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SI Text

S1. Analytical Solutions of the Model. One amino acid with two codons.
Consider a gene sequence of length n composed of a single two-
codon amino acid, whose average elongation times are #; and ;.
Let x; and x, = n — x; be the respective codon counts. The ex-
pected cost of ribosome usage during protein production is then
given as

2
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where C is the cost of ribosome usage in ATP per second. We
assume an exponential fitness function w described as

w(E|p) = e~ 1ME) = g=abClatinn) [S3]
where ¢ is the protein production rate, a measure of gene ex-
pression, and g is the scaling constant determining the rela-
tionship between cost of ATP usage to organismal fitness w.

Following the methods used in studies (1-4), the probability of
observing an allele across the entire genotype space at equilib-
rium is given by

Sy w(E )™
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where N, is the effective population size and S. is the entire
synonymous codon genotype space, which has 2" alleles in this
simple case. Because the cost of protein production is in-
dependent of codon order within a gene, multiple synonymous
alleles could give rise to the same cost 1. In the case of two
codons, the number of alleles with the same cost is represented
by a binomial coefficient and for amino acids with more than two
codons, the combinations will be represented by a multinomial

coefficient
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P(x|p) = [S5]

Let py and p, represent the rate of mutations to the two codons,
as described by Sella and Hirsh (4).

Taking mutational biases into account, the probability of ob-
serving a given allele is given as

P(¥|) x w(¥ H T [S6]
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where ¥ = {x1,x,}.
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Given the protein production rate ¢ (gene expression) of
a gene and the elongation time ¢ of codons, the expected count of
each codon is given as
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One amino acid with k codons. Using the methods described above, it
can be shown that for any amino acid with k codons, the expected
count of the ith codon is given as
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Thus, the expected frequencies of each codon f; = x;/n are given
as

E[fild] = . [S14]
Zj 1uje_NeqC¢[l.
Variance around the expected value E[x;|¢] can also be calcu-
lated as
n
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Multiple amino acids with varying number of codons. In the case of real
genes, which are composed of multiple amino acids, each with
a varying number of codons, the expected counts and frequencies
of codons can be estimated from the marginal distributions of
each amino acid. For instance, consider the simple case of two
amino acids with two codons each. The ribosomal overhead cost
of protein production is given as

NX) = Clentin + X2t + Xt +xntn), [S17]
where x;; is the number of codons of type j of amino acid i in the
gene. Let n; = x1; + x5 and n, = x,; + x2; be the counts of the
two amino acids in the gene. As previously, the probability of
observing an allele can be written as
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. . The above Eq. S26 is equivalent to Eq. S10, which considers
= P(x1] aa)P(x>|aaz). [S20] a gene sequence with only one amino acid and two codons.

The marginal distribution of genotype space of a singe amino acid
is given as

ny

Y P(x¥2laaz) =1, [S21]
x21=0
Piaar) = 3 P({F1.52}). [s22]

xz1:0

Thus, the expected number of codons of a specific amino acid
based on the marginal distribution of that amino acid can be
calculated as

Efnlpl= 3 xn 3 P(IF1L5)). [S23]

x11=0 X21=0
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Fig. S1.
strong correlation (p > 0.99, P < 107'°) for both At and pf;.
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S2. Argument Against Model Overparametrization. Although it may
seem that the excellent fit between the observed and predicted
values may be attributable to overfitting the data with a large
numbers of parameters, this is not the case. For instance, in the
case of an amino acid with k codons, there are k — 1 independent
codon frequencies. Because the change in codon frequencies
with gene expression can be thought of as a nonlinear regression,
each codon should have a slope and an intercept. Thus, there are
2(k — 1) independent parameters for an amino acid with £ co-
dons. The relative mutation rates provide the estimates for in-
tercepts, whereas differences in elongation times provide the
estimates for their respective slopes. The beauty of our approach
lies in the fact that our simple model, appropriately parame-
terized, leads to a correlation coefficient of 0.96.

3. Berg J, Willmann S, Lassig M (2004) Adaptive evolution of transcription factor binding
sites. BMC Evol Biol 4:42.

4. Sella G, Hirsh AE (2005) The application of statistical physics to evolutionary biology.
Proc Natl Acad Sci USA 102:9541-9546.
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Fig. S2. Observed and predicted changes in codon frequencies with gene expression for the second half of the genome using parameters At and p/y; esti-
mated using the first half. A-S correspond to a specific amino acid, where codons ending in A/T are shown in shades of blue and codons ending in G/C are
shown in shades of red. Solid dots and vertical bars represent mean + 1 SD of observed codon frequencies within genes, with protein production rates defined
by the bin. The expected codon frequencies under our model are represented by solid lines. p,, represents the correlation between the mean of observed
codon frequencies in a bin and predicted codon frequencies at mean ¢ value. p. represents the correlation between observed codon counts and predicted
codon counts of all genes at their specific ¢ value.
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Fig. S3. Correlation between observed codon counts and predicted codon counts of individual genes in the second half of the genome using parameters At
and pi/y; estimated using the first half. We find a very high correlation (p = 0.96, P < 107"%) between our model predictions and observed counts. (Inset)
Distribution of correlation coefficients at the level of individual amino acids, indicating that our high correlation is not biased by specific amino acids and that
we have a high correlation across all amino acids. p. represents the correlation between observed codon counts and predicted codon counts of all genes at their
specific ¢ value.

0.6

Estimated p;/y; * Estimated A,

1.5
0.4

0.0
Il
N\

p =0.9983

0.5
|
b

Using protein production rate
1.0
Il
.'.
Using protein production rate
0.2
Il

o
o
-0.2

°
[ ]

T T T T T T T T T T
0.5 1.0 15 2.0 04 02 00 02 04 06
Using mRNA abundance Using mRNA abundance

Fig. S4. Correlation between estimates of Ats and pi/y; using protein production rate ¢ for each gene and using mRNA abundances. We find a strong cor-
relation (p > 0.97, P < 107"°) for both At and pfy;.

Shah and Gilchrist www.pnas.org/cgi/content/short/1016719108 40f 6


www.pnas.org/cgi/content/short/1016719108

Log1o(mRNA abundance)

(A) Glu B) Gin () Cys (D) Asp
° | o caAA —e— CAA *W e TGC + oo —e— GAC
. | = cac —e— CAG —e— TGT| A —e— GAT
STl I I I
< ST AR T[T
= il ITRH] \ Lt
o | T[T T [T
© N
g +$H‘.._« + o4
pm = 0.982 pm = 0.99 om=0.76 pm =0.833
pc = 0.986 P = 0.891 pc = 0.828 P = 0.981
(E) Phe (F.) His G) Lys (H.) Asn
24 — TTC —e— CAC H| —o— AAA —— AAC
o | & TTT } m—r +e— CAT ‘ ‘ | —e— AAG W —o— AAT
o |1 WL l ‘ \ i '
S M l H Il
< L M | il
e I
« J T T i
: | M *
° | pm=0.793 pm = 0.854 pm = 0.929 Pm = 0.95
pc = 0.966 P = 0.957 pe=0.97 Pe = 0.931
> () Tyr W) Ser2 ) lle L) Ala
O 24 —e TAC —e— AGC —e— ATA —e— GCA
o —o— TAT *}/T —e— AGT —e— ATC —e— GCC
g 2 ‘ ‘ —e ATT —e GCG
O o]} } —e— GCT
O ° |l
¢= < |l * il
c °f
_8 3 [ |
g il
O pm = 0.943 om=0.728 pm = 0.967 om = 0.965
pc = 0.896 pc=0.913 pc = 0.926 0 = 0.902
M) Gly (N.) Pro (0) Ser4 P.) Thr
2 —— GGA —e— CCA *—T —e— TCA —e— ACA
—e— GGC —e— CCC | 1 —e— TCC —e— ACC
S H —* GGG —e— CCG 1 —e— TCG —e— ACG
o | — oot —e— CCT —e— TCT “ —o— ACT
o
< |l «H It
o 3 ) _L-‘
o 11 ‘ hr--: i
o TR TR | .M |
° | pm=0.968 P o = 0.984 pm = 0.949 pm=0.977
pc = 0.765 pc = 0.908 pc=0.917 pc=0.917
Q) Val (R.) Leu (8.) Arg
2 —o— GTA —e— CTA —e— AGA }
—e— GTC —e— CTC —e— AGG
a —e— CTG —e— CGA
—e— CTT —s— CGC .
3 TTA i
- TG (
° |
3 | ;
o s NAIR S Bt a1
3 pm = 0. diua pm=0994 0
. pe = 0.923 pc = 0.924
T T T T T T T T T T T I T
1 0 1 2 -1 1 2 1 0 1 2 1 0

Fig. S5. Observed and predicted changes in codon frequencies with gene expression, specifically mRNA abundances. A-S correspond to a specific amino acid,
where codons ending in A/T are shown in shades of blue and codons ending in G/C are shown in shades of red. Solid dots and vertical bars represent mean + 1 SD
of observed codon frequencies within genes, with mRNA abundances defined by the bin. The expected codon frequencies under our model are represented by
solid lines. py, represents the correlation between the mean of observed codon frequencies in a bin and predicted codon frequencies at mean mRNA abundance
of the bin. p. represents the correlation between observed codon counts and predicted codon counts of all genes at their specific ¢ value.
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Table S1. Estimates of relative mutation rate (p;/p;)

Amino acids Codons wil Amino acids Codons pif;
Ala PGCC/PGCA 0.6541 Pro PCCC/PCCA 0.4460
Hece!Haca 0.4016 Heca! Beca 0.3630
Hecc/Haca 1.0605 Peer/Heca 0.8008
Cys wret/Uree 1.6581 GIn HcaG/Heaa 0.5026
Asp Heat/heac 1.9496 Arg tace/Haca 0.5325
Glu Heac/ Heaa 0.4536 HeGalBaca 0.2012
Phe wrrr/ wrre 1.5262 Heac/Maca 0.1376
Gly Heac/ BeGa 0.7779 Heea/HaGa 0.1104
Heea/HGGa 0.5310 HeaT/Raca 0.2946
Heer/ GG 1.6471 Ser Hrec/ Brea 0.6861
His Heat/Heac 1.8943 Hrea/Hrea 0.4736
lle parc/para 0.7647 wrer/ prea 1.1472
parr/pata 1.4006 pacr/HaGe 1.4752
Lys Baac/Haaa 0.6811 Thr pacc/paca 0.6185
Leu Here/Hera 0.4319 Hace/Haca 0.4740
Hera/pera 0.8441 pacr/Baca 1.0249
werr/Hera 0.9404 Val Herc/Hera 0.7811
wrra/Bera 1.9598 Here/HaTa 0.8533
wrre/ Bera 1.9253 Harr/BeTA 1.5350
Asn Haar/paac 1.5897 Tyr prar/urac 1.4217
Table S2. Estimates of differences in elongation time (At)
Amino acids Codons At Amino acids Codons At
Ala tecc—teeca -0.1108 Pro tecc—teca 0.1394
tGCG_tGCA 0.0551 tCCG_tCCA 0.2514
tecc—teeca -0.1168 tecr—teca 0.0396
CyS tre—trge -0.0289 GIn tcag—tcaa 0.1024
Asp tear—tcac 0.0125 Arg tace—taca 0.1813
Glu toac—tGan 0.0585 tcga—taga 0.6795
Phe trr—trre 0.0419 tecg—taca 0.1586
Gly tooc—tGGa —0.1452 tcge—taga 0.4932
teee—tsGa —-0.0593 tcg—taca 0.0039
teer—tcca -0.2126 Ser trcc—trca —0.0887
His tear—tcac 0.0281 trcg—trea 0.0400
lle tarc—taTa -0.2671 tre—trca —0.0876
tar—tata —-0.2588 tagr—tage 0.0054
LyS taac—tana —0.0443 Thr tacc—taca —-0.0950
Leu ter—tera 0.1349 tacc—taca 0.0600
tCTG_tCTA 0.0733 tAC7_tACA —-0.0902
ter—tera 0.0674 Val ter—tsTa -0.1736
tWA_tCTA —0.0266 tGTG_tGTA —0.0863
trre—tcra —-0.0082 ter—tera —-0.1688
Asn taaT—taac 0.0664 Tyl’ trar—trac 0.0683

Estimates of differences in elongation time (At) are given in seconds.

Dataset S1. List of S. cerevisiae genes used in the analyses and their protein production rates ¢

Dataset S1

Dataset S2. Gene-specific observed and predicted codon counts

Dataset S2
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