SUPPLEMENTAL MATERIAL

Fig. S1: Purification of C-terminal mCRYCCtail and mBMAL1 fragments. SDS-PAGE analysis of purified C-terminal mCRY- and mBMAL1 fragments concentrated to about 5 mg/ml. All 4 proteins display aberrant running behaviours on SDS gels, but their correct mass and identity has been confirmed by mass spectrometry (data not shown).

Fig. S2: Analysis of mCRYCCtail- and mBMAL1 fragments by analytical ultracentrifugation sedimentation velocity experiments. Representative figure showing sedimentation coefficient distributions c(s) obtained from the analysis of the sedimentation profiles of the monomeric mCRY1[471-606] (A) and mBMAL1[490-625] (B) proteins. Concentrations correspond to OD₂₈₀ = 0.5 (0.96 mg/ml for mCRY1[471-606]; 0.84 mg/ml for mBMAL1[490-625]). The c(s) distributions were normalized to facilitate the comparison.

Fig. S3: CD spectra of the mCRYCCtail- and mBMAL1 fragments (A) and the synthetic mCRY peptides P1 and P2 (B). The mean molar ellipticity $[\Theta]_R$ per amino acid residue after buffer correction is plotted against the wavelength. The spectra suggest, that the mBMAL1 and mCRY proteins are partially disordered (Table 2). Peptide P1 has a high α -helical content, whereas peptide P2 is largely unstructured.

mCRY1CCT (14.4 kDa)	mCRY2CCT (12 kDa)	BMAL577 (5.5 kDa)	BMAL490 (14.3 kDa)
80w 29- 24-	29- 24-	4Da 24- 20-	Da 9
20-	20-	14- 2	10
14-	14	file	4-

Fig. S1

Fig. S2

В

Fig. S3