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S1. Analytical Solutions of the Model. One amino acid with two codons.
Consider a gene sequence of length n composed of a single two-
codon amino acid, whose average elongation times are t1 and t2.
Let x1 and x2 = n − x1 be the respective codon counts. The ex-
pected cost of ribosome usage during protein production is then
given as

ηðx→Þ ¼ C ∑
2

i¼1
xi ti; [S1]

¼ Cðx1t1 þ x2 t2Þ; [S2]

where C is the cost of ribosome usage in ATP per second. We
assume an exponential fitness function w described as

wðx→jϕÞ ¼ e− qϕηðx→Þ ¼ e− qϕCðx1 t1þx2 t2Þ; [S3]

where ϕ is the protein production rate, a measure of gene ex-
pression, and q is the scaling constant determining the rela-
tionship between cost of ATP usage to organismal fitness w.
Following the methods used in studies (1–4), the probability of

observing an allele across the entire genotype space at equilib-
rium is given by

P
�
x→jϕ� ¼ wð x!jϕÞNe

∑y∈Scwð y!jϕÞNe
; [S4]

where Ne is the effective population size and Sc is the entire
synonymous codon genotype space, which has 2n alleles in this
simple case. Because the cost of protein production is in-
dependent of codon order within a gene, multiple synonymous
alleles could give rise to the same cost η. In the case of two
codons, the number of alleles with the same cost is represented
by a binomial coefficient and for amino acids with more than two
codons, the combinations will be represented by a multinomial
coefficient

Pðx→jϕÞ ¼

�
n
x1

�
e−NeqϕCðx1 t1þx2t2Þ

∑n
y1¼0

�
n
y1

�
e−NeqϕCðy1t1þy2t2Þ

: [S5]

Let μ1 and μ2 represent the rate of mutations to the two codons,
as described by Sella and Hirsh (4).
Taking mutational biases into account, the probability of ob-

serving a given allele is given as

Pðx→jϕÞ∝ wðx→jϕÞNe ∏
2

i¼1
μxii ; [S6]

Pðx→jϕÞ ¼

�
n
x1

�
e−NeqCϕðx1t1þx2t2Þ∏2

i¼1μ
xi
i

∑n
y1¼0

�
n
y1

�
e−NeqCϕðy1 t1þy2t2Þ∏2

i¼1μ
yi
i

; [S7]

where x→¼ fx1; x2g.

Given the protein production rate ϕ (gene expression) of
a gene and the elongation time t of codons, the expected count of
each codon is given as

E½x1jϕ� ¼ ∑
n

x1¼0
x1Pðx→jϕÞ; [S8]

¼ ∑
n

x1¼0
x1

�
n
x1

�
e−NeqCϕðx1t1þx2 t2Þ∏2

i¼1μ
xi
i

∑n
y1¼0

�
n
y1

�
e−NeqCϕðy1t1þy2t2Þ∏2

i¼1μ
yi
i

; [S9]

¼ nμ1e−NeqCϕt1

μ1e−NeqCϕt1 þ μ2e−NeqCϕt2
; [S10]

and by symmetry

E½x2jϕ� ¼ nμ2e−NeqCϕt1

μ1e−NeqCϕt1 þ μ2e−NeqCϕt2
; [S11]

¼ n−E½x1jϕ�: [S12]

One amino acid with k codons.Using the methods described above, it
can be shown that for any amino acid with k codons, the expected
count of the ith codon is given as

E½xijϕ� ¼ nμie−NeqCϕti

∑k
j¼1μje−NeqCϕtj

: [S13]

Thus, the expected frequencies of each codon fi = xi/n are given
as

E½ fijϕ� ¼ μie−NeqCϕti

∑k
j¼1μje−NeqCϕtj

: [S14]

Variance around the expected value E[xi|ϕ] can also be calcu-
lated as

Var½xijϕ� ¼ ∑
n

xi¼0
ðxi −E½xijϕ�Þ2Pðfx1; x2;⋯; xkgÞ; [S15]

¼
n
�
∏k

j¼1μj
�
eNeqCϕ∑k

j¼1tj

�
∑k

j¼1μjeNeqCϕtj
�2 : [S16]

Multiple amino acids with varying number of codons. In the case of real
genes, which are composed of multiple amino acids, each with
a varying number of codons, the expected counts and frequencies
of codons can be estimated from the marginal distributions of
each amino acid. For instance, consider the simple case of two
amino acids with two codons each. The ribosomal overhead cost
of protein production is given as

ηðx→Þ ¼ Cðx11t11 þ x12t12 þ x21t21 þ x22t22Þ; [S17]

where xij is the number of codons of type j of amino acid i in the
gene. Let n1 = x11 + x12 and n2 = x21 + x22 be the counts of the
two amino acids in the gene. As previously, the probability of
observing an allele can be written as
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¼

�
n1
x11

�
∏2

j¼1μ
x1j
1j e

−Neðx11qCϕt11þx12qCϕt12Þ

∑n1
y11¼0

�
n1
y11

�
∏2

j¼1μ
x1j
1j e

−Neðx11qCϕt11þx12qCϕt12Þ
×

�
n2
x21

�
∏2

j¼1μ
x2j
2j e

−Neðx21qCϕt21þx22qCϕt22Þ

∑n1
y21¼0

�
n1
y11

�
∏2

j¼1μ
x2j
2j e

−Neðx21qCϕt21þx22qCϕt22Þ
;

[S19]

¼ Pðx→1j aa1ÞPðx→2j aa2Þ: [S20]

The marginal distribution of genotype space of a singe amino acid
is given as

∑
n2

x21¼0
Pðx→2jaa2Þ ¼ 1; [S21]

Pðx→1jaa1Þ ¼ ∑
n2

x21¼0
P
��

x→1; x
→
2
	�

: [S22]

Thus, the expected number of codons of a specific amino acid
based on the marginal distribution of that amino acid can be
calculated as

E½x11jϕ� ¼ ∑
n1

x11¼0
x11 ∑

n2

x21¼0
P
��

x→1; x
→
2
	�

; [S23]

¼ ∑
n1

x11¼0
x11Pðx→1jaa1Þ ∑

n2

x21¼0
Pðx→2jaa2Þ; [S24]

¼ ∑
n1

x11¼0
x11Pðx→1jaa1Þ; [S25]

¼ n1μ11e−NeqCϕt11

μ11e−NeqCϕt11 þ μ12e−NeqCϕt12
: [S26]

The above Eq. S26 is equivalent to Eq. S10, which considers
a gene sequence with only one amino acid and two codons.

S2. Argument Against Model Overparametrization. Although it may
seem that the excellent fit between the observed and predicted
values may be attributable to overfitting the data with a large
numbers of parameters, this is not the case. For instance, in the
case of an amino acid with k codons, there are k − 1 independent
codon frequencies. Because the change in codon frequencies
with gene expression can be thought of as a nonlinear regression,
each codon should have a slope and an intercept. Thus, there are
2(k − 1) independent parameters for an amino acid with k co-
dons. The relative mutation rates provide the estimates for in-
tercepts, whereas differences in elongation times provide the
estimates for their respective slopes. The beauty of our approach
lies in the fact that our simple model, appropriately parame-
terized, leads to a correlation coefficient of 0.96.
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Fig. S1. Correlation between estimates of Δts and μi/μj using a random subset of 2,337 genes (half of the genome) and using the entire genome. We find a
strong correlation (ρ > 0.99, P < 10−15) for both Δt and μi/μj.
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1j ∏

2
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x2j
2j e

−Neðx11qCϕt11þx12qCϕt12þx21qCϕt21þx22qCϕt22Þ
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; [S18]
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Fig. S2. Observed and predicted changes in codon frequencies with gene expression for the second half of the genome using parameters Δt and μi/μj esti-
mated using the first half. A–S correspond to a specific amino acid, where codons ending in A/T are shown in shades of blue and codons ending in G/C are
shown in shades of red. Solid dots and vertical bars represent mean ± 1 SD of observed codon frequencies within genes, with protein production rates defined
by the bin. The expected codon frequencies under our model are represented by solid lines. ρM represents the correlation between the mean of observed
codon frequencies in a bin and predicted codon frequencies at mean ϕ value. ρc represents the correlation between observed codon counts and predicted
codon counts of all genes at their specific ϕ value.
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Fig. S3. Correlation between observed codon counts and predicted codon counts of individual genes in the second half of the genome using parameters Δt
and μi/μj estimated using the first half. We find a very high correlation (ρ = 0.96, P < 10−15) between our model predictions and observed counts. (Inset)
Distribution of correlation coefficients at the level of individual amino acids, indicating that our high correlation is not biased by specific amino acids and that
we have a high correlation across all amino acids. ρc represents the correlation between observed codon counts and predicted codon counts of all genes at their
specific ϕ value.
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Fig. S4. Correlation between estimates of Δts and μi/μj using protein production rate ϕ for each gene and using mRNA abundances. We find a strong cor-
relation (ρ > 0.97, P < 10−15) for both Δt and μi/μj.
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Fig. S5. Observed and predicted changes in codon frequencies with gene expression, specifically mRNA abundances. A–S correspond to a specific amino acid,
where codons ending in A/T are shown in shades of blue and codons ending in G/C are shown in shades of red. Solid dots and vertical bars represent mean ± 1 SD
of observed codon frequencies within genes, with mRNA abundances defined by the bin. The expected codon frequencies under our model are represented by
solid lines. ρM represents the correlation between the mean of observed codon frequencies in a bin and predicted codon frequencies at mean mRNA abundance
of the bin. ρc represents the correlation between observed codon counts and predicted codon counts of all genes at their specific ϕ value.
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Table S1. Estimates of relative mutation rate (μi /μj)

Amino acids Codons μi /μj Amino acids Codons μi/μj

Ala μGCC /μGCA 0.6541 Pro μCCC /μCCA 0.4460
μGCG /μGCA 0.4016 μCCG /μCCA 0.3630
μGCC /μGCA 1.0605 μCCT /μCCA 0.8008

Cys μTGT /μTGC 1.6581 Gln μCAG /μCAA 0.5026
Asp μGAT /μGAC 1.9496 Arg μAGG /μAGA 0.5325
Glu μGAG /μGAA 0.4536 μCGA /μAGA 0.2012
Phe μTTT /μTTC 1.5262 μCGC /μAGA 0.1376
Gly μGGC /μGGA 0.7779 μGGG /μAGA 0.1104

μGGG /μGGA 0.5310 μCGT /μAGA 0.2946
μGGT /μGGA 1.6471 Ser μTCC /μTCA 0.6861

His μCAT /μCAC 1.8943 μTCG /μTCA 0.4736
Ile μATC /μATA 0.7647 μTCT /μTCA 1.1472

μATT /μATA 1.4006 μAGT /μAGC 1.4752
Lys μAAG /μAAA 0.6811 Thr μACC /μACA 0.6185
Leu μCTC /μCTA 0.4319 μACG /μACA 0.4740

μCTG /μCTA 0.8441 μACT /μACA 1.0249
μCTT /μCTA 0.9404 Val μGTC /μGTA 0.7811
μTTA /μCTA 1.9598 μGTG /μGTA 0.8533
μTTG /μCTA 1.9253 μGTT /μGTA 1.5350

Asn μAAT /μAAC 1.5897 Tyr μTAT /μTAC 1.4217

Table S2. Estimates of differences in elongation time (Δt)

Amino acids Codons Δt Amino acids Codons Δt

Ala tGCC−tGCA −0.1108 Pro tCCC−tCCA 0.1394
tGCG−tGCA 0.0551 tCCG−tCCA 0.2514
tGCC−tGCA −0.1168 tCCT−tCCA 0.0396

Cys tTGT−tTGC −0.0289 Gln tCAG−tCAA 0.1024
Asp tGAT−tGAC 0.0125 Arg tAGG−tAGA 0.1813
Glu tGAC−tGAA 0.0585 tCGA−tAGA 0.6795
Phe tTTT−tTTC 0.0419 tCGC−tAGA 0.1586
Gly tGGC−tGGA −0.1452 tCGG−tAGA 0.4932

tGGG−tGGA −0.0593 tCGT−tAGA 0.0039
tGGT−tGGA −0.2126 Ser tTCC−tTCA −0.0887

His tCAT−tCAC 0.0281 tTCG−tTCA 0.0400
Ile tATC−tATA −0.2671 tTCT−tTCA −0.0876

tATT−tATA −0.2588 tAGT−tAGC 0.0054
Lys tAAG−tAAA −0.0443 Thr tACC−tACA −0.0950
Leu tCTC−tCTA 0.1349 tACG−tACA 0.0600

tCTG−tCTA 0.0733 tACT−tACA −0.0902
tCTT−tCTA 0.0674 Val tGTC−tGTA −0.1736
tTTA−tCTA −0.0266 tGTG−tGTA −0.0863
tTTG−tCTA −0.0082 tGTT−tGTA −0.1688

Asn tAAT−tAAC 0.0664 Tyr tTAT−tTAC 0.0683

Estimates of differences in elongation time (Δt) are given in seconds.

Dataset S1. List of S. cerevisiae genes used in the analyses and their protein production rates ϕ

Dataset S1

Dataset S2. Gene-specific observed and predicted codon counts

Dataset S2
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