Supporting Information

Experimental Procedures

Methods: Gas chromatography coupled mass spectrometry (GC-MS) was carried out on Agilent Technologies 6890N Network GC-system (Agilent, Palo Alto, CA, USA) GC with the Agilent Technologies 5975 inert MS detection and autosampler (Agilent). The injection temperature was set to 275 °C. Separation was performed on a CP-Sil 8 capillary column (50 m × 0.25 mm I.D., 0.25 μ m film thickness). Helium was used as the carrier gas at a flow of 1.2 mL/min. The split was opened after 2 min. The column temperature for the CP Sil-8 was programmed from 45°C to 245°C with 20°C/min. The final temperature was held for 10 minutes. Detection was based on electron ionization (EI) in the full scan mode (*m*/*z* 50-500). Nitrogen was used as reagent gas at a flow rate of 3 mL/min. The ion source temperature was 230°C.

 1 H, 13 C and 19 F NMR spectra recorded on 300 MHz NMR spectrometer (Bruker, Billerica, MA, USA), using chloroform-D (CDCl₃) as the solvent. The processing parameters were 300 MHz for 1 H, 75.5 MHz for 13 C and 282 for 19 F and a digital resolution of 0.20 Hz for 1 H, 0.61 Hz for 13 C and 0.65 Hz for 19 F.

Electrospray ionization (ESI) (m/z 100.0-1000.0) of the salts was performed as flow injection analysis on a Thermo (Waltham, Massachusetts, USA) LCQ Deca quadrupole ion trap MS. The mobile phases used were 0.1% formic acid and methanol. The gradient was started at 90% water and over 25 min went to 5% solvent water.

Table S1: ¹H NMR chemical shifts δ [ppm] and couplings ⁿJ (¹H¹H, ¹H¹⁹F) [Hz] of F-PBDEs 35-F5' (**3d**), 47-F3 (**3g**), 99-F3' (**3i**), PBDEs 35 (**3d**), 47 (**3f**) and 99 (**3h**) in CDCl₃.

BZ/BZL	#	Chemical shifts δ [ppm] and ¹ H ¹ H, ¹ H ¹⁹ F couplings J [Hz]
17-F5'	3a	δ 7.80 (H-3, 1H, d, ⁴ J _{H,H} =2.3Hz), 7.59 (H-3', 1H, dd, ³ J _{H,H} =8.8Hz,
		${}^{4}J_{H,F}$ =5.9Hz), 7.42 (H-5, 1H, dd, ${}^{3}J_{H,H}$ =8.7Hz, ${}^{4}J$ =2.3Hz), 6.81 (H-6,
		1H, d , ${}^{3}J_{H,H}$ =8.7Hz), 6.78 (H-4', 1H, ddd , ${}^{3}J_{H,H}$ =8.8Hz, ${}^{3}J_{H,F}$ =7.7Hz,
		${}^{4}J_{H,H}$ =2.8Hz), 6.52 (H-6', 1H, dd , ${}^{3}J_{H,F}$ =9.3Hz, ${}^{4}J_{H,H}$ =2.8Hz);
25-F5'	3 b	δ 7.79 (H-3, 1H, d, ⁴ J _{H,H} =2.3Hz), 7.43 (H-5, 1H, dd, ³ J _{H,H} =8.6Hz,
		${}^{4}J_{H,H}$ =2.3Hz), 6.99 (H4', 1H, ddd, ${}^{3}J_{H,F}$ =7.9Hz, ${}^{4}J_{H,H}$ =2.2Hz,
		${}^{4}J_{H,H}=1.7\text{Hz}), 6.94 \text{ (H6, 1H, } d, {}^{3}J_{H,H}=8.6\text{Hz}), 6.84 \text{ (H2', 1H, } ddd,$
		${}^{4}J_{H,H}=2.2$ Hz, ${}^{4}J_{H,H}=1.7$ Hz ${}^{5}J_{H,F}=1.3$ Hz);
28-F3'	3c	δ 7.78 (H-3, 1H, d, ⁴ J _{H,H} =2.3Hz), 7.46 (H-5', 1H, dd, ³ J _{H,H} =8.8Hz,
		${}^{4}J_{H,F}=7.0\text{Hz}$, 7.42 (H-5, 1H, dd, ${}^{5}J_{H,H}=8.6\text{Hz}$, ${}^{4}J_{H,H}=2.3\text{Hz}$), 6.91 (H-
		6, 1H, d, ${}^{4}J_{H,H}=2.3$), 6.71 (H-2', 1H, dd, ${}^{5}J_{H,F}=9.4$ Hz,
		${}^{4}J_{H,H}$ =2.8Hz), 6.63 (H-6', 1H, <i>ddd</i> , {}^{3}J_{H,H}=8.8Hz, { ${}^{4}J_{H,H}$ =2.8Hz,
		$^{3}J_{H,F}$ =1.1Hz);
35	3d	δ 7.57 (H5, 1H, <i>d</i> , ³ <i>J</i> _{<i>H</i>,<i>H</i>} =8.8Hz), 7.30 (H4 ⁴ , 1H, <i>ddd</i> , ³ <i>J</i> _{<i>H</i>,<i>H</i>} =8.0Hz,
		$^{-J}_{H,H}$ =1.7Hz, $^{-J}_{H,H}$ =1.3Hz), 7.27 (H-2, 1H, <i>d</i> , $^{-J}_{H,H}$ =2.8Hz), 7.26 (H-5',
		1H, dd, ${}^{J}_{H,H}$ =8.0Hz, ${}^{J}_{H,H}$ =7.6Hz), 7.16 (H-2', 1H, dd, ${}^{J}_{H,H}$ =2.4Hz,
		$J_{H,H}=1./\text{Hz}$, 6.95 (H-6', 1H, <i>ddd</i> , $J_{H,H}=7.0\text{Hz}$, $J_{H,H}=2.4\text{Hz}$,
25 E51	20	$J_{H,H}=1.3$ HZ), 0.84 (H-0, 1H, <i>da</i> , $J_{H,H}=8.8$ HZ, $J_{H,H}=2.8$ HZ);
33-F 3	Se	$0 / .01$ (H-3, 1H, a , $J_{H,H}$ =8.8HZ,), $/ .31$ (H-2, 1H, a , $J_{H,H}$ =2.8HZ), 7.04 (H 4' 1H ddd ${}^{3}L$ =7.0Hz ${}^{4}L$ =2.2Hz ${}^{4}L$ =1.7Hz) 6.02 (H
		7.04 (Π -4, 1 Π , aua, $J_{H,F}$ =7.9 Π Z, $J_{H,H}$ =2.2 Π Z, $J_{H,H}$ =1.7 Π Z), 0.93 (Π - 2) 111 JJJ ⁴ U = 2.211 ⁴ U = 1.711 ⁵ U = 1.211 ⁵ U = 1.2111 ⁵
		2, 1 Π , <i>dad</i> , $J_{H;H}=2.2\Pi Z$, $J_{H;H}=1./\Pi Z$, $J_{H,F}=1.2\Pi Z$), 00.00 (Π -0, 1 Π , <i>dd</i> ${}^{3}L=9.9\Pi z$ ${}^{4}L=2.9\Pi z$) 6.66 (Π 6, 1 Π <i>dt</i> ${}^{3}L=-0.6\Pi z$
		$^{4}L_{1-1-2}$ 2Hz).
47	3f	$S_{H,2H} = 2.2112$, $S_{T,2H} = 2.2112$,
-17	01	${}^{4}I=2$ 3Hz) 6 72 (H6/6' 2H d ${}^{3}I=8$ 7).
47-F3	3g	$\delta 7 81 (\text{H-3'} 1\text{H} d^{-4}I_{HH} = 2 3\text{Hz}) 7 43 (\text{H-5} 1\text{H} dd^{-3}I_{HH} = 8 9\text{Hz}$
	-8	${}^{4}J_{\mu\nu} = 7 \text{ Hz}, 7 42 \text{ (H-5', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 2.3), 6.82 \text{ (H-6', 1H, dd, }^{3}J_{\mu\nu} = 8.6, {}^{4}J_{\mu\nu} = 8.6, {}^{4$
		1 1H, d, 3 J _{H H} =8.6Hz), 6.48 (H-6, 1H, dd, 3 J _{H H} =8.9Hz, 5 J _{H F} =1.8Hz):
99	3h	δ 7.89 (H-3, 1H, s), 7.81 (H-3', 1H, d, ${}^{4}J_{HH}=2.3$ Hz), 7.43 (H-5', 1H,
		dd , ${}^{3}J_{H H} = 8.7 \text{Hz}$, ${}^{4}J_{H F} = 2.3 \text{Hz}$), 6.98 (H-6, 1H, s), 6.81 (H-6', 1H, d,
		${}^{3}J_{H,H}$ =8.7Hz);
99-F3'	3i	δ 7.90 (H-3, 1H, s), 7.49 (H-5', 1H, dd, ${}^{3}J_{HH}$ =8.9Hz, ${}^{4}J_{HF}$ =7.3Hz),
		7.10 (H-6, 1H, s), $\delta 6.59$ (H-6', 1H, dd , ${}^{3}J_{HH}=8.9$ Hz, ${}^{5}J_{HF}=1.8$ Hz):
		(, , , , , , , , , , , , , , , , , , ,

BZL	#	δ [ppm]	multiplicity	$^{3}J(\mathrm{F,H})$	⁴ <i>J</i> (F,H)	⁵ <i>J</i> (F,H5)
17-F5'	3a	-111.33	ddd	H-6'=9.3, H-4'=7.7	H-3'=5.9	
25-F5'	3b	-108.88	ddd	H-6'=9.7, H-4'=7.9		H-2'=1.7
28-F3'	3c	-103.86	ddd	H-2'=9.4	H-5'=7.0	H-6'=1.1
35-F5'	3e	-108.73	ddd	H-6'=9.6, H-4'=7.9		H-2'=1.2
47-F3	3g	- 95.27	dd		H-5=7.4	H-6=1.8
99-F3'	3i	- 94.68	dd		H-5'=7.3	H-6'=1.8

Table S2: ¹⁹F NMR chemical shifts δ [ppm] and couplings ⁿJ (¹H¹H, ¹H¹⁹F) [Hz] of F-PBDEs 35-F5' (**3d**), 47-F3 (**3g**), 99-F3' (**3i**), PBDEs 35 (**3d**), 47 (**3f**) and 99 (**3h**) in CDCl₃.

Table S3: ¹³C NMR chemical shifts δ [ppm] and couplings ⁿ*J* (¹³C¹⁹F) [Hz] of F-PBDEs 35-F5' (3d), 47-F3 (3g), 99-F3' (3i), PBDEs 35 (3d), 47 (3f) and 99 (3h) in CDCl₃.

	BZ/BZL	#	C-1	C-2	C-3	C-4	C-5	C-6	
	17-F5'	3a	152.03	115.85	136.59	117.92	132.08	121.61	
	25-F5'	3b	151.40	116.88	136.64	118.67	132.29	123.33	
	28-F3'	3c	151.79	116.60	136.55	118.29	132.19	122.90	
	35	3d	156.48	124.22	125.63	119.10	134.55	119.49	
	35-F5'	3e	155.42	120.06	125.85	120.12	134.74	124.92	
	47	3f	152.48	115.38	136.52	117.70	131.96	120.77	
	47-F3	3g	154.20	103.23	157.13	104.18	132.12	114.53	
	99	3h	153.02	115.82	137.58	119.93	124.38	123.06	
	99-F3'		152.46	114.01	137.72	120.79	124.52	124.11	
	473f152.48115.38136.52117.70131.96120.7747-F33g154.20103.23157.13104.18132.12114.53993h153.02115.82137.58119.93124.38123.0699-F3'3i152.46114.01137.72120.79124.52124.11BZ/BZL # C-1' C-2' C-3' C-4' C-5' C-6'17-F5'3a154.10108.36134.63112.49162.53106.8825-F5'3b158.62116.48123.23114.32163.43104.3128-F3'3c157.30106.53159.65102.78134.04114.41353d157.21122.53123.29127.50131.32117.9435-F5'3e158.04117.83114.93105.61473f152.48115.38136.52117.70131.96120.7747-F33g151.77113.48136.74118.29132.22121.6599-F3'3i151.77113.48136.74118.29132.22121.65								
	BZ/BZL	#	C-1'	C-2'	C-3'	C-4'	C-5'	C-6'	
	17-F5'	3a	154.10	108.36	134.63	112.49	162.53	106.88	
	25-F5'		158.62	116.48	123.23	114.32	163.43	104.31	
	28-F3'		157.30	106.53	159.65	102.78	134.04	114.41	
	35		157.21	122.53	123.29	127.50	131.32	117.94	
	35-F5'		158.04	117.83		114.93		105.61	
	47		152.48	115.38	136.52	117.70	131.96	120.77	
	47-F3	3g	151.92	115.94	136.66	118.19	132.14	121.77	
	99	3h	151.77	113.48	136.74	118.29	132.22	121.65	
	99-F3'	3i				105.10	132.36	115.43	
BZL#	ŧ #	$^{1}J($	F,C)	$^{2}J(\mathrm{F,C})$		$^{3}J(\mathrm{F},\mathrm{C})$	C)	$^{4}J(\mathrm{F,C})$	
17-F5	5' 39	C5	'-249.0	C4'-22 5		C1'-1	$0.1 \cdot C3' - 9$	2 C2'-47	
1/-1.	5 Ju	CJ	-2-17.0	C7 <i>-22</i> .3	,00-20.1	01-1	0.1,03-7	.2 C2 -7.7	
25-F5	5' 3b	C5	'=251.5	C4'=24.7	';C6'=25.2	C1'=1	1.7;C3'=8	6.6 C2'=3.4	
28-F3	3' 3c	C3	'=249.2	C2'=25.8	3;C4'=21.2	C1'=9	.5;C3'=1.0	6 C6'=3.5	
35-F5	5' 3e			C4'=23.4	;C6'=25.7			C2'=3.5	
47-F 3	3 3g	C3	=246.9	C2=24.2	; C4=22.7	C1=12	2.5; C5=1	1.3 C6=3.8	
99-F 3	3' 3i			C4'=22.8	8			C6'=3.8	
								23 2.0	

Iodonium salt #	[¹³ C I	M] ⁺	[M]+.	[M-]	HBr]	+ []	M-I] ⁺	[M-]	$Br_2]^+$	[M-I	Br] ⁺	[C ₆ H ₃ I	Br ₂] ^{+.}	[M-II	$\mathbf{Br}_{\mathbf{x}}]^{+}$	[M]	++	[C ₆ H ₄ B	$r_2O]^+$
1a	602	2	601	15	521	2	474	3	439	4	393	5	364	21	312	14	301	2	254	7
	600	8	599	61	519	7	472	9	437	8	391	16	362	43	310	25	300	12	252	11
	598	12	597	100	517	9	470	14	435	4	389	16	360	20	308	13	299	2	250	7
	596	9	595	67	515	3	468	10			387	6			X=		298	12		
															2					
	594	2	<i>593</i>	16			466	3												
1b	602	2	601	16	521	3	474	12	439	1	<i>393</i>	1	364	4	312	19	301	1	254	9
	600	10	599	66	519	9	472	52	437	2	391	2	362	7	310	33	300	2	252	18
	598	13	597	100	517	10	470	77	435	1	389	2	360	3	308	19	299	2	250	9
	596	9	595	67	515	4	468	54			387	1			X=					
	594	2	<i>593</i>	17			466	13							2					
1c	762	1	761	4	681	2	634	1	601	1	553	2			444	7	381	1	254	7
	760	4	759	26	679	3	632	3	599	1	551	7			442	20	380	8	252	15
	758	9	757	70	677	5	630	5	597	1	549	19			440	21	379	2	250	8
	756	12	755	100	675	1	628	7			547	19			438	7		6		
	754	9	753	76			626	6			545	8			X=					
	752	4	751	31			624	4			543	2			3					
	750	1	749	5			622	1												

Table S4: m/z values and relative abundance [%] of ions of 2,2',4,4'-tertrabromo-diphenyl iodonium salt (1a), 3,3',4,4'-tertrabromo-diphenyl iodonium salt (1b) and 2,2',4,4',5,5'-hexabromo-diphenyl iodonium salt (1c) measured by HPLC-MS.

BZ/BLZ#	#	[¹³ C M		[M] ^{+.}		[M-I	Br ₂ +1]	+. [M	$-Br_2]^{+}$	[C ₁₁ (]	$[C_{11}(F)H_x]^+$		
17F-5'	3a	429	2	428	20	265	15	264	100	157	43		
		427	7	426	58	267	12	266	97	F;			
		425	8	424	58					x=6			
		423	3	422	21								
25F-5'	3b	429	1	428	10	267	15	266	100	157	33		
		427	4	426	31	265	12	264	95	F;			
		425	4	424	30					x=6			
		423	1	422	11								
28F-3'	3c	429	2	428	15	267	11	266	98	157	49		
		427	6	426	47	265	15	264	100	F;			
		425	6	424	47					x=6			
		423	2	422	17								
35	3d	411	3	410	31	249	4	248	30	139	50		
		409	13	408	97	247	5	246	33	x=7			
		407	13	406	100								
		405	4	404	35								
35F-5'	3e	429	3	428	33	267	5	266	41	157	66		
		427	13	426	100	265	7	264	43	F:			
		425	13	424	99					x=6			
		423	4	422	37								
47	3f	491	2	490	17	329	6	328	42	138	11		
	-	489	8	488	65	327	12	326	87	x=6			
		487	14	486	100	325	7	324	46				
		485	9	484	70								
		483	0	482	18								
47F-3	3g	509	2	508	13	347	6	346	48	156	18		
	~8	507	6	506	50	345	12	344	100	F:	10		
		505	10	504	77	343	8	342	50	x=5			
		503	6	502	52	0.0	C	0.2	00				
		502	2	500	14								
99	3h	571	1	570	7	409	4	408	31	137	21		
	011	569	4	568	35	407	12	406	95	x=5			
		567	8	566	69	405	13	404	100	n e			
		565	9	564	71	403	5	402	33				
		563	4	562	37	100	Ũ	102	00				
		561	1	560	7								
99F-3'	3i	589	1	588	, 7	427	4	426	31	155	23		
,,, 1 ,-9	51	587	1 1	586	32	425	12	474	91	F.	23		
		585	۳ ۶	584	52 64	423	13	+2+ 127	100	ι, v-Λ			
		583	Q	582	67	423	5	- <u>+</u> 22 120	35	A-7			
		581	7 /	580 580	3/	741	5	720	55				
		570	+ 1	570	54 7								

Table S5: m/z values and relative abundance [%] of ions of PBDEs and F-PBDEs (**3a-i**) measured by GC-MS.