Supporting Information

Semenova et al. 10.1073/pnas.1104144108

5 '-AATTCGCCGAACACGCTgagttcccccgcgccagcggggataaaccg<mark>CTGTCTTTCGCTGAGGGTGACGATCCCGC</mark> 3 '-GCGGCTTGTGCGActcaaggggcgggtcgcccctatttggc<mark>GACAGAAAGCGACGACTCCCACTGCTAGGGCG</mark>

gagttccccgcgccagcggggataaaccgTTTGGATCGGGTCTG-3 '
ctcaaggggcgcggtcgcccctatttggcAAACCTAGCCCAGACCTAG-5 '

Fig. S1. Design of nontargeting CRISPR (clustered regularly interspaced short palindromic repeats) (pWUR477, *S1*) and M13 g8-targeting CRISPR cassettes; rectangles indicate spacers, rhombi—repeats. Below synthetic DNA used for generating M13 phage matching CRISPR cassette plasmid is shown. Two oligo-nucleotides were annealed to create double-stranded DNA with sticky EcoRI and BamHI ends. The g8 spacer is shown in red color, repeat sequences are shown in lowercase.

			PAM
Δ	wt		TCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAA
Γ	A-3C	(0.03)	C
	A-3G	(0.12)	G
	T-2C	(0.12)	
	G-1T	(0.22)	••••• ••• T •••••••••••••••••••••••••••
	C1T	(0.47)	
	C1A	(0.02)	<mark>A</mark>
	G3T	(0.02)	••••• ••• ••• T •••••••••••••••••••••••
		Mutation	
R		nosition	PAM
	x.7+	posición	тессатестеттесственсасственсевсевсев
	G-4T	-4	T
	TAC	6	C
	TTC	7	G
	TRG	8	G
	COT	9	T.
	T12C	12	C
	G13A	13	A
	C14G	14	G
	A17G	17	G
	G19A	19	A
	G22A	22	A
	A23C	23	C
	A23T	23	T
	C30T	30	
	A33G	33	G

Fig. 52. (A) Natural M13 escape mutants obtained on lawns of cells expressing g8 crRNA. The wild-type sequence is shown (*Top*). Individual mutations are indicated by red-color font. Numbers indicate frequencies of individual mutations (a total of 50 escape mutant phages was sequenced). (*B*) Engineered point mutations in g8 protospacer, which were not included in Fig. 1*B*. Mutations indicated with red color led to escape, whereas mutations shown in black were restricted by CRISPR/Cas (the phage mutants had nonescape phenotype on lawns of cells expressing the g8 crRNA). PAM, protospacer-adjacent motif.

Fig. S3. Mutations in PAM and protospacer seed region abolish CRISPR/Cas mediated plasmid transformation inhibition. (*A*) Transformation efficiencies of pUC19, pWUR610, and pWUR610 escape mutant series. pWUR610 is a pUC19 plasmid containing the J3 protospacer on a 350-bp fragment of bacteriophage λ genome (Table S1). The recA⁻ strain *Escherichia coli* KRX (Promega) was used to overproduce Cascade, Cas3, and J3 crRNA. Error bars indicate the standard deviation. (*B*) Overview of the identified escape mutants. The sequence of the protospacer as well as escape point mutations are shown.

Mu	tation		
pos	itions	PAM	
wt		TCCGATGCTGTCTTTCGCTGCTGAGGGTGACGA	FCCCGCAAAA
G-4C,C1T	-4,1	C <u>T</u>	
G-4T,C1T	-4,1		
T6A, G-1T	6, -1	T A	
T6C,C1T	6,1		
C9T, A-3G	9,-3	G	
C9T,C1T	9,1		
T12A,C1T	12,1		
T12C,C1T	12,1		
T15A, T-2C	15, -2	A	
T15A, G-1C	15, -1	A	
G18A, T-2C	18, -2	A	
G18A, A-3C	18, -3	C	
T21C, T-2C	21,-2	C	
T21C, A-3G	21, -3	GC	
C24T,G-1T	24, -1	T	
C24T,C1T	24,1		
T27C, A-3C	27,-3	C	с
C30T,G3T	30,3		T
A33C,C1T	33,1		C
A33G, <mark>G-1T</mark>	33,-1	····	G

Fig. S4. Escape mutants obtained on lawns of cells expressing g8 crRNA with individual nonescape phages carrying point mutations in the g8 protospacer. Each row indicates a nonrestricted point mutant of M13, with mutational substitution indicated with black font color. In red, substitutions observed in phages that escaped the block imposed by cells expressing the g8 crRNA are shown.

<

		PAM
Α	WT	TCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAA
	Mut9-11 3e	T CTAA
	Mut18-20 1e	
	Mut18-20 1 2e	
	Mut 27-30 4 5 7e	ТСАА
	Mut 27-30 50	
	Mut 27 30 2 0c	CA.A
	Mut2/=30_2,9e	·····
D		PAM
D	WT	TCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAA
	Mut18-20_7e	·····
	Mut18-20_10e	
	Mut18-20_3e	
	Mut18-20_3_2e	
	Mut18-20 4,6e	
	Mut27-30 1e	
	Mut27-30_3e	
	Mut27-30 6e	
	$M_{11} \pm 27 = 30$ 10e	C. CGAA
	Mut 27-30 6 10	
	Mut 27 30 6 1 2 60	
	Mut27-30,6_1,2,60	
	Mut27-30,6_4e	
	Mut27-30,6_9e	GC
	Mut27-30,6_9_1e	GC
	Mut29-32_2e	TAAG
	Mut 29-32 50	т ттас
	haces se_se	
		Рам
0	۲. Mur	тесса алестететесстве ссете ассалеется в а а
C	Mut 27 20 6 20	
	Mut27-30,6_3e	ACGAA
	Mut27=30,6_3,10e	G
	Mut2/-30,6_5e	CTTA
	Mut27-30,6_8e	C
	Mut27-30,6_8_1e	CTTA
	Mut18-20_8e	
	Mut18-20_9e	T C

Fig. S5. Escape mutants obtained on lawns of cells expressing g8 crRNA with triple (A), quadruple (B), and quintuple (C) nonescape phages carrying point mutations in the g8 protospacer. See Fig. S3 legend for details.

	Mutation		
	positions	PAM	
WT		TCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCG	CAAAA
Mut9-11 2	6,9,11,30		
Mut28-32 7	28-32		.G
Mut28-32 ⁴	28-32	••••••••••••••••••••••••••••••••••••••	.G
Mut28-32_1	28-32	••••• ••• •••• •••••••••••••••••••••••	.G

Fig. S6. Quadruple and quintuple mutants that escape CRISPR/Cas-imposed block on cells expressing g8 crRNA.

	PAM
WT	TCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAA
G-4C	C <mark></mark>
A-3G	••••• G••• •••••••••••••••••••••••••••
G-1T	·····
C1T	·····
G3A	••••••••••••••••••••••••••••••••••••••
тбА	••••• ••• •••• •••••••••••••••••••••••
С9Т	••••••••••••••••••••••••••••••••••••••
T12A	••••• ••• ••••• ••••••••••••••••••••••
T15A	••••• ••• •••• •••••••••••••••••••••••
G18A	••••• A•••••••••••••••••••••••••••••••
G19C	•••••C••••••••••••••••••••••••••••••••
T21C	•••••C••••••••••••••••••••••••••••••••
G22A	••••• A•••••••••••••••••••••••••••••••
G22C	•••••C••••••••••••••••••••••••••••••••
A23T	••••• T•••• •••••
A23G	••••• G•••••••••••••••••••••••••••••••
C24T	••••• T•••••
T27C	••••• ••• •••• •••••••••••••••••••••••
G10T,C30A	••••• ••• ••••• ••••••••••••••••••••••
C14G,C30A	••••• ••• •••• •••• ••• ••• ••• ••• ••
Mut9-11_1	A
Mut18-20_1	••••• ••• ••• ••• ••• ••• ••• ••• •••
Mut27-30_5	CA.A
Mut18-20_7	••••• ••• ••• ••• ••• ••• ••• ••• •••
Mut27-30,6_4	CCG.A
Mut18-20_5	ACCA
Mut27-30,6_3	CCGAA

Fig. S7. Phenotypes of indicated phages on lawns of hns⁻ E. coli cells containing an engineered g8 CRISPR spacer in their chromosomal CRISPR cassette. See Fig. 1 legend for nomenclature.

Probe pair	Position (mutation)	Phenotype	Kd (nM)	EMSA gel
BG3233+BG3234	wild type		24 ± 9	
BG3333+BG3334	-4 (G→C)	nonescape	31 ± 7	
BG3235+BG3236	-3 (A→C)	escape	285 ± 32	
BG3237+BG3238	-2 (T→C)	escape	> 1,230	aller and a second
BG3239+BG3240	-1 (G→T)	escape	> 1,230	
BG3241+BG3242	1 (C→T)	escape	> 1,230	

BG3243+BG3244	2 (T→A)	escape	270 ± 20	
BG3245+BG3246	3 (G→T)	escape	790 ± 254	
BG3247+BG3248	4 (T→G)	escape	> 1,230	
BG3249+BG3250	5 (C→G)	escape	782 ± 132	
BG3251+BG3252	6 (T→A)	nonescape	38 ± 14	
BG3253+BG3254	7 (T→C)	escape	> 1,230	

PNAS

S A Z C

BG3255+BG3256	8 (T→C)	escape	1176 ± 112	
BG3331+BG3332	9 (C→T)	nonescape	38 ± 11	
BG3365+BG3366	10 (G→T)	nonescape	310 ± 28	
BG3367+BG3368	15 (T→A)	nonescape	439 ± 43	
BG3369+BG3370	24 (C→T)	nonescape	45 ± 20	
BG3371+BG3372	30 (C→A)	nonescape	29 ± 8	

Fig. S8. Electrophoretic mobility shift assays of Cascade complex binding various double-stranded DNA probes. The probes are listed in Table S2. Cascade concentration range (nM): 1200, 600, 300, 150, 75, 37.5, 18.8, 9.4, 4.7, 2.3, 1.2, respectively.

Table S1. Plasmids used in this study

Plasmids	Description and order of genes (5'-3')	Restriction sites	Primers	Source
pWUR477	nontargeting CRISPR in pACYCDuet-1			Brouns et al. (1)
pWUR397	cas3 in pRSF-1b, no tags			Brouns et al. (1)
pWUR399	casA-casB-casC-casD-casE-cas1-cas2 in pCDF-1b, no tags			Brouns et al. (1)
pWUR400	casA-casB-casC-casD-casE in pCDF-1b, no tags			Brouns et al. (1)
pWUR408	casA in pRSF-1b, no tags			Brouns et al. (1)
pWUR514	casB with Strep-tag II (N-term)-casC-casD-CasE in pET52b			Jore et al. (2)
pWUR610	lambda fragment 17918–18250, in pUC19	BamHI/HindIII	BG3218 + BG3219	this study
pWUR615	E. coli CRISPR, 7 x spacer g8, in pACYCDuet-1*	EcoNI/Acc65I		Geneart, Germany
pWUR630	<i>E. coli</i> CRISPR, 4 x spacer J3, in pACYCDuet-1 ⁺	Ncol/Kpnl		Geneart, Germany

*pWUR615—E. coli CRISPR, 7x spacer g8 (underlined), in pACYCDuet-1

[†]pWUR630—*E. coli* CRISPR, 4x spacer J3 (underlined), in pACYCDuet-1

ĊCATGGAAACAAAGAATTAGCTGATCTTTAATAATAAGGAAATGTTACATTAAGGTTGGTGGGTTGTTTTTATGGGAAAAAATGCTTTAAGAACAAATG TATACTTCTAGAGAGTTCCCCGCGCCAGCGGGGGATAAACCG<u>CCAGTGATAAGTGGAATGCCATGTGGGCTGTC</u>GAGTTCCCCGCGCCAGCGGGGATAAA CCG<u>CCAGTGATAAGTGGAATGCCATGTGGGCTGTC</u>GAGTTCCCCGCGCCAGCGGGGATAAACCG<u>CCAGTGATAAGTGGAATGCCATGTGGGCTGTC</u>GAG TTCCCCGCGCCAGCGGGGATAAACCG<u>CCAGTGATAAGTGGAATGCCATGTGGGCTGTC</u>GAGTTCCCCGCGCCAGCGGGGATAAACCGCAGCTGCCAGT CAAACCCAGGTACC.

1. Brouns SJ, et al. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964.

2. Jore MM, et al. (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18:529-536.

Table S2. Primers used in this study

Experiment	Primer	Sequence (5'-3')	Description
M13 mutagenesis*	N-4	GCTACCCTCGTTCCHATGCTGTCTTTCGC	Mutation at position –4
	N2	CCTCGTTCCGATG <u>CVGTCTTTCGCTGCTG</u>	Mutation at position 2
	N4	TCGTTCCGATG <u>CTGVCTTTCGCTGCTGAG</u>	Mutation at position 4
	N5	CGTTCCGA7G <u>CTG1DTTTCGCTGCGGG</u>	Mutation at position 5
	N6	GTTCCGATG <u>CTGTCVTTCGCTGCTGAGGG</u>	Mutation at position 6
	N7	TTCCGATG <u>CTGTTUTCGCTGCTGAGGGT</u>	Mutation at position 7
	N8	TCCGA76 <u>CTGTCTTVCGCTGCTGAGGGTG</u>	Mutation at position 8
	6N	CCGA76 <u>CTGTCTTT76CTGCTGAGGGTGA</u>	Mutation at position 9
	N10	CG476 <u>CTG1CTTTCHCTGCTGAGGGTGAC</u>	Mutation at position 10
	N11	GA76 <u>CTGTTTTCGDTGCTGAGGGTGACG</u>	Mutation at position 11
	N12	<u>A76CTGTCTTTCGCVGCTGAGGGTGACGA</u>	Mutation at position 12
	N13	7GCTGTCTTTCGCTHCTGAGGGTGACGAL	Mutation at position 13
	N14	<u>GCTGTCTTTCGCTGDTGAGGGTGACGATC</u>	Mutation at position 14
	N15	<u>CTGTCTTTCGCTGCVGAGGGTGACGATCC</u>	Mutation at position 15
	N16	<u>IGTCTTTCGCTGCTHAGGGTGACGATCCC</u>	Mutation at position 16
	N17	<u>GTCTTTCGCTGCTGBGGGTGACGATCCCG</u>	Mutation at position 17
	N18	<u>ICTTTCGCTGCTGAAGGTGACGATCCCGC</u>	Mutation at position 18
	N19	<u>CTTTCGCTGCTGAGHGTGACGATCCCGC</u> A	Mutation at position 19
	N22	<u>ICGCTGCTGAGGGTHACGATCCCGC</u> AAAA	Mutation at position 22
	N23	<u>CGCTGCTGAGGGTGBCGATCCCGC</u> AAAAG	Mutation at position 23
	N24	<u>GCTGCTGAGGGTGATGCCCGCAAAAGC</u>	Mutation at position 24
	N27	<u>GCTGAGGGTGACGCGCAAAAAGCGGC</u>	Mutation at position 27
	N30	<u>GAGGGTGACGATCCDGC</u> AAAAGCGGCCTT	Mutation at position 30
	N33	<u>GGTGACGATCCCGC</u> BAAAGCGGGCCTTTAA	Mutation at position 32
	N9-11(T6C)	CCGA76 <u>CTGTCCTT7NNTGCTGAGGGTGACG</u>	Mutation at positions 6, 9–11
	N18-20(T6C,C30A)	ICCTTCGCTGCTGAAMNTGACGATCCAGCAA	Mutation at positions 6, 18–20, 30
	N27-29(C30A)	<u>GCTGAGGGTGACGACNNAGC</u> AAAAGCGGCCT	Mutation at positions 27-30
	N29-32	<u>CGCTGCTGAGGGTGACGATCDDAG</u> TAAAGCGGCCTTTAACTC	Mutation at positions 29–32
	N28-32	<u>CTTTCGCTGCTGAGGGTGACGATDDDAG</u> TAAAGCGGCCTTTAACTC	Mutation at positions 28–32
Mutant phage sequencing	G8_F	CTTTAGTCCTCAAAGCCTCTG	g8 protospacer forward primer
	G8_R	GCTTGCTTTCGAGGTGAATTTC	g8 protospacer reverse primer
Plasmid construction	BG3218 PC2210	GGCCCGGGATCGGTCGGCGAGCGATGATGCG CGCGCA A GCTTTCATCGCGTTTCATTCCGTTT	lambda fragment + BamHI (fw)
	BU3219		iampua iragment + minuili (rv)

Experiment	Primer	Sequence (5′-3′)	Description
EMSA	BG3233	GCTACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAA	Native target
	BG3234	TTAAAGGCCGCTTTT <u>GCGGGAICGTCACCCTCAGCGGCGAAAGACAG</u> CATCGGAACGAGGGTAGC	Native target
	BG3235	GCTACCCTCGTTCCG C TG <u>CTGTCTTTCGCTGCTGGGGGGGGGGGGCGCCGCG</u> AAAAGCGGCCTTTAA	Mutation at position –3
	BG3236	TTAAAGGCCGCTTTTT <u>GCGGGATCGTCACCCTCAGCGGCGAAAGACGA</u> CGGGAACGAGGGTAGC	Mutation at position –3
	BG3237	GCTACCCTCGTTCCGACGCTGTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAA	Mutation at position –2
	BG3238	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCGGAAAGACAG</u> CG7CGGAACGAGGGTAGC	Mutation at position –2
	BG3239	GCTACCCTCGTTCCCGA77CIGICTTTCGCTGCTGAGGGIGACCGATCCCCGCAAAAGCGGCCTTTAA	Mutation at position –1
	BG3240	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCAGGAAGACAGA</u> ATCGGAACGAGGGTAGC	Mutation at position –1
	BG3241	GCTACCCTCGTTCCCGA767051CTTTCGCTGCTGAGGGTGACGATCCCCGCAAAAGCGGCCTTTAA	Mutation at position 1
	BG3242	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCGAAAGACAA</u> CATCGGAACGAGGGTAGC	Mutation at position 1
	BG3243	GCTACCCTCGTTCCGATG <u>AGTCTTTCGCTGCTGAGGGTGACGATCCCGC</u> AAAAGCGGCCTTTAA	Mutation at position 2
	BG3244	TTAAAGGCCGCTTTTT <u>GCGGGATCGTCACCCTCAGCAGCGGAAAGACTG</u> CATCGGAACGAGGGTAGC	Mutation at position 2
	BG3245	GCTACCCTCGTTCCGATG <u>CTTTCTTTCGCTGCTGAGGGTGACGATCCCCGC</u> AAAAGCGGCCTTTAA	Mutation at position 3
	BG3246	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCGAAAGAAG</u> CATCGGAACGAGGGTAGC	Mutation at position 3
	BG3247	GCTACCCTCGTTCCGATG <u>CTGGCTTTCGCTGCTGAGGGTGACGAICCCGC</u> AAAAGCGGCCTTTAA	Mutation at position 4
	BG3248	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCAAAGCCAG</u> CATCGGAACGAGGGTAGC	Mutation at position 4
	BG3249	GCTACCCTCGTTCCGATG <u>CTGTGTTCGCTGCTGAGGGTGACGATCCCGC</u> AAAAGCGGCCTTTAA	Mutation at position 5
	BG3250	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCAAACAAG</u> CATCGGAACGAGGGTAGC	Mutation at position 5
	BG3251	GCTACCCTCGTTCCGATGCTGTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAA	Mutation at position 6
	BG3252	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCGAATGACAG</u> CATCGGAACGAGGGTAGC	Mutation at position 6
	BG3253	GCTACCCTCGTTCCGATG <u>CTGTCTCCCTGCTGAGGGIGACGATCCCGC</u> AAAAGCGGCCTTTAA	Mutation at position 7
	BG3254	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCAGCAG</u> AGACAGGAACGAGGGTAGC	Mutation at position 7
	BG3255	GCTACCCTCGTTCCGATG <u>CTGTCTCCGCTGCTGAGGGTGACGATCCCGC</u> AAAAGCGGCCTTTAA	Mutation at position 8
	BG3256	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCGGGAAGACAG</u> CATCGGAACGAGGGTAGC	Mutation at position 8
	BG3266	GCAGAACAATGGTTACTTTTTCGATACGTGAAACATGTCCCACGGTAGCCCAAAGACTTGAGAGT	Random target
	BG3267	ACTCTCAAGTCTTTGGGCTACGTGGGGGCATGTTTCACGTATCGAAAAAGTAACCATTGTTCTGC	Random target
	BG3331	GCTACCCTCGTTCCGATG <u>CTGTCTTTTGCTGCTGAGGGTGACGATCCCGC</u> AAAAGCGGCCTTTAA	Mutation at position 9
	BG3332	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGAAAGACAG</u> CATCGGAACGAGGGTAGC	Mutation at position 9
	BG3333	GCTACCCTCGTTCCCATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAA	Mutation at position -4
	BG3334	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGCAAAGACAG</u> CA7GGGAACGAGGGTAGC	Mutation at position –4
	BG3365	GCTACCCTCGTTCCGA76 <u>CTGTCTTTCTCTGCTGAGGGTGACGATCCCGC</u> AAAAGCGGCCTTTAA	Mutation at position 10
	BG3366	TTAAAGGCCGCTTTT <u>GCGGGATCGTCACCCTCAGCAGAAGAAGACAG</u> CATCGGAACGAGGGTAGC	Mutation at position 10
	BG3367	GCTACCCTCGTTCCGATG <u>CTGTCTTTCGCTGCAGGGGGGGGGG</u>	Mutation at position 15
	BG3368	TTAAAGGCCGCTTTT <u>GCGGGATCGTCGTCGTCGGGAAGGACAG</u> CATCGGAACGAGGGTAGC	Mutation at position 15
	BG3369	GCTACCCTCGTTCCGATG <u>CTGTTTCGCTGCTGGTGGGGIGATGATCCCGC</u> AAAAGCGGCCTTTAA	Mutation at position 24
	BG3370	TTAAAGGCCGCTTTT <u>GCGGGATCATCACCCTCAGCAGCGAAGACAG</u> CATCGGAACGAGGGTAGC	Mutation at position 24
	BG3371	GCTACCCTCGTTCCGATG <u>CTGTTTCGCTGCTGGTGGGGTGACGATCCAGC</u> AAAAGCGGCCTTTAA	Mutation at position 30
	BG3372	TTAAAGGCCGCTTTT <u>GCTGGATCGTCACCCTCAGCAGCAAGGACAG</u> CATCGGAACGAGGGTAGC	Mutation at position 30
Plasmid construction	BG3218	GGCCC GGATCC GTCGGGCGAGCGATGATGCG	lambda fragment + BamHI (fw)
	BG3219	CGCGCAAGCTTCATTCATTCCGGTTT	lambda fragment + HindIII (rv)
Mutant plasmid sequencing	BG2455	TTTCCCAGTCACGACGTTG	J3 protospacer forward primer
	BG2456	GGATAACAATTTCACACAGG	J3 protospacer reverse primer

Mutations are indicated in bold italics. The protospacer region is underlined. PAM is indicated in italics. *Only one of two complementary primers used for mutagenesis is shown.