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Web Appendix A: Conditional independence of the gene and environment

given the sufficient statistic for parental mating type

Here we drop the subscript i from our notation, and partition P into P obs and Pmis, the

genotypes of the observed and missing parents, where P obs can be null. The independence

of X and Z given S follows from two properties of the sufficient statistic: it depends only

on observed genotype data and the distribution of X given S and Pmis does not depend on

Pmis. We assume

(1) X and Z are independent given P .

(2) S is solely determined by X and P obs.

A formal argument can be given as follows. Because S is a function only of P obs and X, we

can write

Pr(X,Z, P ) ∝ Pr(X,Z, S, Pmis)

but by assumption 1,

Pr(X,Z, S, Pmis) = Pr(X|S, Pmis)Pr(Z|S, Pmis)Pr(Pmis|S)Pr(S)

because S and Pmis together give P . Additionally, by definition of the sufficient statistic,

Pr(X|S, Pmis) = Pr(X|S), hence summing of the above equation over the Pmis and dividing

by Pr(S) gives Pr(X,Z|S) ∝ Pr(X|S)Pr(Z|S), and hence Pr(X,Z|S) factors.
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Web Appendix B: Further details of the TX method

Here we fill in the missing details for the derivation in Section 2.1. A detailed derivation of

the likelihood for the log link proceeds as follows. Continuing from equation 3 in the paper,

the retrospective likelihood is given by

LTX
i = Pr(Xi|Yi = 1,Zi, Si)

=
Pr(Yi = 1|Xi,Zi, Si)Pr(Xi,Zi|Si)∑

X?∈Si
Pr(Yi = 1|X?,Zi, Si)Pr(X?,Zi|Si)

.

Hoffmann et al. (2009) and Web Appendix A show that conditional independence of the

genotype and exposure given the parents (P ) implies conditional independence of the geno-

type and exposure given the sufficient statistic for parental mating type (i.e. X ⊥ Z|P ⇒

X ⊥ Z|S). Using this result, and the assumption in equation 2, we have

LTX
i =

{∏
j Pr(Yij = 1|Xij, Zij, Si)

}
Pr(Xi|Si)∑

X?∈Si

{∏
j Pr(Yij = 1|X?

j , Zij, Si)
}
Pr(X?|Si)

eβ
T
ge

∑
j Xge,ijZij+βT

g

∑
j XijPr(Xi|Si)∑

X?∈Si
eβ

T
ge

∑
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?
ge,jZij+βT

g

∑
j X

?
jPr(X?|Si)

.

Then the log-likelihood is given by equation 4. Then the test statistic is computed as

described in Section 2.1 following after equation 4. For the test statistic, we need a few

derivatives that we present here now. The derivative of `i,TX is given in equation 5, where

E


∑
j

 Xge,ijZij

Xij


∣∣∣∣∣∣∣Yi = 1,Zi, Si;β



=

∑
X?∈Si

∑j
 X?

ge,jZij

X?
j


 eβ

T
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∑
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?
jPr(X?|Si)

∑
X?∈Si
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.

Lastly, to compute Wi, we need the following second derivatives. Let

Ai,a,b =
∑
g?∈Si

(∑
j

X?
ge,jZij

)⊗a {(
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ge,jX
?
j

)⊗b}T
eβ

T
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∑
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?
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∑
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?
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where we define M⊗0 = 1, M⊗1 = M , and M⊗2 = MMT . Then we have

∂

∂βnuis

U
βge
i (β) =

Ai,1,1Ai,0,0 − Ai,1,0Ai,0,1
A2
i,0,0

(1)

∂

∂βnuis

Uβe
i (β) =

ATi,0,2Ai,0,0 −
(
ATi,0,1

)⊗2

A2
i,0,0

. (2)

Web Appendix C: Distribution of Wi

From a Taylor series expansion, we have that
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∑
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Hence n−1/2
∑

i U
ge
i (βge, β̂nuis) =

n−1/2
∑
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It now follows from the central limit theorem that Wi follows an asymptotically multivariate

normal distribution, with variance that can be consistently estimated by the right hand side

of the expression in web equation 3, replacing βnuis with β̂nuis. The test has rank(
∑

iWiW
T
i )

degrees of freedom.
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Web Appendix D: Further details of CLR-IJ

Here we fill in the missing details in the derivation in section 2.2.2. We continue from equation

7 in the paper. Calculations follow Chatterjee et al. (2005), but use the more general sibship.

We have

LCLR-IJ
i = Pr{Yi,A(Yi) = 1,Yi,U(Yi) = 0,Xi|Yi+, Si,Zi,Ci;β}

= Pr{Yi,A(Yi) = 1,Yi,U(Yi) = 0|Xi,Yi+, Si,Zi,Ci;β}Pr(Xi|Yi+, Si,Zi,Ci;β)

:= LCLR
i L?i ,

where LCLR
i is the likelihood from conditional logistic regression (Witte et al., 1999; Siegmund

et al., 2000; Weinberg, 2000). The term L?i may resemble the term in LTX
i , except that the

latter only includes affected offspring, whereas the former used here includes all offspring.

Now, working with just the second term, we have

L?i =
Pr(Yi+|Xi, Si,Zi,Ci,β)Pr(Xi|Si,Zi,Ci,β)∑

X?∈Si
Pr(Yi+|X?

i , Si,Zi,Ci,β)Pr(X?
i |Si,Zi,Ci,β)

=
Pr(Yi+|Xi, Si,Zi,Ci,β)Pr(Xi|Si)∑

X?∈Si
Pr(Yi+|X?

i , Si,Zi,Ci,β)Pr(X?
i |Si)

by the assumption that X ⊥ Z|P (which implies X ⊥ Z|S as shown in Hoffmann et al.

(2009) and Web Appendix A). Next, assuming phenotypic independence of the sibs and

using equation 1 we have that Pr(Yi+|Xi, Si,Zi,Ci;β)

=
∑
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=
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under the rare disease assumption, where

h(Xij, Zij,Cij; β) = βTgeX
?
ge,jZij + βTnuism(X?

j , Zij,Cij).
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Then we have that
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.

Putting these two back together leaves us with

LCLR-IJ
i =

{∏
j∈A(Yi)
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.

Then the log-likelihood is given by equation 7 in the paper. Then the test statistic is computed

as described in section 2.2.2, with the derivatives given here. The derivative of the log-

likelihood is as given in equation 11, where
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For the second derivatives, redefine

Ai,a,b =
∑

X?∈Si,Y?:Y?
+=Yi+

(∑
j

X?
ge,jZij

)⊗a {∑
j
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× e
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g X?
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Then the second derivatives are given by web equations 1 and 2.

Web Appendix E: Additional type I error simulations

Web Figure 1 shows further simulation results looking at type I error under the log link by

population prevalence in Web Figure 1(a) and when there is arbitrary phenotype correlation

in Web Figure 1(b).



6 Biometrics

Population Prevalence (K)

E
m

pi
ric

al
 T

yp
e 

I E
rr

or

0.02 0.04 0.06 0.08 0.10

0.
00

0.
04

0.
08

Trios, TX

0.02 0.04 0.06 0.08 0.10

0.
00

0.
04

0.
08

● ● ● ● ●
●

●
●

●

●

● ● ● ● ●

●

●

●

DSP, TX
DSP, CLR
DSP, CLR−IJ

0.02 0.04 0.06 0.08 0.10

0.
00

0.
04

0.
08

Trios+DSP, TX
Trios+DSP, CLR
Trios+DSP, Hybrid

Empirical Type I Error
by Population Prevalence

Fa
m

ily
 S

tr
uc

tu
re

Tr
io

s+
D

S
P

D
S

P
Tr

io
s

500 Families, eβg = 2, eβe = 3, ρenv = 0.3, 
pallele = 0.14, penv = 0.3

(a) Simulation study to assess type I error for a dichotomous

exposure with strong main effects for 500 families under the

log link. Based on 100,000 simulations. The gray line is drawn

at 0.05.
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(b) Simulation study to assess type I error for the effect of ar-

bitrary phenotypic correlation in DSP (failure of assumption

2) under the log link. Based on 100,000 simulations.

Figure 1. Type I error and phenotypic model robustness simulations under the log link.

Web Appendix F: Further power results

In Figure 2 we show the effect of varying the environmental exposure prevalence. The case-

control power approaches and surpasses the TX approach for trios as the environmental

exposure prevalence increases.
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Figure 2. Power of the test for a dichotomous trait by environmental exposure. Based on

10,000 simulations; approximate SE < 0.0025.

Web Appendix G: Additional dataset information

In Web Figure 3 we show the SNPs that had joint test p-value < 0.15, that is the SNPs

presented in Table 2.
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Figure 3. Plot of the SNPs in the Serpine2 gene with joint test p-values < 0.15, as shown

in Table 2.
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