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Additional modelling material for Model A (separate models for northern and 

southern China) 

Figure S1. Effects of predictor variables in model A for northern China. 

A: Smooth effect of year (F8.78, 432.6=11.61, p<0.01). B: Smooth effect of longitude 

and latitude of grids centre (F20.8, 432.6=5.14, p<0.01). C: Smooth effect of the natural 

logarithm of the number of observed plague cases in the same quadrate in previous 

year (F3.90, 432.6=17.13, p<0.01). D: Smooth effect of current year’s dryness/wetness 

(F2.47, 432.6=7.05, p<0.01), also shown on Fig. 2 in main text. E: Smooth effect of 

previous year’s dryness/wetness (F2.55, 432.6=2.68, p<0.05), also shown on Fig. 2. F: 

Smooth effect of the natural logarithm of the number of plague cases observed in the 

8 surrounding quadrates in previous year (F3.89, 432.6=5.70, p<0.01). Tick marks at the 

bottom of the plot show the locations of the data points along the x axis. 
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Figure S2. Residual diagnostics for model A for northern China. 

A: Autocorrelation function (ACF) of annual averages of residuals. B: Residual 

semi-variogram. These plots indicate whether there is any remaining temporal and/or 

spatial correlation in the residuals; for correctly specified models, these plots will not 

contain any systematic patterns, otherwise any systematic pattern may provide clues 

for further improvements of the model specification. ACF is useful for checking 

whether the residuals have any temporal structure. If there is no remaining residual 

spatial autocorrelation, the semivariogram should be an approximately flat line. In the 

presence of positive (negative) spatial autocorrelation, the semivariogram will tend to 

curve upwards (downward). 
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Figure S3. Effects of predictor variables in model A for southern China. 

A: Smooth effect of year (F8.13, 580.7=8.57, p<0.01). B: Smooth effect of longitude and 

latitude of grids centre (F18.9, 580.7=7.71, p<0.01). C: Smooth effect of the natural 

logarithm of the number of observed plague cases in the same quadrate in previous 

year (F3.65, 580.7=15.62, p<0.01). D: Smooth effect of current year’s dryness/wetness 

(F2.88, 580.7=6.29, p<0.01), also shown on Fig. 2 in main text. E: Smooth effect of 

previous year’s dryness/wetness (F1.93, 580.7=3.00, p<0.05), also shown on Fig. 2. F: 

Smooth effect of the natural logarithm of the number of plague cases observed in the 

8 surrounding quadrates in previous year (F3.86, 580.7=6.30, p<0.01). Tick marks at the 

bottom of the plot show the locations of the data points along the x axis. 
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Figure S4. Residual diagnostics for model A for southern China. 

A: Autocorrelation function (ACF) of annual averages of residuals. B: Residual 

semi-variogram. See Figure S2 for interpretation of residual diagnostics plots.
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Additional modelling material for Model B (whole-China) 

Figure S5. Effects of predictor variables in model B. 

A: Smooth effect of year (F14.4, 906.8=8.45, p<0.01). B: Smooth effect of the natural 

logarithm of the number of observed plague cases in the same quadrate in previous 

year (F3.59, 906.8=32.83, p<0.01). C: Smooth effect of the natural logarithm of the 

number of plague cases observed in the 8 surrounding quadrates in previous year 

(F3.55, 906.8=3.49, p<0.01). In addition, the model included two spatial terms (Fig. 3, 

main text): a spatially-variable effect of previous-year dryness/wetness index (F89.0, 

906.8=2.52, p<0.01) and a spatially-variable effect of current-year dryness/wetness 

index (F78.8, 906.8=3.13, p<0.01). 
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Figure S6. Residual diagnostics for model B. A: Autocorrelation function (ACF) of 

annual averages of residuals. B: Residual semi-variogram. See Figure S2 for 

interpretation of residual diagnostics plots. 
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Additional model diagnostics: cross validation 

As a conservative way of evaluating the predictive power of alternative model 

formulations, we computed leave-one-year-out cross validation (CV) errors. The CV 

procedure was: 

(i) Fit the model to a reduced data set with data for one year removed, 

(ii) Make predictions for the observations not used when fitting the model, 

(iii) Calculate prediction errors (predicted-observed values) for these observations, 

(iv) Repeat i-iii for all years (one year left out at a time), and 

(v) Calculate: 

Mean CV error = 
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Where 
iŷ  and 

iy  denote predicted and observed number of plague cases for a 

given year and location, respectively, and n is total sample size. 

 

We used CV specifically to investigate whether the models might be over-fitted. For 

model A we compared alternative restrictions on the maximum numbers of degrees of 

freedom (df) for the effects of plague intensity in the same and in the neighbouring 

quadrates the previous year (d and e terms in equation in main text) and for the 

baseline spatial effect (c term in the same equation). Table S1 gives the resulting mean 

CV errors. Although mean CV error could have been reduced slightly by choosing 

somewhat different restrictions on the df, the results give no indication of any 

dramatic effects of over-fitting. The estimated partial effects of dryness/wetness 

generally remained qualitatively similar to the presentation given in Fig. 2 when these 

restrictions were altered. However, the effect of previous-year dryness/wetness did not 

reach statistical significance (i.e., p>0.05) for northern China when maximum df for 

the spatial c-term was increased to 34 (giving the lowest CV error) or the maximum 

df for the autoregressive d- and e-terms were reduced to 1 or 3 (more easily 

interpretable, but higher CV error). 
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Table S1. Mean CV errors of alternative formulations of model A for northern and 

sourthern China. The alternative formulations differed in the restrictions on the 

number of degrees of freedom (= number of knots – 1) on the smooth effects (c-, d-, 

and e-terms in equation in main text). Df = 1: linear effect. 

   Max. df of d- and e-terms 

   1 3 4
1
 

Northern 

China 
Max. df of c-term 

14 2.152 2.140 2.110 

24
1
 2.163 2.126 2.071 

34 2.031 2.002 1.990 

Southern 

China 
Max. df of c-term 

14 1.877 1.895 1.891 

24
1
 1.848 1.874 1.867 

34 1.840 1.873 1.874 

1
Max. df used for model presented in the main text. 

 

For model B the mean CV error of the model presented in the main text was 1.935. 

This was better than a sample-size-weighted mean of CV errors of model A fitted to 

northern and southern China separately ((476∙2.071
2
+621∙1.867

2
)/(476+621))

0.5
 = 

1.958. This suggests that the more complex model B explains variability (presumably 

spatial variability in the effects of climate) not captured by model A. 
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Additional information on plague data: types of plague cases in China 

Pneumonic plague was much rarer than bubonic plague; incomplete records from 

1947 to 1962 include 267 pneumonic plague cases out of 4,123 plague cases. 

However, in the marmot foci in northern China, more than 70 percent of the 221 

recorded cases were pneumonic plague, within the same period. 

 

Figure S7. Pie charts of “Foci Weighted” shows the distribution of different types of 

human plague cases in Daurian Ground Squirrel foci, Marmot foci and Yellow-bellied 

Rat foci. Types of plague case in each kind of foci are for whole-China. 
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Additional information on plague data: distribution of human plague cases and 

natural plague foci in China 

Figure S8 shows that occurrences of human plague cases were closely related to the 

locations of natural plague foci in China. 

Figure S8. Plague-infected counties and natural plague foci in China. Red points 

indicate the municipal centres of counties with reports of human plague. Black areas 

indicate the distribution of natural plague foci in China (areas where Yersinia pestis 

strains have been isolated from local animal reservoirs). 
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Additional information on climate data: Dryness/Wetness index 

The spatial-temporal dryness/wetness (D/W) index (a proxy of precipitation) data 

were derived from the widely used book “Yearly Charts of Dryness/Wetness in China 

for the Last 500-Year Period” (Central Meteorological Bureau, 1981). The book was 

comprised of information from more than 2200 local annals and other historical 

records, supplemented with instrumental data for the most recent time period. The 

dryness/wetness of each year in each of a total of 120 stations across China was 

scaled into 5 grades from 1 (extremely wet) to 5 (extremely dry). 

For years prior to 1951, grade classification was defined based on descriptions in 

historical documents about intensity and temporal extent of dryness or wetness around 

local stations in spring, summer and autumn. The 5 grades were defined based on 

qualitative information from each station, such as follows: Grade 1: heavy rains 

lasting from spring to summer, serious floods; Grade 2: heavy rains in August; Grade 

3: good crop harvest or no record of flood or drought; Grade 4: drought in spring; 

Grade 5: severe drought from April to August. The frequencies of Grades 1 to 5 are 

approximately <10%, 20-30% (average 25%), 30-40% (average 35%), 20-30% 

(average 25%) and <10%. Assuming that precipitation is normally distributed, Grade 

1 corresponds to precipitation >1.31 standard deviation units (SD) above the 

long-term average, Grade 2 to precipitation between 0.43 and 1.31 SD, Grade 3 to 

precipitation between -0.43 and 0.43 SD, Grade 4 to precipitation between -1.31 and 

-0.43 SD, and grade 5 to precipitation <-1.31 SD. Under the same assumption, the 

scaling of the dryness/wetness index preserves an approximately (inverse) linear 

relationship with precipitation (Fig. S9A)  

From 1951 onwards, the D/W proxy was classified into 5 grades based on May to 

September precipitation data collected using weather instruments. To keep the similar 

frequency of the data distribution, for this period the D/W index was defined as 

follows: Grade 1: precipitation anomaly >1.17 SD; Grade 2: 0.33 SD <precipitation 

anomaly <1.17 SD; Grade 3: -0.33 SD <precipitation anomaly <0.33 SD; Grade 5: 

precipitation anomaly < -1.17 SD. The D/W index for this period is also 

approximately linearly (reversely, as the D/W index increases with the drought) 
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related to precipitation (Fig. S9B). 

 

Figure S9. Relationship between standardized precipitation (or proxy) anomaly and 

five grades of D/W index. (A): Prior to 1951 based on quantitative information. (B)  

After 1951 based on weather instrumental records. 
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We used D/W data from 67 stations covering the whole plague-report area; 38 stations 

were located in northern China and 29 in southern China (Fig. S10A). Fig. S10B 

shows the annual averages of the D/W index pooled from the stations in northern and 

southern China. 

Figure S10. (A): The positions of 67 D/W stations used in our study, stations located 

in northern China are drawn as blue triangles while southern stations are represented 

as red triangles. (B): annual average D/W proxy values from stations in northern and 

southern China. 

 

 

Temporal autocorrelation of D/W index 

There are significant temporal auto-correlations in the D/W index for both northern 

and southern China (Table S2). The auto-correlations are generally much stronger in 

northern China than in southern China. 

 

Table S2. Number of stations showing significant temporal auto-correlations in 

northern and southern China 

Time-lags 1 year 2 year 3 year 4 year 5 year Total for 3-5 years 

North 16 6 11 10 11 32 

South 8 7 8 3 6 17 
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Additional model diagnostics: effects of D/W with other time-lags than predicted 

In our model of climate effects on plague, we only considered potential effects of the 

D/W index of the current and previous year. This is because time-lags of climate 

effects on plague have generally been found to be of one-year duration at most 

(Stenseth et al., 2006; Enscore et al., 2002). Also, longer time-lags may not be 

biologically plausible. Nevertheless, as additional model diagnostics, we examined 

whether other time-lags of D/W (lags from -5 to 5) may have explanatory power 

beyond the information contained in the current and lag-1 of D/W. Significant effects 

at non-plausible time-lags might be indicative of spurious D/W-plague relationships. 

First, we tested whether D/W at different time-lags entered significantly as predictor 

variables in generalized additive models with the response variable being the residuals 

from Model A (accounting for effects of current-year and previous-year D/W): 

, t , ,
( / )

i j i j i j
R a f D W 


                                    (A.1)

 

Here, 
,i j

R  is the residual from model A for location j in year i, a is the intercept, f is a 

natural cubic spline function of the D/W index for the given location in year i-t, and 

,i j
  is the error term.  

Model results are shown in Table S3. We see that in northern China, D/W at lag 3 

years (i.e., D/W three years before plague observations) showed significant effect on 

residual plague intensity, but the adjusted R-sq. is very small (= 0.02). We also found 

that the D/W index at lag -4 years (i.e., D/W four years after plague observations) 

showed significant effect, but the adjusted R-sq. is also very small (= 0.02). In 

southern China, we found that D/W at lags 3 years and -5 years showed significant 

effects on residual plague intensity, but the effects are also small (adjusted R-sq = 

0.01). We hypothesize that these effects are caused by the temporal autocorrelation of 

the D/W index (Table S2) combined with inaccuracies in the D/W data. 
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Table S3. Time-lagged D/W effects on residuals of Model A, including the p-value, 

adjusted R square and deviance explained. In this table, time-lag(t) is the D/W in t 

years before, the same as table S4. Positive lags represent (apparent) effects on plague 

of previous-years’ D/W, negative lags represent subsequent-years’ D/W. 

Time-lag (t) 5 4 3 2 1
1
 0

1
 -1 -2 -3 -4 -5 

Northern 

p-value 0.16 0.54 0.02* 0.90 0.39 0.49 0.39 0.22 0.58 0.01* 0.09 

R-sq 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 

Dev. explained 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.00 0.03 0.01 

Southern 

p –value 0.35 0.52 0.05* 0.92 0.71 0.50 0.71 0.15 0.35 0.44 0.03* 

R-sq 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 

Dev. explained 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 

1
It is reasonable that the effects D/W index of the current year and previous year are zero because 

these effects have been accounted for in Model A. 

 

We therefore devised a test of the independent effects of D/W at different time-lags, 

accounting for the autocorrelation in the D/W series. To do so, we first removed the 

linear effects of current-year and previous-year D/W from the lag t of D/W,, by 

regression: 

,, 0, , , 1, , 1,/ / /
i ji t j j t j i j t j i jD W a D W D W                          (A.2) 

Here, t varies from 5 to -5 without 1 and 0. The residuals from model A.2 are the 

adjusted lag -t of D/W, denoted as          
            . Then we tested whether D/Wi-t may 

have additional explanatory power by regressing the residuals from model A on the 

adjusted D/Wi-t  via the following model (notation as in equation A.1): 

                  
                                               (A.3) 

Models results (Table S4) suggest that, after adjusting for the autocorrelation in the 

D/W index, no other lags of the D/W index than 0 or 1 are associated with the plague 

intensity. 
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Table S4. Results from model A.3, including the p-values of the term f, the adjusted 

R-square values and the deviance explained. For both northern and southern China, 

the autocorrelation-adjusted D/W show no significant lagged effects (p>0.05) beyond 

the effects at lags 0 and 1 years. Positive lags represent (apparent) effects on plague of 

previous-years’ D/W, negative lags represent subsequent-years’ D/W. 

Time-lag (t) 5 4 3 2 -1 -2 -3 -4 -5 

Northern 

p-value 0.69 0.45 0.09 0.97 0.70 0.14 0.55 0.118 0.32 

R-sq 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 

Dev. explained 0.04 0.14 1.43 0.00 0.03 1.05 0.08 1.29 0.24 

Southern 

p –value 0.39 0.65 0.23 0.94 0.6 0.09 0.99 0.65 0.34 

R-sq 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Dev. explained 0.18 0.05 0.56 0.00 0.13 1.5 0.00 0.05 0.512 
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Additional model diagnostics: low-frequency trends 

To test whether the modelled effect of the D/W index is caused by low-frequency 

trends in both plague and D/W, we built a model based on Model A but with no effects 

of D/W (of neither current nor preceding year): 

, 1, 1, ,
ˆ( , ) ( ) ( )

i j i i j i j i jj jP a b c Lon Lat d P e N 
 

    
    (A.4) 

The notations are similar to those in model A. The residuals from this model show no 

significant temporal autocorrelation (Fig. S11), suggesting that the detected effects of 

D/W on plague intensity in model A are not caused by some low-frequency trend. 

Figure S11: Residual time series plots and residual autocorrelation function (ACF) 

for model A.4 fitted to northern and southern China. 
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