ = 5. For each activation center, yj ∈ y, j = 1, 2, · · · , 10, we

draw 10 foci from a uniform distribution over spheres with centers yj, and radius RΛ = 1.

The uniform distributions are in direct contrast with the Gaussian distributions assumed in

our model. We set the number of studies to C = 5 and randomly assign each study two

activation centers and 40 foci, for a total of 200 foci. Hyper prior values are E(β|B|) = 2,

ε|B| = 60, θ = 100, E(Σz) = 4I for all z ∈ z, E(Ψy) = I for all y ∈ y, E(ηc) = 10 and

E(ρ1c) = 0.033 for all c = 1, 2, . . . , C.

Results are shown in Figure 5. The estimated posterior marginal intensity of activation

centers clearly show there are two activation regions and match the truth well. Also, in Figure

5, the estimated posterior marginal intensity of the population centers is highly concentrated

on the two points. The above results imply that the proposed model is robust to this model

mis-specification.

Simulation C: For this simulation, we do not set population centers and study centers.

Rather, we directly simulate foci, x = {x1, · · · , x350}. For i = 1, 2, · · · , 300, we simulate

them from the following function:

xi = x0 + r

 sin(ψi) cos(ϕi)
sin(ψi) sin(ϕi)

cos(ψi)

 (D.1)

where x0 = (46, 55, 46), ψi ∼ U(−0.5π, 0.5π), ϕi ∼ U(0.25π, 0.5π) and r ∼ U(20, 25). For

i = 301, · · · , 350, the xi are drawn uniformly over the brain and are considered as noise. We

then randomly assign the 350 foci to 20 studies. The hyper-prior values are E(β|B|) = 5,

ε|B| = 60, θ = 50, E(Σz) = 100I for all z ∈ z, E(Ψy) = I for all y ∈ Y, E(ηc) = 10 and

E(ρ1c) = 0.033 for all c = 1, 2, . . . , C.

Figure 6 compares the estimated posterior marginal intensity of activation centers with

the data. Figure 6 also compares the posterior intensity of the “population centers”—

contrasted against the data as there are no true population centers. Our model picks about 7

population centers. Obviously, in this case, the “population centers” are driven by the data—

our model clusters the data about these “population centers” although the data generating
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Figure 5: Simulation B results: The first column shows the simulated foci and the true
locations of population centers. The middle column show the posterior intensity of the acti-
vation centers, and the last column shows the posterior intensity of the population centers.
See Figure 4 for display conventions.
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mechanism assumes no such centers. The posterior intensity of the activation centers is still

well estimated, however, care must be taken in the interpretation of the population level

parameters. They exist solely to fit the data.

Figure 6: Simulation C results. The first column shows the simulated foci. The middle
column shows the posterior intensity of activation centers, and the last columns shows the
posterior intensity of the “population centers”. See Figure 4 for display conventions.
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E Whole Brain Results

We emphasize here that the model fits intensity functions to the entire brain and not only

on ROIs. ROIs, however, are a useful way to summarize the posterior intensity functions.

Table 4 summarizes the posterior mean number of population centers occurring in various

ROI as well as the posterior probability that at least one population center occurs in said

ROI. Note that most regions are bilateral, specifically the amygdala consists of a pair of

symmetric regions. Most ROIs have strong evidence for one or more population centers.

ROI’s are from the CIC Atlas (Tziortzi et al. 2010), a revised and hierarchical version of the

Harvard-Oxford atlas (Desikan et al. 2006).

Table 4: The posterior expected number of population
centers in different ROIs and the posterior probability
that at least one population centers is located in the ROI.

Region (R) E[NZ(R) | X] Pr[NZ(R) ≥ 1 | X]
Occipital Lobe Occipital Pole 4.02 >0.999

Calcarine Cortex 2.00 >0.999
Cuneus 0.00 0.000
Lingual Gyrus 1.00 >0.999
Occipital Fusiform Gyrus 1.00 >0.999

Insular & Temporal Lobe Insular Cortex 1.00 >0.999
Anterior Temporal Pole 2.71 >0.999
Superior Temporal Gyrus 0.41 0.412
Middle Temporal Gyrus 1.00 >0.999
Inferior Temporal Gyrus 0.00 0.000
Parahippocampal Gyrus 0.00 0.000
Temporal Fusiform Gyrus 1.00 >0.999
Amygdala 2.05 >0.999
Hippocampus 0.00 0.000

Frontal Lobe Precentral Gyrus 0.00 0.000
DorsoLateral Frontal Cortex 5.00 >0.999
Medial Frontal Cortex 2.16 >0.999
Frontal Operculum 0.98 0.982
Orbitofrontal 4.00 >0.999
Supplementary Motor Area 0.00 0.000

Cingulate Cortex Posterior Cingulate Gyrus 0.00 0.000
Anterior Cingulate 2.00 >0.999

Parietal Lobe Postcentral Gyrus 0.00 0.000
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Parietal Lobule 0.00 0.000
Supramarginal Gyrus 0.00 0.000
Angular Gyrus 0.00 0.000
Precuneous Cortex 0.00 0.000
Parietal Operculum Cortex 0.00 0.000

Basal Ganglia Globus Pallidus 0.00 0.000
Striatum 1.00 >0.999

Thalamus & Brainstem Thalamus 0.91 0.913
Midbrain 0.00 0.000
Pons 0.00 0.000
Medulla 0.00 0.000

Cerebellum Ventrolateral Cerebellum 0.00 0.000
Medial Cerebellum 0.00 0.000
Dorsal Cerebellum 2.00 >0.999

Other Cerebral White Matter 6.00 >0.999
Lateral Ventricle 0.00 0.000

We also show the posterior standard deviation of activation center intensity function in

Figure 7. Each of 11 slices is a 2mm thick slice, and intensity functions shown in each slice

are integrated over the 2mm slice. The axial slices are separated by 10 mm.

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Standard Deviation of Activation Center Intensity

2.34e−05 0.0186 0.0372 0.0558 0.0745

Figure 7: The posterior standard deviation of the activation center intensity on 11 axial
slices of the brain (from Z = −42mm to Z = 58mm).
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