SUPPLEMENTARY MATERIAL
RESULTS
abtm-1 depleted animals have a pleiotropic phenotype

abtm-1(RNAi) animals show a pleiotropic range of phenotypes. They have slow and reduced
growth (Gro, for Growth rate abnormal); larvae reach adulthood 36-48 hours later than controls
(data not shown) and adults are smaller in size (Figure S2). A small proportion of abtm-1(RNAi)
animals also form aberrant gonads or lack gonads completely (Figure S2). Those worms which
form functional gonads show an egg laying defect (Egl, for egg laying defective) (Figure S2),
which may reflect the impairment of neurons and/or muscles involved in egg laying, or
defective vulval and/or gonadal development.

XLSA/A patients show non-progressive cerebellar ataxia and uncoordinated limb movement.
We therefore asked whether depletion of abtm-1 disrupts locomotion in worms. Normal
locomotion in C. elegans consists of rthythmic sinusoidal waves propagated along the body. In
liquid environments this is manifest as a thrashing motion. We quantified basal locomotion
levels using a thrashing assay. abtm-1(RNAi) worms performed 151.7+2.7 thrashes/min (N=24)
compared to 167.4+2.6 of control worms (N=24), showing that these animals have a mild but
significant (t-test p<0.0005) locomotion defect. This suggests that abtm-1(RNAi) worms have a
mild impairment of either, or both, the body wall muscles and the locomotory nervous system.

C. elegans has a characteristic set of rhythmic behaviors, including two ultradian rhythms:
pharyngeal pumping and defecation (1). Many Mit mutants disrupt one or both of these rhythms
(2-4). Defecation is a tightly regulated process (5). The defecation motor program (DMP)
occurs every 50 seconds (6) and consists of three coordinated muscle based steps. The cycle
length and periodicity of this process are routinely measured by timing the first of these steps,
pBoc, the posterior body contraction. We found that the defecation motor program of the abtm-
1(RNAi) worms is disrupted. Although the mean period is only slightly increased (p<0.001) the
rhythmicity of the cycle, as measured by the coefficient of variation (CV) (7), is substantially
disrupted (Table 2). Moreover, as well as having disrupted defecation cycles, abtm-1(RNAi)
worms are also constipated (data not shown), which suggests that the worms also have a defect
in the final expulsion (Exp) step. Pharyngeal pumping was not significantly altered in abtm-
1(RNAi) animals (data not shown).

EXPERIMENTAL PROCEDURES
Behaviour analysis

To quantify locomotion we used a thrashing assay. Individual worms were transferred into a
microtiter well containing 60 ul of M9 buffer (8). Thrashes produced by each worm in a period
of 30 seconds were counted after a 2 min equilibration period. A thrash was defined as a change
in direction of bending at the midbody, as previously described (9). 24 worms were examined
for each strain.

To measure defecation we determined the interval between successive pBocs for a minimum of
10 defecation cycles in 10 worms at 20°C as described before (7).

To measure pharyngeal pumping we counted contractions of the pharynx under the dissecting
microscope at 20°C, as described previously (10). Ten L4 worms were followed during five
periods of 30 s. Experiments were performed in the presence of food.



Table S1. Lifespan analysis of abmt-1(RNAi) animals in wildtype and daf-16 mutant
backgrounds.

Strain Median lifespan (days) N* p-value
wt 19 219(16)

wt; cat(RNAi) 19 234(19) 0.9628"
wt; abtm-1(RNAi) 23 252(42) 0.0001°¢
daf-16(mus86) 17 210(25)

daf-16(mu86); cat(RNAi) 17 205(24) 0.5140"°
daf-16(mu86); abtm-1(RNAi) 18 231(29) 0.0001¢

*Number of scored deaths (censored animals).

Log-rank test p-value of pairwise comparison between caf(RNAi) control animals and the
corresponding genetic background.

‘Log-rank test p-value of pairwise comparison between cat(RNAi) control animals and abtm-1(RNAi)
within the same genetic background.



Table S2. Strains used in this work

Strain Genotype Reference
Bristol N2*  Reference wild type (11)
SU93* jelsITV (12)
NL2098* rrf-1(pk1417)1 (13)
KR344* let-363(h98) dpy-5(e61) unc-13(e450)1; sDp2(Lf) (14)
KN259% huls33[sod-3::GFP; pRF4(rol-6(sul 006)] (15)

FP11 frh-1(0k610)IWmlin[mlis14dpy-10(el28)]1] 3)

TJ356 zIs356/daf-16p::daf-16-gfp; rol-6(sul006)] (16)
TM2721° abtm-1(tm2721)1/+ This work
FP8 abtm-1(tm2721)1; sDp2(L;f) This work
FP1 ipEx1[abtm-1::GFP1; pRF4(rol-6(sul006); gDNA] This work
FP4 ipEx4[abtm-1::GFP2; pRF4(rol-6(sul006); gDNA] This work

* Strains supplied by the Caenorhabditis Genetics Centre (University of Minnesota, MN).
® TM2721 was supplied by the NBRP (Tokyo Women's Medical University School of
Medicine).



Table S3. Primers used to amplify DNA sequences to produce dsRNA in vitro

DNA
Gene Forward primer/sequence (5'-3") Reverse primer/sequence (5'-3") fragment
(bp)

abtm-1 FP12/AGTCTTCGCAAAAGTCGCGC FPI13/GAGTGAAATTGAGCAGAGCC 506
Y62E104.6 FP501/TTAGCAATTGTGGGCTCCGG FP498/CGCGGAGCTCCTTGATTGT 610
Ipd-8 FP503/TGCTCACAAGACTGAACCGG RACE3" 666
B0205.6 FP505/AATTGAGCCAGGATCTCCGC FP497/CGGCATAGTTCACCAATTTG 522
Y73F84.27 FP499/TGGCGATGAGAGCTAAAGG RACE3'" 491
Y39B64.3 FP507/ATGTCAAAATTCGGTGGAGC RACE3" 390

Y45F10D.4 FP509/CTTCAAATCAGTTCAGCCGC FP496/GGCGAGCATTGAACAGTGAA 400

“In these cases we used a sequence-specific forward primer, designed based on the WormBase prediction of the
genes, combined with RACE3' to obtain a fragment of the ORF.
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Figure S1. ABTM-1 is the C. elegans homologue of ABCB7. 4, sequence of the cDNA of the
abtm-1 gene. UTRs are represented in black. The start and stop codons are highlighted. Exons
are shown in different colors within the coding sequence. Two different 3' cDNA ends were
identified by RT-PCR. The positions of the poly(A) tract, in each ¢cDNA, are marked by an
asterisk. B, alignment between the C-terminal regions of ABTM-1 and ABCB7 shows that the
sequences are very similar (51% identity using Blast to align two sequences (17)). The six
transmembrane domains and the ATP binding domain are indicated, by the blue and green
backgrounds respectively. Asterisks indicate identical amino acids in the two proteins. C,
phylogenetic tree, from an alignment of several proteins of the ABCB family, shows that
ABTM-1 is clustered with Atmlp from yeast and ABCB7 from mice and humans, further
suggesting that this is homologue of ABCB7 in C. elegans. The bar shows relative phylogenetic
distance between peptides.



Figure S2. abtm-1(RNAi) adults have pleiotropic phenotypic defects. 4, a wild type adult worm
(top) compared with a typical abtm-1(RNAi) animal (bottom). abtm-1(RNAi) adults are paler
and smaller in size than wild type animals. B, some abtm-1(RNAi) adults (right) have abnormal
gonads. The gonad of a wild type worm is shown for comparison (left). C, abtm-1(RNAi) adults
are Egl, as judging by the presence of embryos in late developmental stages in the adult (right)
which is not usually observed in wild type animals (left). All scale bars represent 50 pm.
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Figure S3. cat(RNAi) does not alter lifespan in wild type or daf-16(mu86) backgrounds.
cat(RNAi) was performed on wild type and daf-16(mu86) and their lifespan compared to
untreated animals.



