SUPPLEMENTARY TABLE LEGENDS

SUPPLEMENTARY TABLE ST1. Structure interpretations of the mutual fragments which were found in all four derivatized 66-kDa N-glycans that have been released after PNGase F digestion in the positive ion MS/MS spectra.

SUPPLEMENTARY TABLE ST2. Structure interpretations of the fragments which were found in the positive ion MS/MS spectra for the most abundant 2AB-labeled N-glycan released by Endo H: m/z 1834.5.

m/z,	(Positive	Composition			Proposed structure		
ion, [M+Na] ⁺)							
Found*	Calc.	Hex	O-MeHex	Xyl	GlcNAc	Other	
203.7							
203.6	203.06	1	0	0	0	0	
203.6	203.08	0	0	0	1	$-H_2O$	
203.7							
364.3							
364.8	364.15	0	0	0	1	2AB	: 2AB
364.4	365.13	1	0	0	1	$-H_2O$	
364.5							β 4
567.3							2AB
567.6	567.23	0	0	0	2	2AB	β 4
567.3	568.18	2	0	0	1		
567.3							
655.4							
655.2	655.21	2	1	1	0	$-H_2O$	*
655.9							(IcH)
655.5							
817.5							☆
817.1	817.26	3	1	1	0	$-H_2O$	(fell)
818.0							
817.5							
993.7							☆ ☆
993.4	993.33	3	2	1	0	$-H_2O$	(sell)
993.1							α ₆
993.5							MeH α
1154.9							γ
1155.1	1155.38	4	2	1	0	$-H_2O$	(tell)
1155.2							a 6
1154.8							укпу
1493.8							4
1493.8	1493.50	5	3	1	0	$-H_2O$	
1494.0							MeH
1493.8							Mel) a o
							MeH ^a

⁼ GlcNAc = Man = O-MeHex = Xyl

 $[\]ensuremath{^*}$ The four numbers refer to four compounds.

m/z (Pos	sitive ion,		Composi				
[M +	•Na]*)						Proposed structure
Found*	Calc.	Hex	O-MeHex	Xyl	GlcNAc	Other	
347.7	347.09	2	0	0	0	-H ₂ O	Ο Ο α 6
364.5	364.15	0	0	0	1	2AB	□ —2AB
	365.13	1	0	0	1	-H ₂ O	φ _{β 4}
507.6	508.19	1	0	0	1	2AB	ξ
						-H ₂ O	<u>β</u> 4 2AB
523.4	523.17	2	1	0	0	-H ₂ O	
655.5	655.21	2	1	1	0	-H ₂ O	→
685.8	685.22	3	1	0	0	-H ₂ O	MeH α 6
							(fell) α 3
818.3	817.26	3	1	1	0	-H ₂ O	(ci) a 6
850.4	849.30	2	2	1	0		
921.1	920.34	2	2	0	1		(an) 3 β 4
993.6	993.33	3	2	1	0	-H ₂ O	
1026.5	1026.38	3	1	0	1	2AB	2AB α 6 β 4 2AB α 6 β 4 2AB
1154.9	1155.38	4	2	1	0	-H ₂ O	tell) a 6
1317.2	1317.43	5	2	1	0	-H ₂ O	(dell) a o o o o o o o o o o o o o o o o o o

1224 5	122110					2.17	
1334.6	1334.49	3	2	1	1	2AB	α 6 β 4 2AB
1364.2	1364.50	4	2	0	1	2AB	theff α 6 β 4 2AB
1493.8	1493.51	5	3	1	0	-H ₂ O	
1657.7	1658.61	5	2	1	1	2AB	Gail a 2AB
1834.5	1834.59	5	3	1	1	2AB	2AB

= GlcNAc

= Man

= *O*-MeHex

=Xyl