Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin resistant human testicular carcinoma cells via the Fas/FasL pathway

Roelof Koster, Hetty Timmer-Bosscha, Rainer Bischoff, Jourik A. Gietema and Steven de Jong

Supplemental Figure 1. Immunofluorescence showing cytoplasmic localised p53, while MDM2 maintains nuclear localised after cisplatin treatment (8 μ M) in the cisplatin-resistant TC cell lines Tera-CP, Scha and 2102EP; a representative example of three independent experiments is shown. Selected area of the original image, as indicated, x2.5 digitally magnified. Scale bar: 30 μ m.

Supplemental Figure 2. (a) No induction of p53 is observed after treatment with RITA. Suppression of p53 with a specific siRNA does not interfere with the apoptosis induction by RITA as visualised by PARP cleavage; a representative example of three independent experiments is shown. (b) Immunofluorescence shows that p53 becomes more prominently nuclear localised after Nutlin-3 treatment in the cisplatin-sensitive TC cellline Tera and the intrinsically cisplatin-resistant cell line 2102EP compared to control; a representative example of three independent experiments is shown. Selected area of the original image, as indicated, x2.5 digitally magnified. Scalebar: 30µm.

Supplemental Figure 3. (a) Successful downregulation of p53 using siRNA targeting p53, and decreased cleavage of PARP in p53-suppressed Nutlin-3 treated TC cells compared to control; a representative example of three independent experiments is shown. (b) Unchanged Fas membrane expression of the mutant p53 cell line NCCIT following Nutlin-3 and/or cisplatin treatment; a representative example of three independent experiments is shown. (c) Reduced PARP cleavage in Tera-CP and Scha after successful downregulation of FasL or blocking of FasL, with Nok-1; a representative example of three independent experiments is shown. (d) Immunofluorescence shows that p21 is mainly cytoplasmic localized after DMSO (control) and Nutlin-3 treatment in the cisplatin-resistant TC cell line 2102EP; a representative example of three independent experiments is shown. Selected area, as indicated, of the original image x4 digitally magnified. Scale bar: 30 µm. (e) Downregulation of p21 increases the apoptotic response of the intrinsically cisplatin-resistant cells Scha and 2102EP after Nutlin-3 treatment; a representative example of three independent experiments is shown.

Survival cells 96h Supplemental Figure (a-b) TC after of continuous Nutlin-3 4. of indicated, with increasing cisplatin concentration. treatment in combination IC₅₀ as values are depicted for cisplatin as well as the combination; values are the mean \pm SD.

Supplemental Figure 5. (a) Increased levels of p53 and increased PARP cleavage after targeting the MDM2/p53 axis; a representative example of three independent experiments is shown. (b) Increased apoptosis after targeting the MDM2/p53 axis with either siRNA against MDM2 or Nutlin-3 (Nut-3) in combination with cisplatin. Values are the mean \pm SD of three experiments; #p < 0.05; *p < 0.01; **p < 0.005. (c) Following the indicated treatment TC cells were harvested and Fas membrane expression was determined by flow cytometry. Values were depicted as mean fluorescence intensity (MFI). Values are the mean \pm SD of three experiments; (d) Decreased apoptotic response after blocking of FasL, with Nok-1, in TC cells treated with the combination of cisplatin and Nutlin-3. Values are the mean \pm SD of three experiments; (mean \pm SD of three experiments; (mean \pm SD of three experiments).

Supplemental Materials and Methods

Antibodies

The following antibodies were used: mouse anti p53 (DO-1, Santa Cruz), mouse anti-Mdm2 (SMP14, Oncogene Research Products, Darmstadt, Germany), mouse anti β-Actin (MP Biomedicals, Eindhoven, the Netherlands), mouse anti p21 (F5, Santa Cruz), rabbit anti-Parp (Roche Diagnostics, Almere, the Netherlands), caspase 8 (1C12, Cell Signalling, MA, USA), and anti-FasL (C20, Santa Cruz).

RNA interference sequences

Sequence for p53 I small interfering RNA (siRNA) molecules was 5'-GCA UGA ACC GGA GGC CCA UdTdT-3' (sense) and 5'-AUG GGC CUC CGG UUC AUG CdTdT-3' (anti-sense), sequence for p53 II siRNA was 5'-CUU CGA CUU UGU CAC CGA GdTdT-3' (sense) and 5'-CUU ACG CUG AGU ACU UCG AdTdT-3' (anti-sense), sequence for P21 I siRNA was 5'-GAC CAU GUG GAC CUG UCA CTdT-3' (sense) and 5'- GUG ACA GGU CCA CAU GGU CdTdT-3' (anti-sense), sequence for P21 II siRNA was 5'-CUU CGA CUU UGU CAC CGA GTdT-3' (sense) and 5'-CUC GGU GAC AAA GUC GAA GTdT-3' (antisense), sequence for FasL siRNA was 5'-CTG GGC TGT ACT TTG TAT AdTdT-3' (sense) and 5'- TAT ACA AAG TAC AGC CCA GdTdT-3' (anti-sense), sequence for MDM2 siRNA was 5'-GTG AAT CTA CAG GGA CGC CAT CdTdT-3' (sense) and 5'-GAT GGC GTC CCT GTA GAT TCA CdTdT-3' (anti-sense).