Web Based Supplementary Material for Combining Disease Models to test for Gene-Environment Interaction in Nuclear Families by Thomas J. Hoffmann, Stijn Vansteelandt, Christoph Lange, Edwin K. Silverman, Dawn L. DeMeo, and Nan M. Laird

Web Appendix A: Conditional independence of the gene and environment given the sufficient statistic for parental mating type

Here we drop the subscript *i* from our notation, and partition P into P^{obs} and P^{mis} , the genotypes of the observed and missing parents, where P^{obs} can be null. The independence of **X** and **Z** given *S* follows from two properties of the sufficient statistic: it depends only on observed genotype data and the distribution of **X** given *S* and P^{mis} does not depend on P^{mis} . We assume

- (1) \mathbf{X} and \mathbf{Z} are independent given P.
- (2) S is solely determined by **X** and P^{obs} .

A formal argument can be given as follows. Because S is a function only of P^{obs} and **X**, we can write

$$Pr(\mathbf{X}, \mathbf{Z}, P) \propto Pr(\mathbf{X}, \mathbf{Z}, S, P^{\text{mis}})$$

but by assumption 1,

$$Pr(\mathbf{X}, \mathbf{Z}, S, P^{\text{mis}}) = Pr(\mathbf{X}|S, P^{\text{mis}})Pr(\mathbf{Z}|S, P^{\text{mis}})Pr(P^{\text{mis}}|S)Pr(S)$$

because S and P^{mis} together give P. Additionally, by definition of the sufficient statistic, $Pr(\mathbf{X}|S, P^{\text{mis}}) = Pr(\mathbf{X}|S)$, hence summing of the above equation over the P^{mis} and dividing by Pr(S) gives $Pr(\mathbf{X}, \mathbf{Z}|S) \propto Pr(\mathbf{X}|S)Pr(\mathbf{Z}|S)$, and hence $Pr(\mathbf{X}, \mathbf{Z}|S)$ factors.

Web Appendix B: Further details of the TX method

Here we fill in the missing details for the derivation in Section 2.1. A detailed derivation of the likelihood for the log link proceeds as follows. Continuing from equation 3 in the paper, the retrospective likelihood is given by

$$\mathcal{L}_{i}^{\mathrm{TX}} = Pr(\mathbf{X}_{i} | \mathbf{Y}_{i} = \mathbf{1}, \mathbf{Z}_{i}, S_{i})$$
$$= \frac{Pr(\mathbf{Y}_{i} = 1 | \mathbf{X}_{i}, \mathbf{Z}_{i}, S_{i}) Pr(\mathbf{X}_{i}, \mathbf{Z}_{i} | S_{i})}{\sum_{\mathbf{X}^{\star} \in S_{i}} Pr(\mathbf{Y}_{i} = 1 | \mathbf{X}^{\star}, \mathbf{Z}_{i}, S_{i}) Pr(\mathbf{X}^{\star}, \mathbf{Z}_{i} | S_{i})}.$$

Hoffmann et al. (2009) and Web Appendix A show that conditional independence of the genotype and exposure given the parents (P) implies conditional independence of the genotype and exposure given the sufficient statistic for parental mating type (i.e. $\mathbf{X} \perp \mathbf{Z} | P \Rightarrow \mathbf{X} \perp \mathbf{Z} | S$). Using this result, and the assumption in equation 2, we have

$$\mathcal{L}_{i}^{\mathrm{TX}} = \frac{\left\{\prod_{j} Pr(Y_{ij} = 1 | \mathbf{X}_{ij}, Z_{ij}, S_{i})\right\} Pr(\mathbf{X}_{i} | S_{i})}{\sum_{\mathbf{X}^{\star} \in S_{i}} \left\{\prod_{j} Pr(Y_{ij} = 1 | \mathbf{X}_{j}^{\star}, Z_{ij}, S_{i})\right\} Pr(\mathbf{X}^{\star} | S_{i})}$$
$$\frac{e^{\beta_{\mathrm{ge}}^{T} \sum_{j} \mathbf{X}_{\mathrm{ge}, ij} Z_{ij} + \beta_{\mathrm{g}}^{T} \sum_{j} \mathbf{X}_{ij}} Pr(\mathbf{X}_{i} | S_{i})}{\sum_{\mathbf{X}^{\star} \in S_{i}} e^{\beta_{\mathrm{ge}}^{T} \sum_{j} \mathbf{X}_{\mathrm{ge}, j}^{\star} Z_{ij} + \beta_{\mathrm{g}}^{T} \sum_{j} \mathbf{X}_{j}^{\star} Pr(\mathbf{X}^{\star} | S_{i})}}{\sum_{\mathbf{X}^{\star} \in S_{i}} e^{\beta_{\mathrm{ge}}^{T} \sum_{j} \mathbf{X}_{\mathrm{ge}, j}^{\star} Z_{ij} + \beta_{\mathrm{g}}^{T} \sum_{j} \mathbf{X}_{j}^{\star} Pr(\mathbf{X}^{\star} | S_{i})}}.$$

Then the log-likelihood is given by equation 4. Then the test statistic is computed as described in Section 2.1 following after equation 4. For the test statistic, we need a few derivatives that we present here now. The derivative of $\ell_{i,TX}$ is given in equation 5, where

$$E\left\{ \left| \sum_{j} \left(\mathbf{X}_{\text{ge},ij} Z_{ij} \\ \mathbf{X}_{ij} \right) \right| \mathbf{Y}_{i} = 1, \mathbf{Z}_{i}, S_{i}; \boldsymbol{\beta} \right\}$$
$$= \frac{\sum_{\mathbf{X}^{\star} \in S_{i}} \left\{ \sum_{j} \left(\mathbf{X}_{\text{ge},j}^{\star} Z_{ij} \\ \mathbf{X}_{j}^{\star} \right) \right\} e^{\boldsymbol{\beta}_{\text{ge}}^{T} \sum_{j} \mathbf{X}_{\text{ge},j}^{\star} Z_{j} + \boldsymbol{\beta}_{\text{g}}^{T} \sum_{j} \mathbf{X}_{j}^{\star} Pr(\mathbf{X}^{\star} | S_{i})}{\sum_{\mathbf{X}^{\star} \in S_{i}} e^{\boldsymbol{\beta}_{\text{ge}}^{T} \sum_{j} \mathbf{X}_{\text{ge},j}^{\star} Z_{j} + \boldsymbol{\beta}_{\text{g}}^{T} \sum_{j} \mathbf{X}_{j}^{\star} Pr(\mathbf{X}^{\star} | S_{i})}.$$

Lastly, to compute W_i , we need the following second derivatives. Let

$$A_{i,a,b} = \sum_{\mathbf{g}^{\star} \in S_i} \left(\sum_j \mathbf{X}_{\mathrm{ge},j}^{\star} Z_{ij} \right)^{\otimes a} \left\{ \left(\mathbf{X}_{\mathrm{ge},j}^{\star} \mathbf{X}_j^{\star} \right)^{\otimes b} \right\}^T e^{\beta_{\mathrm{ge}}^T \sum_j \mathbf{X}_{\mathrm{ge},j}^{\star} Z_{ij} + \beta_{\mathrm{g}}^T \sum_j \mathbf{X}_j^{\star} Pr(\mathbf{X}^{\star} | S_i),$$

where we define $M^{\otimes 0} = 1$, $M^{\otimes 1} = M$, and $M^{\otimes 2} = MM^T$. Then we have

$$\frac{\partial}{\partial\beta_{\text{nuis}}} U_i^{\beta_{\text{ge}}}(\boldsymbol{\beta}) = \frac{A_{i,1,1}A_{i,0,0} - A_{i,1,0}A_{i,0,1}}{A_{i,0,0}^2} \tag{1}$$

$$\frac{\partial}{\partial\beta_{\text{nuis}}} U_i^{\beta_e}(\boldsymbol{\beta}) = \frac{A_{i,0,2}^T A_{i,0,0} - \left(A_{i,0,1}^T\right)^{\otimes 2}}{A_{i,0,0}^2}.$$
(2)

Web Appendix C: Distribution of W_i

From a Taylor series expansion, we have that

$$n^{-1/2} \sum_{i} U_{i}^{\text{ge}}(\boldsymbol{\beta}_{\text{ge}}, \hat{\boldsymbol{\beta}}_{\text{nuis}}) = n^{-1/2} \sum_{i} U_{i}^{\text{ge}}(\boldsymbol{\beta}_{\text{ge}}, \boldsymbol{\beta}_{\text{nuis}}) + n^{-1/2} \sum_{i} E\left\{\frac{\partial}{\partial \boldsymbol{\beta}_{\text{nuis}}} U_{i}^{\text{ge}}(\boldsymbol{\beta}_{\text{ge}}, \boldsymbol{\beta}_{\text{nuis}})\right\} \left(\hat{\boldsymbol{\beta}}_{\text{nuis}} - \boldsymbol{\beta}_{\text{nuis}}\right) + o_{p}(1) n^{-1/2} \sum_{i} U_{i}^{\text{nuis}}(\boldsymbol{\beta}_{\text{ge}}, \hat{\boldsymbol{\beta}}_{\text{nuis}}) = n^{-1/2} \sum_{i} U_{i}^{\text{nuis}}(\boldsymbol{\beta}_{\text{ge}}, \boldsymbol{\beta}_{\text{nuis}}) + n^{-1/2} \sum_{i} E\left\{\frac{\partial}{\partial \boldsymbol{\beta}_{\text{nuis}}} U_{i}^{\text{nuis}}(\boldsymbol{\beta}_{\text{ge}}, \boldsymbol{\beta}_{\text{nuis}})\right\} \left(\hat{\boldsymbol{\beta}}_{\text{nuis}} - \boldsymbol{\beta}_{\text{nuis}}\right) + o_{p}(1) = n^{-1/2} \sum_{i} E\left\{\frac{\partial}{\partial \boldsymbol{\beta}_{\text{nuis}}} U_{i}^{\text{nuis}}(\boldsymbol{\beta}_{\text{ge}}, \boldsymbol{\beta}_{\text{nuis}})\right\} \left(\hat{\boldsymbol{\beta}}_{\text{nuis}} - \boldsymbol{\beta}_{\text{nuis}}\right) + o_{p}(1) .$$

Hence $n^{-1/2}\sum_i U^{\rm ge}_i(\pmb{\beta}_{\rm ge}, \hat{\pmb{\beta}}_{\rm nuis}) =$

$$n^{-1/2} \sum_{i} U_{i}^{\text{ge}}(\boldsymbol{\beta}_{\text{ge}}, \boldsymbol{\beta}_{\text{nuis}}) + n^{-1/2} \sum_{i} E\left\{\frac{\partial}{\partial \boldsymbol{\beta}_{\text{nuis}}} U_{i}^{\text{ge}}(\boldsymbol{\beta}_{\text{ge}}, \boldsymbol{\beta}_{\text{nuis}})\right\} E\left\{\frac{\partial}{\partial \boldsymbol{\beta}_{\text{nuis}}} U_{i}^{\text{nuis}}(\boldsymbol{\beta}_{\text{ge}}, \boldsymbol{\beta}_{\text{nuis}})\right\}^{-} U_{i}^{\text{nuis}}(\boldsymbol{\beta}_{\text{ge}}, \hat{\boldsymbol{\beta}}_{\text{nuis}}) + o_{p}(1).$$

$$(3)$$

It now follows from the central limit theorem that W_i follows an asymptotically multivariate normal distribution, with variance that can be consistently estimated by the right hand side of the expression in web equation 3, replacing β_{nuis} with $\hat{\beta}_{\text{nuis}}$. The test has rank $(\sum_i W_i W_i^T)$ degrees of freedom.

Web Appendix D: Further details of CLR-IJ

Here we fill in the missing details in the derivation in section 2.2.2. We continue from equation 7 in the paper. Calculations follow Chatterjee et al. (2005), but use the more general sibship. We have

$$\begin{aligned} \mathcal{L}_{i}^{\text{CLR-IJ}} &= Pr\{\mathbf{Y}_{i,A(\mathbf{Y}_{i})} = \mathbf{1}, \mathbf{Y}_{i,U(\mathbf{Y}_{i})} = \mathbf{0}, \mathbf{X}_{i} | \mathbf{Y}_{i+}, S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}; \boldsymbol{\beta} \} \\ &= Pr\{\mathbf{Y}_{i,A(\mathbf{Y}_{i})} = \mathbf{1}, \mathbf{Y}_{i,U(\mathbf{Y}_{i})} = \mathbf{0} | \mathbf{X}_{i}, \mathbf{Y}_{i+}, S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}; \boldsymbol{\beta} \} Pr(\mathbf{X}_{i} | \mathbf{Y}_{i+}, S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}; \boldsymbol{\beta}) \\ &:= \mathcal{L}_{i}^{\text{CLR}} \mathcal{L}_{i}^{\star}, \end{aligned}$$

where $\mathcal{L}_i^{\text{CLR}}$ is the likelihood from conditional logistic regression (Witte et al., 1999; Siegmund et al., 2000; Weinberg, 2000). The term \mathcal{L}_i^{\star} may resemble the term in $\mathcal{L}_i^{\text{TX}}$, except that the latter only includes affected offspring, whereas the former used here includes all offspring. Now, working with just the second term, we have

$$\mathcal{L}_{i}^{\star} = \frac{Pr(\mathbf{Y}_{i+}|\mathbf{X}_{i}, S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}, \boldsymbol{\beta})Pr(\mathbf{X}_{i}|S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}, \boldsymbol{\beta})}{\sum_{\mathbf{X}^{\star} \in S_{i}} Pr(\mathbf{Y}_{i+}|\mathbf{X}_{i}^{\star}, S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}, \boldsymbol{\beta})Pr(\mathbf{X}_{i}^{\star}|S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}, \boldsymbol{\beta})}{Pr(\mathbf{Y}_{i+}|\mathbf{X}_{i}, S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}, \boldsymbol{\beta})Pr(\mathbf{X}_{i}|S_{i})}$$
$$= \frac{Pr(\mathbf{Y}_{i+}|\mathbf{X}_{i}, S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}, \boldsymbol{\beta})Pr(\mathbf{X}_{i}|S_{i})}{\sum_{\mathbf{X}^{\star} \in S_{i}} Pr(\mathbf{Y}_{i+}|\mathbf{X}_{i}^{\star}, S_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}, \boldsymbol{\beta})Pr(\mathbf{X}_{i}^{\star}|S_{i})}$$

by the assumption that $\mathbf{X} \perp \mathbf{Z}|P$ (which implies $\mathbf{X} \perp \mathbf{Z}|S$ as shown in Hoffmann et al. (2009) and Web Appendix A). Next, assuming phenotypic independence of the sibs and using equation 1 we have that $Pr(\mathbf{Y}_{i+}|\mathbf{X}_i, S_i, \mathbf{Z}_i, \mathbf{C}_i; \boldsymbol{\beta})$

$$= \sum_{\mathbf{Y}^{\star}:\mathbf{Y}^{\star}_{+}=\mathbf{Y}_{i+}} Pr(\mathbf{Y}_{i} = \mathbf{Y}^{\star} | \mathbf{X}_{i}, \mathbf{Z}_{i}, \mathbf{C}_{i}; \boldsymbol{\beta})$$

$$= \sum_{\mathbf{Y}^{\star}:\mathbf{Y}^{\star}_{+}=\mathbf{Y}_{i+}} \left\{ \prod_{j \in A(\mathbf{Y}^{\star})} Pr(Y_{j} = \mathbf{1} | \mathbf{X}_{ij}, Z_{ij}, \mathbf{C}_{ij}; \boldsymbol{\beta}) \right\} \left\{ \prod_{j \in U(\mathbf{Y}^{\star})} Pr(\mathbf{Y}_{j} = \mathbf{0} | \mathbf{X}_{ij}, Z_{ij}, \mathbf{C}_{ij}; \boldsymbol{\beta}) \right\}$$

$$= \sum_{\mathbf{Y}^{\star}:\mathbf{Y}^{\star}_{+}=\mathbf{Y}_{i+}} \frac{\prod_{j \in A(\mathbf{Y}^{\star})} e^{\alpha_{i}} e^{h(\mathbf{X}_{\mathbf{i}j}, Z_{ij}, \mathbf{C}_{ij}; \boldsymbol{\beta})}}{\prod_{\mathbf{Y}^{\star}:\mathbf{Y}^{\star}_{+}=y_{i+}} \left\{ 1 + \prod_{j \in \mathbf{Y}^{\star}} e^{\alpha_{i}} e^{h(\mathbf{X}_{\mathbf{i}j}, Z_{ij}, \mathbf{C}_{ij}; \boldsymbol{\beta})} \right\}$$

$$\approx \sum_{\mathbf{Y}^{\star}:\mathbf{Y}^{\star}_{+}=\mathbf{Y}_{i+}} \left\{ \prod_{j \in A(\mathbf{Y}^{\star})} e^{\alpha_{i}} e^{h(\mathbf{X}_{\mathbf{i}j}, Z_{ij}, \mathbf{C}_{ij}; \boldsymbol{\beta})} \right\}$$

under the rare disease assumption, where

$$h(\mathbf{X}_{ij}, Z_{ij}, \mathbf{C}_{ij}; \beta) = \boldsymbol{\beta}_{ge}^T \mathbf{X}_{ge,j}^{\star} Z_{ij} + \boldsymbol{\beta}_{nuis}^T \mathbf{m}(\mathbf{X}_j^{\star}, Z_{ij}, \mathbf{C}_{ij}).$$

Then we have that

$$\mathcal{L}_{i}^{\star} = \frac{\left\{\sum_{\mathbf{Y}^{\star}:\mathbf{Y}_{+}^{\star}=\mathbf{Y}_{i+}}\prod_{j\in A(\mathbf{Y}^{\star})}e^{h(\mathbf{X}_{ij},Z_{ij},\mathbf{C}_{ij};\boldsymbol{\beta})}\right\}Pr(\mathbf{X}_{i}|S_{i})}{\sum_{\mathbf{X}^{\star}\in S_{i}}\left\{\sum_{\mathbf{Y}^{\star}:\mathbf{Y}_{+}^{\star}=\mathbf{Y}_{i+}}\prod_{j\in A(\mathbf{Y}^{\star})}e^{h(\mathbf{X}_{ij},Z_{ij},\mathbf{C}_{ij};\boldsymbol{\beta})}\right\}Pr(\mathbf{X}_{i}^{\star}|S_{i})}.$$

Putting these two back together leaves us with

$$\mathcal{L}_{i}^{\text{CLR-IJ}} = \frac{\left\{ \prod_{j \in A(\mathbf{Y}_{i})} e^{h(\mathbf{X}_{ij}, Z_{ij}, \mathbf{C}_{ij}; \boldsymbol{\beta})} \right\} Pr(\mathbf{X}_{i} | S_{i})}{\sum_{\mathbf{X}^{\star} \in S_{i}} \left\{ \sum_{\mathbf{Y}^{\star}: \mathbf{Y}^{\star}_{+} = \mathbf{Y}_{i+}} \prod_{j \in A(\mathbf{Y}^{\star})} e^{h(\mathbf{X}_{ij}, Z_{ij}, \mathbf{C}_{ij}; \boldsymbol{\beta})} \right\} Pr(\mathbf{X}_{i}^{\star} | S_{i})}$$
$$= \frac{e^{\sum_{j \in A(\mathbf{Y}_{i})} h(\mathbf{X}_{ij}, Z_{ij}, \mathbf{C}_{ij}; \boldsymbol{\beta})} Pr(\mathbf{X}_{i} | S_{i})}{\sum_{\mathbf{X}^{\star} \in S_{i}, \mathbf{Y}^{\star}: \mathbf{Y}^{\star}_{+} = \mathbf{Y}_{i+}} e^{\sum_{j \in A(\mathbf{Y}^{\star})} h(\mathbf{X}_{ij}, Z_{ij}, \mathbf{C}_{ij}; \boldsymbol{\beta})} Pr(\mathbf{X}_{i}^{\star} | S_{i})}.$$

Then the log-likelihood is given by equation 7 in the paper. Then the test statistic is computed as described in section 2.2.2, with the derivatives given here. The derivative of the loglikelihood is as given in equation 11, where

$$E\left[\sum_{j\in A(\mathbf{Y}_{i})} \left\{ \begin{array}{c} \mathbf{X}_{\mathrm{ge},ij}Z_{ij} \\ \mathbf{m}(\mathbf{X}_{ij}, Z_{ij}, \mathbf{C}_{ij}) \end{array} \right\} \middle| \mathbf{Y}_{i+}, \mathbf{Z}_{i}, \mathbf{C}_{i}, S_{i}; \boldsymbol{\beta} \right]$$

$$= \frac{\sum_{\substack{\mathbf{X}^{\star} \in S_{i}, \\ \mathbf{Y}^{\star}: \mathbf{Y}^{\star}_{+} = \mathbf{Y}_{i+}} \left[\sum_{j\in A(\mathbf{Y}^{\star})} \left\{ \begin{array}{c} \mathbf{X}_{\mathrm{ge},j}^{\star}Z_{ij} \\ \mathbf{m}(\mathbf{X}^{\star}_{j}, Z_{ij}, \mathbf{C}_{ij}) \end{array} \right\} \right] e^{\sum_{j\in A(\mathbf{Y}^{\star})} \beta_{\mathrm{ge}}^{\mathrm{T}} \mathbf{X}_{\mathrm{ge},j}^{\star}Z_{ij} + \beta_{\mathrm{nuis}}^{\mathrm{T}} \mathbf{m}(\mathbf{X}^{\star}_{j}, Z_{ij}, \mathbf{C}_{ij}) Pr(\mathbf{X}^{\star}|S_{i})}{\mathbf{M}(\mathbf{X}^{\star}_{j}, Z_{ij}, \mathbf{C}_{ij})} \right\} \right] e^{\sum_{j\in A(\mathbf{Y}^{\star})} \beta_{\mathrm{ge}}^{\mathrm{T}} \mathbf{X}_{\mathrm{ge},j}^{\star}Z_{ij} + \beta_{\mathrm{nuis}}^{\mathrm{T}} \mathbf{m}(\mathbf{X}^{\star}_{j}, Z_{ij}, \mathbf{C}_{ij}) Pr(\mathbf{X}^{\star}|S_{i})}{\sum_{\substack{\mathbf{X}^{\star} \in S_{i}, \\ \mathbf{Y}^{\star}: \mathbf{Y}^{\star}_{+} = \mathbf{Y}_{i+}}} e^{\sum_{j\in A(\mathbf{Y}^{\star})} \beta_{\mathrm{ge}}^{\mathrm{T}} \mathbf{X}_{\mathrm{ge},j}^{\star}Z_{ij} + \beta_{\mathrm{nuis}}^{\mathrm{T}} \mathbf{m}(\mathbf{X}^{\star}_{j}, Z_{ij}, \mathbf{C}_{ij}) Pr(\mathbf{X}^{\star}|S_{i})} e^{\sum_{j\in A(\mathbf{Y}^{\star})} \beta_{\mathrm{ge}}^{\mathrm{T}} \mathbf{X}_{\mathrm{ge},j}^{\star}Z_{ij} + \beta_{\mathrm{nuis}}^{\mathrm{T}} \mathbf{m}(\mathbf{X}^{\star}_{j}, Z_{ij}, \mathbf{C}_{ij}) Pr(\mathbf{X}^{\star}|S_{i})}}{e^{\sum_{j\in A(\mathbf{Y}^{\star})} \beta_{\mathrm{ge}}^{\mathrm{T}} \mathbf{X}_{\mathrm{ge},j}^{\star}Z_{ij} + \beta_{\mathrm{nuis}}^{\mathrm{T}} \mathbf{m}(\mathbf{X}^{\star}_{j}, Z_{ij}, \mathbf{C}_{ij}) Pr(\mathbf{X}^{\star}|S_{i})}} e^{\sum_{j\in A(\mathbf{Y}^{\star})} \beta_{\mathrm{ge}}^{\mathrm{T}} \mathbf{X}_{\mathrm{ge},j}^{\star}Z_{ij} + \beta_{\mathrm{nuis}}^{\mathrm{T}} \mathbf{m}(\mathbf{X}^{\star}_{j}, Z_{ij}, \mathbf{C}_{ij})} Pr(\mathbf{X}^{\star}|S_{i})}}$$

For the second derivatives, redefine

$$\begin{split} A_{i,a,b} &= \sum_{\mathbf{X}^{\star} \in S_i, \mathbf{Y}^{\star}: \mathbf{Y}^{\star}_{+} = \mathbf{Y}_{i+}} \left(\sum_{j} \mathbf{X}^{\star}_{\mathrm{ge}, j} Z_{ij} \right)^{\otimes a} \left[\left\{ \sum_{j} \mathbf{m}(\mathbf{X}^{\star}_{j}, Z_{ij}, C_{ij}) \right\}^{\otimes b} \right]^{T} \\ &\times e^{\sum_{j \in A(\mathbf{Y}^{\star})} \beta_{ge} \mathbf{X}^{\star}_{\mathrm{ge}, j} Z_{ij} + \beta_{g}^{T} \mathbf{X}^{\star}_{j}} Pr(\mathbf{X}^{\star} | S_{i}). \end{split}$$

Then the second derivatives are given by web equations 1 and 2.

Web Appendix E: Additional type I error simulations

Web Figure 1 shows further simulation results looking at type I error under the log link by population prevalence in Web Figure 1(a) and when there is arbitrary phenotype correlation in Web Figure 1(b).

(a) Simulation study to assess type I error for a dichotomous exposure with strong main effects for 500 families under the log link. Based on 100,000 simulations. The gray line is drawn at 0.05.

(b) Simulation study to assess type I error for the effect of arbitrary phenotypic correlation in DSP (failure of assumption 2) under the log link. Based on 100,000 simulations.

Web Appendix F: Further power results

In Figure 2 we show the effect of varying the environmental exposure prevalence. The casecontrol power approaches and surpasses the TX approach for trios as the environmental exposure prevalence increases.

Power by Environmental Exposure Prevalence

 $\label{eq:epsilon} \begin{array}{l} \text{Environmental Exposure Prevalence} \\ e^{\beta_{ge}} = 1.75, \ e^{\beta_{g}} = e^{\beta_{e}} = 1.5, K \in \ (0.021, 0.030), \ p_{allele} = 0.2, \ \rho_{env} = 0.3, \ \text{Log-Linear}, \ 500 \ \text{Cases} \end{array}$

Figure 2. Power of the test for a dichotomous trait by environmental exposure. Based on 10,000 simulations; approximate SE < 0.0025.

Web Appendix G: Additional dataset information

In Web Figure 3 we show the SNPs that had joint test p-value < 0.15, that is the SNPs presented in Table 2.

Biometrics

Figure 3. Plot of the SNPs in the Serpine2 gene with joint test p-values < 0.15, as shown in Table 2.

References

- Chatterjee, N., Kalaylioglu, Z., and Carroll, R. J. (2005). Exploiting gene-environment independence in family-based case-control studies: increased power for detecting associations, interactions and joint effects. *Genet Epidemiol* 28, 138–156.
- Hoffmann, T. J., Lange, C., Vansteelandt, S., and Laird, N. M. (2009). Gene-environment interaction tests for dichotomous traits in trios and sibships. *Genet Epidemiol* 33, 691– 699.
- Siegmund, K. D., Langholz, B., Kraft, P., and Thomas, D. C. (2000). Testing linkage disequilibrium in sibships. Am J Hum Genet 67, 244–248.
- Weinberg, C. (2000). Re: "asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs". Am J Epidemiol 152, 689–691.
- Witte, J. S., Gauderman, W. J., and Thomas, D. C. (1999). Asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs. Am J Epidemiol 149, 693–705.