

Figure S1. CNAG_00156 (Cn SP1) is not the C. neoformans CRZ1.

(A) WT, $cna1\Delta$, and $cna1\Delta$:pACT-Cn *SP1* strains were grown on YPD + sorbitol media and suspended in PBS media to OD₆₀₀ of 0.1. Five 5-fold dilutions of each strain were spotted on the various media and observed for 48 hours. (B) shows validation by qRT-PCR of Cn *SP1* over-expression in the *cna1*\Delta:pACT-Cn *SP1* strain. Values are ratios of expression of Cn *SP1* transcript to *ACT1*.

(C) Cn $sp1\Delta$:pACT-Cn SP1 (2 strains: st. 1 and St. 2) and $cna\Delta$:pACT-Cn SP1 strains (all containing a *c-myc* tag, see 'Experimental Procedures') were grown in YPD to an OD600 of 0.4-0.6, lysed and immunoprecipitated with anti *c-myc* antibodies. Protein eluents were resolved on a SDS-PAGE gel. (D) Cn $sp1\Delta$:GFP-Cn SP1 cells were grown in YPD to mid-log, and viewed with a confocal fluorescent microscope before and after addition of 20 mM CaCl₂. Nuclear localization of Cn Sp1 was observed independent of CaCl₂.

Metazoan SP1-like ZF1, 2, and 3

		10	20	30	40	50
Zf1_SP1_HUMAN	HIC-	HIQGCG	iK <mark>V</mark>	Y GK T SH L RAI		
Zf1_NP_051232_CG5069_Drosophila_melanogaster Zf1_XP_313726_AGAP004438_PA_Anopheles_gambiae_strPEST	HIC-	HV SGCN	KV	- Y G K T SH L RAI	HLRWHTGERP	
Zf1_NP_997827_Sp1_Danio_rerio	HIC-	HIPGCG	KV	Y GK T SH L R A I	HLRWHTGERP	
Zf1_NP_0010848888Sp1_Xenopus_laevis	HIC-	HIPGCG	KV	Y GKT SHLRAI		
Zf1_NP_038700_Sp1_Mus_musculus	HIC-	HIQGCG	KV	-Y GKT SHLRAI	HLRWHTGERP	
Zf1_XP_002923324_Sp1_like_Ailuropoda_mclanolcuca	HIC-	HIQGCG	ΚV	YGKTSHLRAI	HLRWHTGERP	
Zf1_XP_543633_Sp1_iso1_Canis_familiaris Zf1_XP_002711174_Sp1_Opyctologue_cupiculus	HIC-	HIQGCG	KV	- Y G K T S H L R A I		
Zf1 XP 002752575 Sp1 Callithrix jacchus	HIC-	HIQGCG	KV	-Y GKT SHLRAI	HLRWHTGERP	
Zf1_XP_001104948_Sp1_iso3_Macaca_mulatta	HIC-	HIQGCG	iκv	- Y G K T S H L R A I	HLRWHTGERP	
Zf1_NP_001071495_Sp1_Bos_taurus Zf1_XP_001926920_Sp1_Sus_scrofa	HIC-	HMQGCG	KV	Y GKT SHLRAI		
Zf1_XP_001370863_similar_Sp4_Monodelphis_domestica	HIC-	HIEGCG	KV	-Y GKT SHLRAI	HLRWHTGERP	
Zf1_EFP83209_hypo_PGTG09162_Puccinia_graminis_tritici_CRL_75367003	YIC-	EMC G	E S	FTRRYNLRG	HQ R A H K G E K P	
Zf1_XP_566613_hypo_prot_Cryptococcus_neoformans_neoformans_JEC21 Zf1_XP_778140_CNBA1400_Cryptococcus_neoformans_neoformans_B3501A	FKC-	PV P G C G	ST	- FTRHENLKGI	ILR SHNDERP	
Zf1_XP_761291_hypo_prote_UM05144_Ustilago_maydis_521	FAC-	PIPGCG	ST	- FTRQYNLRGI	HLRSHADERP	
Zf1_XP_001731547_hypo_pro_MGL_1730_Malassezia_globosa_CBS_7966	FTC-	PFPDCG	ST	- FTRQYNLRGI	HMR SHMDERP	
Zf1_EEU04771_Crz1p_Saccharomyces_cerevisiae_RM11_Ta	FAC-	DVCG	KK	- FTRPYNLKS		
Zf1_CAY82170_Crz1p_Saccharomyces_cerevisiae_EC1118	FAC-	DVCG	КК	- FTRPYNLK SI	HLRTHTNERP	
Zf1_EDN62786_transcr_factor_Saccharomyces_cerevisiae_YJM789	FAC-	DV C G	КК	- FTRPYNLK SI	HLRTHTNERP	
Zf1_NP_014371_Cr21p_Saccharomyces_cerevisiae_S288c Zf1_XP_001382598 zf_C2H2_Scheffersomyces_stipitis_CBS_6054	YAC-	HLCD	KR	- FTRPYNLK SI	HLRTHTDERP	
Zf1_XP_002419476_transcr_reg_putative_Candida_dubliniensis_CD36	YAC-	HLCD	K R	FTRPYNLK SI	HIRTHTQEKP	
Zf1_EEQ44614_cons_hypo_pro_Candida_albicans_WO1	YAC-	HLCD	K R	- FTRPYNLKSI	HIRTHTQEKP	
Zf1_NP_196044_ELF6_Arabidopsis_mailana Zf1_XP_002508356 pred_protein_Micromonas_sp_RCC299	FAC-	PAPGCN	ILA	- F SNAY DLKRI		
Zf1_EAY96228_hypothpro_Osl_18121_Oryza_sativa_Indica	FLC-	SY ENC G	КТ	FVDVAALRKI	A HV HNERQ -	
Zf2_EFP83209_hypo_PGTG09162_Puccinia_graminis_tritici_CRL_75367003	FAC-		SR	- FARAHDQKRI	HYKLHLGVKD	
Zf2 XP 001731547 hypo pro MGL 1730 Malassezia globosa CBS 7966	FKC-	EWPGCE	R S	- FARTHDCKRI	HNLHLNIKP	
Zf2_XP_566613_hypo_prot_Cryptococcus_neoformans_neoformans_JEC21	FKC-	LYEGCP	KA IV (5 FA R Q H D C K R I	HMLLHEGLRL	
Zf2_XP_778140_CNBA1400_Cryptococcus_neoformans_neoformans_B3501A Zf2_XP_002419476_transcr_reg_putative_Candida_dubliniensis_CD36	FKC-		KASCLAIVO	FARQHDCKRI	<mark>HMLLHEGLR</mark> L	
Zf2 EEQ44614 cons hypo pro Candida albicans WO1	FIC-	SKCG	K S	- FARSHDKKRI	HELLHOGIKN	
Zf2_EDV12282_transcr_reg_CRZ1_Saccharomyces_cerevisiae_RM11_1a	FIC-	SICG	іК <mark>А</mark>	- FARQHDRKRI	HEDLHŤGKKR	
Zf2_EEU04771_Crz1p_Saccharomyces_cerevisiae_JAY291	FIC-	SICG	K <mark>A</mark>	- FARQHDRKRI	HEDLHTGKKR	
Zf2 EDN62786 transcr factor Saccharomyces cerevisiae YJM789	FIC-	SICG	KA	- FARQHDRKRI	HEDLHTGKKR	
Zf2_NP_014371_Crz1p_Saccharomyces_cerevisiae_S288c	FIC-	SICG	KA	- FARQHDRKRI	HEDLHTGKKR	
Zf2_XP_001382598_zf_C2H2_Scheffersomyces_stipitis_CBS_6054	FIC-	NVCG	K R			
Zf2_NP_651232_CG5669_Drosophila_melanogaster	FV C -	SWAFCG	K R	- FTRSDELQRI	HRRTHTGEKR	
Zf2_XP_313726_AGAP004438_PA_Anopheles_gambiae_strPEST	FIC-	NWGTCG	K R	FTRSDELQRI	HRRTHTGEKR	
Zf2_NP_997827_Sp1_Danio_rerio Zf2_NP_0010848888_Sp1_Xenopus_laevis	FVC-		K R	- FTRSDELQRI - ETRSDELORI	HKRTHTGEKK	
Zf2_NP_989935_Sp1_Gallus_gallus	FIC-	GWMLCG	K R	- FTR SDELQRI	HKRTHTGEKK	
Zf2_NP_038700_Sp1_Mus_musculus	FMC -	NWSYCG	K R	FTR SDELQRI	HKRTHTGEKK	
Zf2_XP_002923324_Sp1_like_Alluropoda_melanoleuca	EMC -	TWSYCG	K R	- FIRSDELQRI - FTRSDELORI	HKKIHIGEKK	
Zf2_XP_002711174_Sp1_Oryctolagus_cuniculus	FMC-	TW SY C G	K R	- FTR SDELQRI	HKRTHTGEKK	
Zf2_XP_002752575_Sp1_Callithrix_jacchus	FMC -	TWSYCG	K R	- FTR SDELQRI	HKRTHTGEKK	
Zf2_NP_0010704948_Sp1_isos_iniaciaca_iniulatta Zf2_NP_001071495_Sp1_isos_taurus	FMC -		K R	- FTRSDELQRI	HKRTHTGEKK	
Zf2_XP_001926920_Sp1_Sus_scrofa	FMC-	TWSYCG	K R	- FTR SDELQRI	HK R T H T G E K K	
Zf2_XP_001370863_similar_Sp4_Monodelphis_domestica Zf2_NP_196044_ELF6_Arabidonsis_thaliana	FVC-	NWIFCG	K R	- FTRSDELQRI - EKWOWARTEI		
Zf2_XP_002508356_pred_protein_Micromonas_sp_RCC299	FAC-	KTCG	КТ	- FKLENALIAI	IQRVHTGEKK	
Zf2 EAY96228 hypothpro Osl 18121 Oryza sativa Indica	YIC-	QEPGCG	КК	FVDSSKLKRI	HLIHTGQKD	
ZI3_SP1_HUMAN ZI3_NP_651232_CG5669_Drosophila_melanogaster	FAC-	PECP	K K	- FMR SDHLSKI - FMR SDHLSKI	HIKTHUNKKG HIKTHEKSRS	
Zf3_XP_313726_AGAP004438_PA_Anopheles_gambiae_strPEST	FEC-	VECN	КК	- FMR SDH L SKI	HIRTHGKFKR	
Zf3_NP_997827_Sp1_Danio_rerio	FSC-	TECP	K R	- FMR SDHLSKI	HIKTHLNKKV	
Zf3 NP 989935 Sp1 Gallus gallus	FAC-	PECP	KR	- FMR SDHL SKI	HIKTHONKKG	
Zf3_NP_038700_Sp1_Mus_musculus	FAC-	P E C P	K R	- FMR SDH L SK I	ніктно́мкк G	
Zf3_XP_002923324_Sp1_like_Ailuropoda_melanoleuca	FAC-	PECP	KR	- FMR SDHLSKI	HIKTHQNKKG	
Zf3 XP 002711174 Sp1 Oryctolagus cuniculus	FAC-	PECP	KR	- FMR SDHL SKI	HIKTHONKKA	
Zf3_XP_002752575_Sp1_Callithrix_jacchus	FAC-	P E C P	K R	- FMR SDH L SK I	HIKTHQNKKG	
Zf3_XP_001104948_Sp1_iso3_Macaca_mulatta Zf3_NP_001071495_Sp1_Bos_taurus	FAC-		K R		HIKTHQNKKG	
Zf3_XP_001926920_Sp1_Sus_scrofa	FAC-	PECP	K R	- FMR SDH L SKI	HIKTHQNKKG	
Zf3_XP_001370863_similar_Sp4_Monodelphis_domestica	FEC-	PECS	K R	- FMR SDHLSKI	IVKTHONKKG	
Zf3_EFP83209_hypo_PGTG09162_Puccinia_graminis_tritici_CRL_75367003 Zf3_XP_761291_hypo_prote_LIM05144_Listilago_maydis_521	YSC-	PV C R	КТ	- FIRLDALQRI	HKSDAGQAC	
Zf3_XP_001731547_hypo_pro_MGL_1730_Malassezia_globosa_CBS_7966	YQC-	ESCG	КТ	- FARLDALNRI	HK SEAST - C	
Zf3_XP_566613_hypo_prot_Cryptococcus_neoformans_neoformans_JEC21	FEC-	EGCG	КК <mark></mark>	FARLDALTRI	HK SEQGQEC	
ZI3_XF_/7814U_CNBA140U_Cryptococcus_neoformans_neoformans_B3501A Zf3 EDV12282 transcr reg CRZ1 Saccharomyces cerevisiae RM11_1a	FEC -	GKLKDGKPWGCG	КК	- FARLDALTRI - FARSDALGRI	HK SEQGQEC	
Zf3_EEU04771_Crz1p_Saccharomyces_cerevisiae_JAY291	YVCG	GK LK DGK PWGCG	кк <mark></mark>	FARSDALGRI	IFKTESGRRC	
Zf3_CAY82170_Crz1p_Saccharomyces_cerevisiae_EC1118	Y V C G	IGK LK DG <mark>K PW</mark> G C G	іКК	FARSDALGRI	I FK T E S G R R C	
داع النامي Zi3 NP 014371 Crz1p Saccharomyces cerevisiae S288c	YVCG		KK	- FARSDALGRI - FARSDALGRI	IFKTESGRRC	
Zf3_XP_002419476_transcr_reg_putative_Candida_dubliniensis_CD36	FKCE	GYLQDGTRWGCG	K S	FARADALRRI	I FQT EA GKQC	
Zf3_EEQ44614_cons_hypo_pro_Candida_albicans_WO1	FKCE	GYLQDGTRWGCG	K S	- FARADALRRI	I F Q T E A G K Q C	
Zf3 NP 196044 ELF6 Arabidopsis thaliana	YIC-		L S	- FREV SDY SRI	IRRKTMHYVT	
Zf3_XP_002508356_pred_protein_Micromonas_sp_RCC299	FKC-	EHPGCG	K L	FGYKVDLQRI	HERTHQGQKA	
Zf3_EAY96228_hypothpro_OsI_18121_Oryza_sativa_Indica	FIC-	PHPGCG	KA	- F S L D F N L R S I	ILKTHA LENY	

Figure S3a: Sequence alignment of Zn finger regions and associated sequences of fungi and metazoans Representative Sp1, Crz1 and Cn Sp1-like protein sequences were retrieved from a BLASTp (ref) search. Full protein sequences were aligned using the MUSCLE software (ref) and individual zinc-finger motifs were identified and extracted. A multiple sequence alignment of the three zinc-finger motifs was created manually³ based on the MUSCLE alignment.

Figure S3b:Parimonious trees constructed from sequences aligned in Figure S3a. Sequences from Figure S3a were submitted to PAUP (ref) and a heuristic search for the most parsimonious tree was performed. PAUP found 500 equally parsimonious trees. To ascertain the level of phylogenetic support in the data 500 nonparametric bootstrap replicates were generated and their consensus calculated. The 50% majority-rule consensus of the 500 equally parsimonious trees is given in Figure S3b. Groups are collapsed when they are found in fewer than 50% of the equally parsimonious trees. The numbers above the branches represent the frequency of that group among the equally parsimonious trees. The numbers below the branches (or to the right of the sequence IDs when internal branches were short) are the bootstrap support percentages. Bootstrap support values less than 70% are not shown.

Figure S4a. Northern blot validation of genes in microarray experiments.

Figure S4a. Northern blot validation of genes in microarray experiments.

Figure S4b. qRT-PCR validation of genes in microarray experiments.

Results represent normalized expression ($\Delta\Delta$ Ct+/-SD) in starvation of the following strains/conditions (with *ACT1* as control): wt (H99)/Cn *sp1* Δ , wt (KN99)/*pkc1* Δ , and *pkc1* Δ :pACT-Cn *SP1*/ *pkc1* Δ .

*Denotes genes that were identified in both microarray studies. NAD-dependent malic enzyme had an FDR of >0.05

but was also chosen based on interest.

-phosphate isomerase6mannose-04744.2 CNAG

glucose and ribitol dehydrogenase protein00984.2 CNAG

deacetylase06291.2 CNAG

16.5

1.8

nad-dependent malic enzyme04326.2 CNAG ^

Figure S4b (con't)

4.2

Т

wt

cnsp1∆ cnsp1∆::CnSP1

pkc1∆

pkc1∆::pACT-CnSP1

Figure S5. Cn *sp1Δ* (*cnag00156Δ*) and *pkc1Δ* demonstrates mucoid morphology. WT (H99), cnag00156Δ (designated Cn sp1Δ), pkc1Δ, Cn sp1Δ:Cn SP1, pkc1Δ:pACT-Cn SP1, and Cn sp1Δ:pACT-*PKC1* strains were grown on YPD + Sorbitol media (non-capsule inducing condition) and photographed.

Figure S6. Generation of Cn SP1 knockout and its complementation.

(A) Map WT vs. Cn $sp1\Delta$ genetic regions. *Mun*l sites are marked with a diamond sign. Cn *SP1* coding region and knockout construct are marked with grey and blue, respectively. (B) Southern blot of wt and Cn $sp1\Delta$ strains digested with *Mun* I. Hybridization fragment included the 1st and last 500bp of the Cn *SP1* coding region (primers detailed in 'experimental procedures'), to allow detection of both WT and mutant. In the WT fragment, a *Mun*l site, located 2076bp into the ORF lead to detection of 2 separate bands. In Cn $sp1\Delta$, the WT ORF was replaced with a ~2.4 construct lacking a *Mun*l site (marked 'x'), leading to only one band.

(C) Lack of Cn *SP1* transcript in Cn *sp1* Δ . DNAse-treated RNA was extracted from H99 (lanes 1,3) and Cn *sp1* Δ (lanes 2,4) cells, followed by reverse transcription and PCR of Cn *SP1* (lanes 1,2) and *SSA1* (lanes 3,4) as control. Cn *SP1* cDNA is amplified in H99 but not in Cn *sp1* Δ .

(D) Southern blot (uncut) of Cn *sp1* Δ complementation demonstrates episomal location of Cn *SP1* expression construct in two strains (lane 1 and lane 2). Probe of Cn *SP1* was design to detect a fragment not present in the mutant, using primers Crz1probe 1608S (5'- CCACAATCCCATCCTTTACCAC) and Crz1probe 2465A (5'- AACCGACTTACCCGCAAACG). Lane 1-WT; 2-5-complemented strains; 6- Cn *sp1* Δ . Genomic DNA localized in reference to Ethidium bromide-stained gel.

Figure S7. Generation of SSA1 knockout strain.

(A) Schematic drawing of the SSA1 locus in the WT and the $ssa1\Delta$ strains, outlining the location of the Southern blot probe shown in B and SacI restriction sites.

(B) Sacl-cut Southern blot of the WT and the ssa1Δ strains, probed to the location outlined in A.

Supplemental Methods:

Generation of a SSA1 knockout strain-Standard methods were used for disruption of the *SSA1* gene, as described previously (Hu et al., 2008). Briefly, to make the deletion construct, 2 PCR-amplified fragments of the Cn SSA1 (using primers SSA1-up-Xba I-s, 5'-TTATCTAGACTTGAACGTAAA GCTAAGAG, and SSA1-up-Bgl II-a, 5'-TAAAGATCTTTATCTATTAAAGCTTTG AG; SSA1-down-EcoR I-s, AGCGAATTCCAAGGCGTAGTAATAAAAGG, and SSA1-down-Xho I-a, 5'-TATCTCGAGTGTTGACGAGAGAGAGAGAGGAG), the first digested with *Xba* I and *Bgl* II and the second digested with *Eco*R I and *Xho* I, was mixed with a 1.3-kb PCR fragment of the *C. neoformans URA5* gene described previously (Hu et al., 2008), digested with *Bgl* II and *Eco*R I and ligated to BlueScript SK digested with *Xba* I and *Xho* I. The final disruption allele with a 1.3-kb *URA5* marker flanked on either side by a 500-bp DNA sequence homologous to genomic regions of the *SSA1* gene was PCR-amplified and introduced into H99FOA cells via a biolistic approach (Cox et al., 1996) to effect a 2.2-kb deletion within the *SSA1* coding region. Transformants were screened for potential *SSA1* deletion mutant by a PCR, and the specific disruption of the *SSA1* gene in candidate mutant was verified by Southern blot analysis (Figure S6b).

Construction and use of an H99 three probe microarray: Construction and use of an H99 twoprobe microarray: Cryptococcus neoformans var grubii H99 transcript sequences were downloaded from the BROAD Institute website. Hybridization probe sequences(60-mer) were selected using e-Array software (Agilent): two for each of the 6,969 transcripts, one of them strongly 3-prime biased ("best probe methodology") the other less so ("best distribution methodology"). The 13,938 unique probes were arrayed in 3 replicate, randomized, locations on the Agilent Sure-Print microarray slide, 4x44K format. Additional control probes were included as well. (This array design has been deposited in GEO, accession GPL11486, as well as the mAdb NIH microarray database, internal name "Cnda"). Cy dye labeled hybridization target material was prepared from 10 ug total RNA and hybridized at 650 C for 17 hrs using TECAN 4800 HS Pro robotic hybridization station operating "Agilent GE 17 hrs" program. Slides were dried and maintained under nitrogen until scanning at 5 um resolution using Agilent G2505C. Agilent Feature Extraction software (protocol GE2_107_Sep09) was used for image analysis. Cohybridizations were performed according to a common reference design with pooled sample in Cy5 channel on each array. Replicate RNA samples from two independent experiments for each condition. SAS and JMP-Genomics software (SAS, Cary NC) was used for statistical analysis. Starting with Agilent Feature Extraction "processed signal" (normalized) data, one channel per sample, we calculated the median signal for each locus ID (3 replicates of 2 unique probes) and transformed to log2. A mixed effects ANOVA model (fixed effect of strain-condition, random effect of array_ID) was computed for each gene over 24 different strain/growth conditions, and expression difference estimates calculated for the comparisons of interest. False Discovery Rate (FDR) estimates were based on the raw p-values for the 6,969 gene-wise tests over 5 treatment group comparisons. The genes called significantly different with FDR of 0.05 had a raw p-value < 0.03.