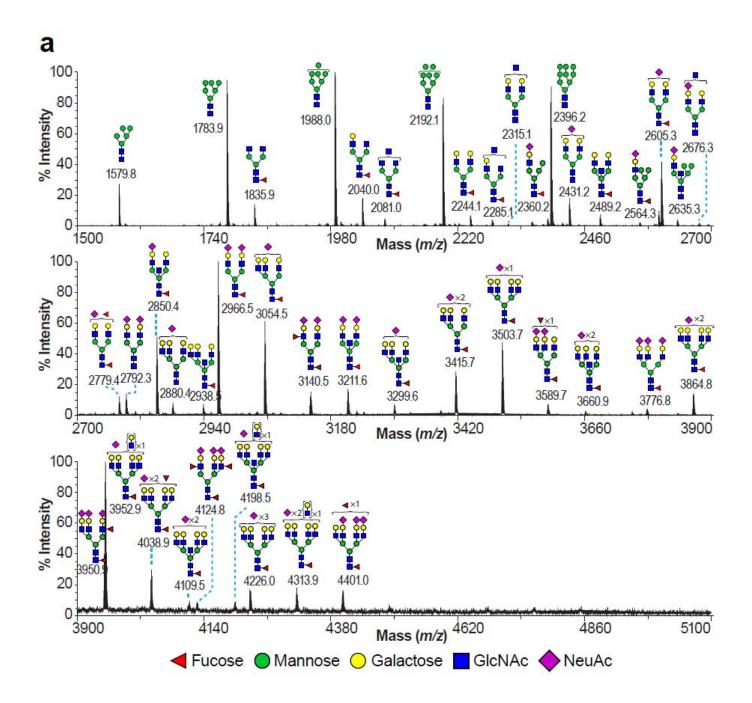
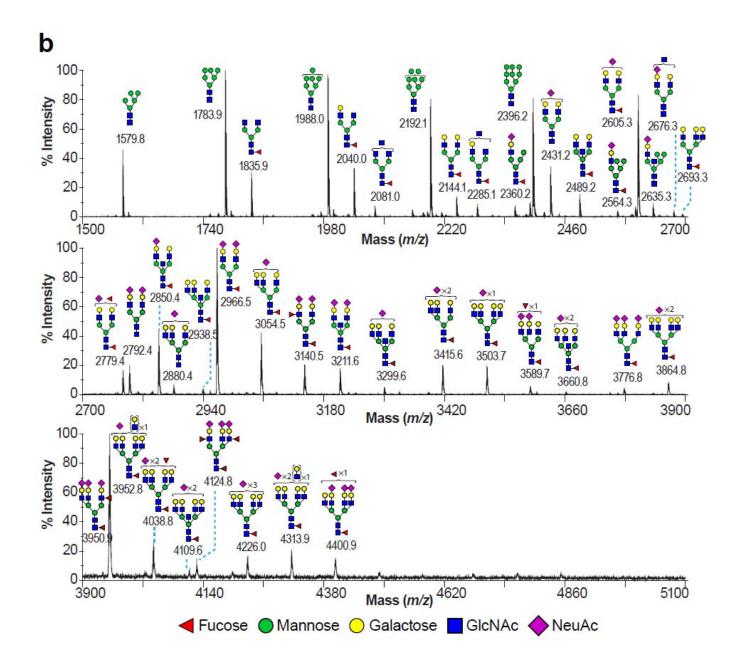
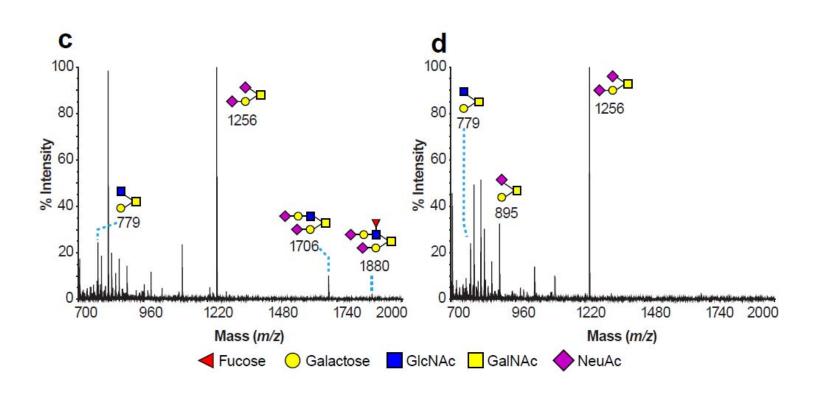
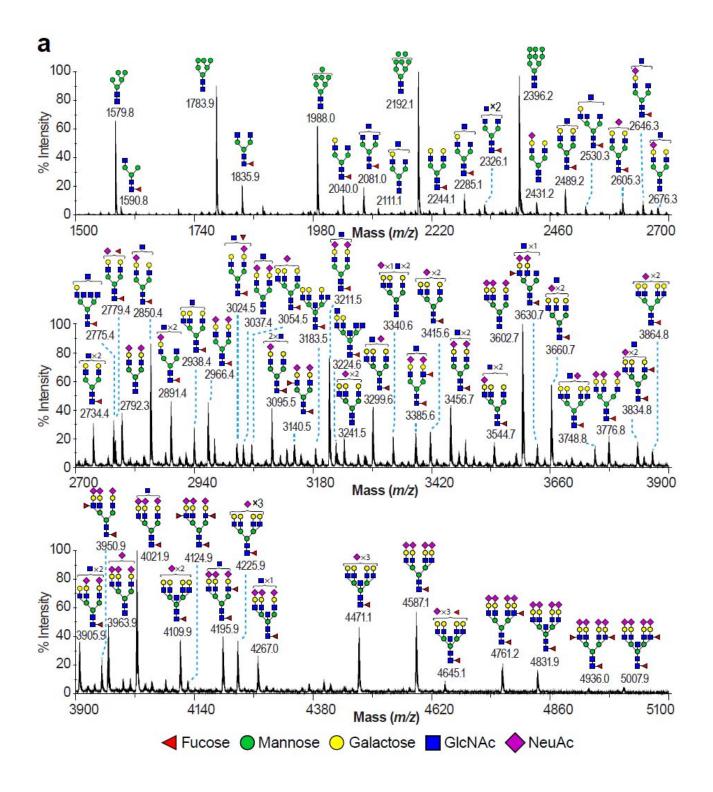
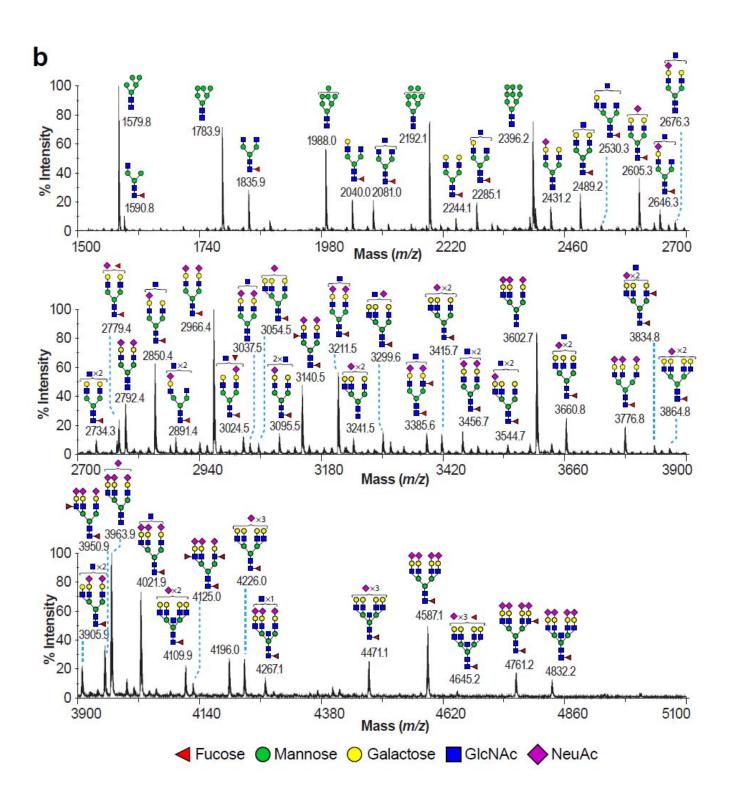
#### SUPPLEMENTAL FIGURE LEGENDS

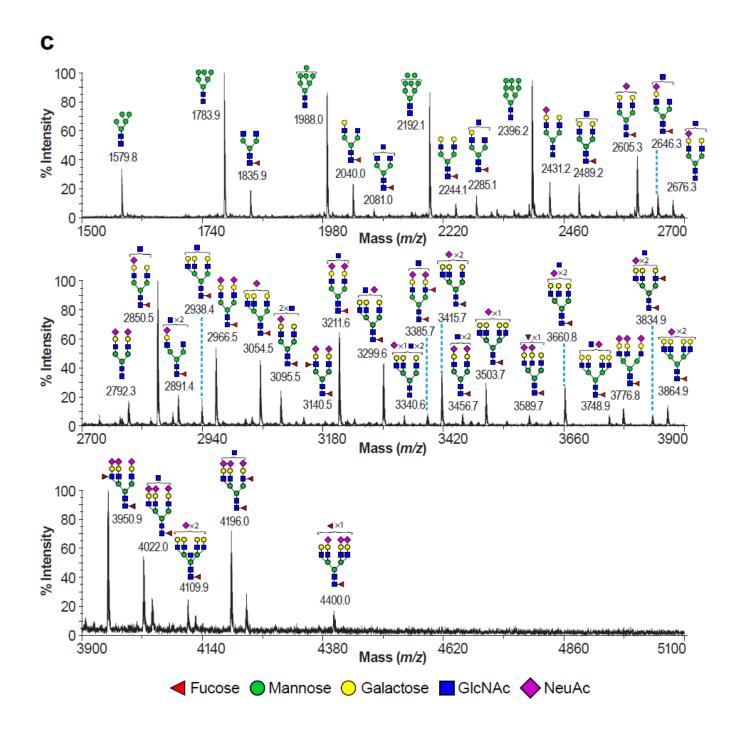

<u>Supplemental Fig. 1.</u> MALDI-TOF Spectra of Permethylated N- and O-glycans Derived from Untreated and 4-F-GlcNAc-Treated T cells. N-glycomic profile of (a) untreated and (b) 4-F-GlcNAc-treated T cells; O-glycomic profile of (c) untreated and (d) 4-F-GlcNAc-treated T cells. N- and O-glycomic profiles were obtained from the 50% MeCN fraction from a  $C_{18}$  Sep-Pak column ("Materials and Methods"). Cartoon structures are according to the Consortium for Functional Glycomics (http://www.functionalglycomics.org) guidelines. All molecular ions are  $[M+Na]^+$ . Putative structures based on composition, tandem MS and biosynthetic knowledge. Structures that show sugars outside a bracket have not been unequivocally defined.

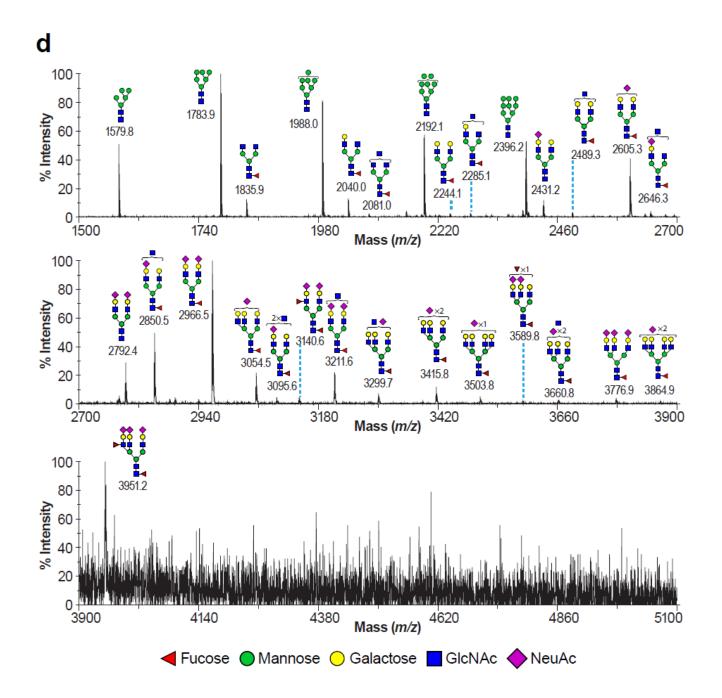

Supplemental Fig. 2. MALDI-TOF Mass Spectra of Permethylated N-glycans from Endo- $\beta$ -Galactosidase Digestion of KG1a and T cells. Profile of N-glycans of (a) untreated and (b) 4-F-GlcNAc-treated KG1a cells; profiles of N-glycans of (c) untreated and (d) 4-F-GlcNAc treated T cells. All profiles are from the 50% MeCN fraction from a C<sub>18</sub> Sep-Pak column ("Materials and Methods"). All molecular ions are [M+Na]<sup>+</sup>. Putative structures based on composition, tandem MS and biosynthetic knowledge. Cartoon structures are according to the Consortium for Functional Glycomics (http://www.functionalglycomics.org) guidelines.

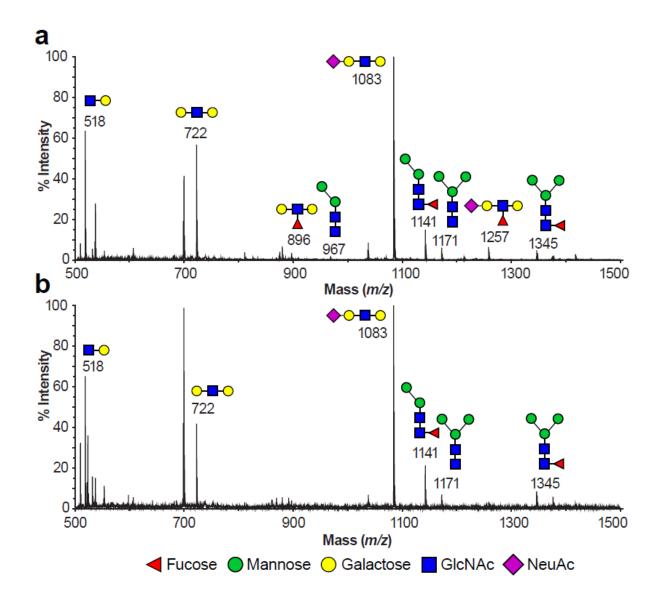

Supplemental Fig. 3. Low Mass MALDI-TOF Mass Spectra of Permethylated N-glycans from Endo- $\beta$ -Galactosidase Digestion of T cells. Profile of N-glycans of (a) untreated and (b) 4-F-GlcNAc-treated T cells. Profiles are from the 35% MeCN fraction from a C<sub>18</sub> Sep-Pak column ("Materials and Methods"). All molecular ions are [M+Na]<sup>+</sup>. Putative structures based on composition, tandem MS and biosynthetic knowledge. Cartoon structures are according to the Consortium for Functional Glycomics (http://www.functionalglycomics.org) guidelines.

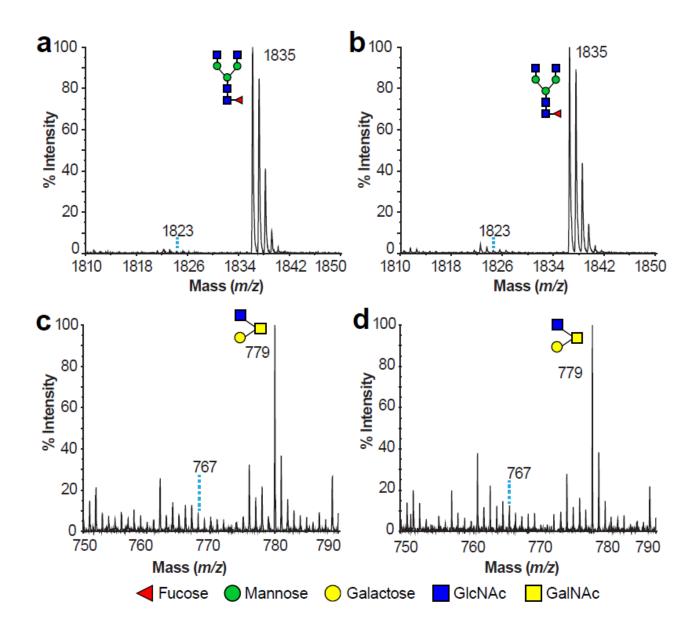

Supplemental Fig. 4. Scan Zoom MALDI-TOF Spectra of Permethylated N- and O-glycans Derived from Untreated and 4-F-GlcNAc-Treated T cells. Zoom scan signals present at m/z 1835 (N-glycans) and 779 (O-glycans). N-glycomic profiles were obtained from the 35% MeCN fraction, while O-glycomic profiles were obtained from the 50% MeCN fraction (Supplementary Figure 2), both from a C<sub>18</sub> Sep-Pak column ("Materials and Methods"). All molecular ions are  $[M+Na]^+$ . Putative structures based on composition, tandem MS and the literature shown. Cartoon structures are according to the Consortium for Functional Glycomics (http://www.functionalglycomics.org) guidelines. Signals at m/z 1823 in (a) and (b) and at m/z 767 in (c) and (d) correspond to the theoretical incorporation of 4-F-GlcNAc.

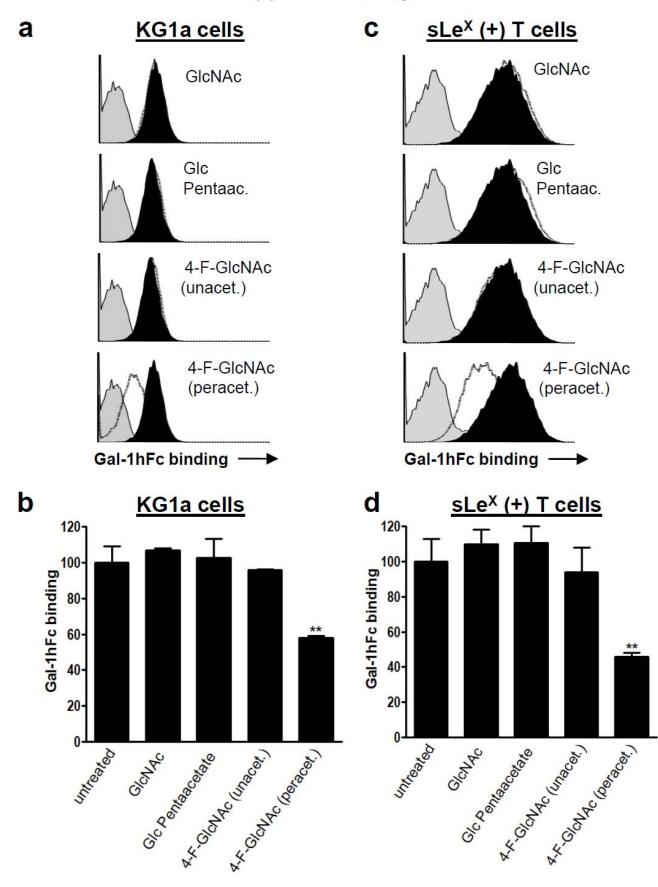

<u>Supplemental Fig. 5.</u> Effect of GlcNAc Variants on Galectin-1 Ligands on  $sLe^{X}$  (+) KG1a and T cells. (a and c) Representative flow cytometric histograms of KG1a and T cells treated with the indicated GlcNAc analogs. After treatment, cells were stained with Gal-1hFc (10 ug/ml) along with APC-goat anti-human IgG secondary (gray histogram= staining with hFc control; black histogram = staining of untreated cells with Gal-1hFc; dotted histogram= staining of sugar-treated cells with Gal-1hFc.). KG1a cells were incubated with or without GlcNAc variants (0.05mM) for 48hrs before being harvested and stained. T cells were incubated at 0.015mM for 38 hrs. (b and d) Quantitation of Gal-1hFc binding based on the flow cytometric results shown in (a and c). The mean fluorescent intensity of Gal-1hFc binding to treated cells was normalized to untreated cells, which was set at 100%. Graphed are data from experiments performed in triplicate on two different occasions with the standard error of the mean (SEM) indicated. \*\*, p<0.01, statistically significant compared with untreated control, one-way ANOVA with Dunnett's post hoc test.














### Supplemental Table 1.

Compositional assignments and masses of singly charged sodiated molecular ions [M+Na]<sup>+</sup>, observed in MALDI-TOF MS spectra of permethylated *N*-glycans derived from the untreated and 4-F-GlcNAc treated KG1a cells.

|                                                                          |                     | Detected Mass (m/z) |        |  |
|--------------------------------------------------------------------------|---------------------|---------------------|--------|--|
|                                                                          | Calculated          | Untreated 4-F-GlcNA |        |  |
| Composition                                                              | mass ( <i>m</i> /z) | KG1a                | KG1a   |  |
| Hex <sub>5</sub> GlcNAc <sub>2</sub>                                     | 1579.8              | 1579.8              | 1579.8 |  |
| Fuc <sub>1</sub> Hex <sub>3</sub> HexNAc <sub>3</sub>                    | 1590.8              | 1590.8              | 1590.8 |  |
| Hex <sub>6</sub> GlcNAc <sub>2</sub>                                     | 1783.9              | 1783.9              | 1783.9 |  |
| Fuc <sub>1</sub> Hex <sub>3</sub> HexNAc <sub>4</sub>                    | 1835.9              | 1835.9              | 1835.9 |  |
| Hex <sub>7</sub> GlcNAc <sub>2</sub>                                     | 1988.0              | 1988.0              | 1988.0 |  |
| Fuc <sub>1</sub> Hex <sub>4</sub> HexNAc <sub>4</sub>                    | 2040.0              | 2040.0              | 2040.0 |  |
| Fuc <sub>1</sub> Hex <sub>3</sub> HexNAc <sub>5</sub>                    | 2081.1              | 2081.0              | 2081.0 |  |
| Hex <sub>8</sub> GlcNAc <sub>2</sub>                                     | 2192.1              | 2192.1              | 2192.1 |  |
| Fuc <sub>1</sub> Hex <sub>5</sub> HexNAc <sub>4</sub>                    | 2244.1              | 2244.1              | 2244.1 |  |
| Fuc <sub>1</sub> Hex <sub>4</sub> HexNAc <sub>5</sub>                    | 2285.2              | 2285.1              | 2285.1 |  |
| Hex <sub>5</sub> HexNAc <sub>5</sub>                                     | 2315.2              | 2315.2              | 2315.2 |  |
| Hex <sub>9</sub> GlcNAc <sub>2</sub>                                     | 2396.2              | 2396.2              | 2396.2 |  |
| Hex <sub>5</sub> HexNAc <sub>4</sub> NeuAc <sub>1</sub>                  | 2431.2              | 2431.2              | 2431.2 |  |
| Fuc <sub>1</sub> Hex <sub>5</sub> HexNAc <sub>5</sub>                    | 2489.3              | 2489.2              | 2489.2 |  |
| Hex <sub>10</sub> GlcNAc <sub>2</sub>                                    | 2600.3              | 2600.3              | 2600.3 |  |
| Fuc <sub>1</sub> Hex <sub>5</sub> HexNAc <sub>4</sub> NeuAc <sub>1</sub> | 2605.3              | 2605.3              | 2605.3 |  |
| Hex <sub>6</sub> HexNAc <sub>4</sub> NeuAc <sub>1</sub>                  | 2635.3              | 2635.3              | 2635.3 |  |
| Fuc <sub>2</sub> Hex <sub>5</sub> HexNAc <sub>5</sub>                    | 2663.3              | 2663.5              | 2663.3 |  |
| Hex <sub>5</sub> HexNAc <sub>5</sub> NeuAc <sub>1</sub>                  | 2676.3              | 2676.5              | 2676.3 |  |
| Fuc <sub>1</sub> Hex <sub>5</sub> HexNAc <sub>6</sub>                    | 2734.4              | 2734.3              | -      |  |
| $Fuc_2Hex_5HexNAc_4NeuAc_1$                                              | 2779.4              | 2779.3              | 2779.3 |  |
| Hex <sub>5</sub> HexNAc <sub>4</sub> NeuAc <sub>2</sub>                  | 2792.4              | 2792.3              | 2792.3 |  |
| Fuc <sub>1</sub> Hex <sub>5</sub> HexNAc <sub>5</sub> NeuAc <sub>1</sub> | 2850.4              | 2850.4              | 2850.4 |  |
| Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>1</sub>                  | 2880.4              | 2880.4              | 2880.4 |  |
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>6</sub>                    | 2938.5              | 2938.4              | 2938.4 |  |
| $Fuc_1Hex_5HexNAc_4NeuAc_2$                                              | 2966.5              | 2966.4              | 2966.4 |  |
| $Fuc_2Hex_5HexNAc_5NeuAc_1$                                              | 3024.5              | 3024.5              | 3024.5 |  |

| Hex <sub>5</sub> HexNAc <sub>5</sub> NeuAc <sub>2</sub>                  | 3037.5 | 3037.6 | 3037.6 |
|--------------------------------------------------------------------------|--------|--------|--------|
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>1</sub> | 3054.5 | 3054.5 | 3054.5 |
| Fuc <sub>2</sub> Hex <sub>6</sub> HexNAc <sub>6</sub>                    | 3112.6 | 3112.7 | -      |
| Hex <sub>6</sub> HexNAc <sub>6</sub> NeuAc <sub>1</sub>                  | 3125.6 | 3125.7 | -      |
| Fuc <sub>2</sub> Hex <sub>5</sub> HexNAc <sub>4</sub> NeuAc <sub>2</sub> | 3140.6 | 3140.5 | 3140.5 |
| Fuc <sub>1</sub> Hex <sub>5</sub> HexNAc <sub>5</sub> NeuAc <sub>2</sub> | 3211.6 | 3211.5 | 3211.6 |
| Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>2</sub>                  | 3241.6 | 3241.5 | 3241.6 |
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>6</sub> NeuAc <sub>1</sub> | 3299.7 | 3299.6 | 3299.6 |
| Fuc <sub>3</sub> Hex <sub>5</sub> HexNAc <sub>4</sub> NeuAc <sub>2</sub> | 3314.7 | -      | 3314.6 |
| Fuc <sub>2</sub> Hex <sub>5</sub> HexNAc <sub>5</sub> NeuAc <sub>2</sub> | 3385.7 | 3385.6 | 3385.6 |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>7</sub>                    | 3387.7 | 3387.6 | 3387.6 |
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>2</sub> | 3415.7 | 3415.6 | 3415.6 |
| Fuc <sub>2</sub> Hex <sub>6</sub> HexNAc <sub>6</sub> NeuAc <sub>1</sub> | 3473.7 | 3473.7 | -      |
| Hex <sub>6</sub> HexNAc <sub>6</sub> NeuAc <sub>2</sub>                  | 3486.7 | 3486.6 | -      |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>6</sub> NeuAc <sub>1</sub> | 3503.8 | 3503.7 | 3503.7 |
| Hex <sub>6</sub> HexNAc₅NeuAc <sub>3</sub>                               | 3602.8 | 3602.7 | 3602.7 |
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>6</sub> NeuAc <sub>2</sub> | 3660.8 | 3660.7 | 3660.7 |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>7</sub> NeuAc <sub>1</sub> | 3748.9 | 3748.8 | 3748.8 |
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>3</sub> | 3776.9 | 3776.7 | 3776.7 |
| Fuc <sub>2</sub> Hex <sub>6</sub> HexNAc <sub>6</sub> NeuAc <sub>2</sub> | 3834.9 | 3834.8 | 3834.8 |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>6</sub> NeuAc <sub>2</sub> | 3864.9 | 3864.8 | 3864.8 |
| Fuc <sub>2</sub> Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>3</sub> | 3951.0 | 3950.8 | 3950.9 |
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>6</sub> NeuAc <sub>3</sub> | 4022.0 | 4021.8 | 4021.9 |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>7</sub> NeuAc <sub>2</sub> | 4110.1 | 4109.9 | 4109.9 |
| Fuc <sub>2</sub> Hex <sub>6</sub> HexNAc <sub>6</sub> NeuAc <sub>3</sub> | 4196.1 | 4195.9 | 4195.9 |
| Fuc <sub>1</sub> Hex <sub>8</sub> HexNAc <sub>8</sub> NeuAc <sub>1</sub> | 4198.1 | 4197.9 | 4197.9 |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>6</sub> NeuAc <sub>3</sub> | 4226.1 | 4225.9 | 4225.9 |
| Fuc <sub>2</sub> Hex <sub>7</sub> HexNAc <sub>7</sub> NeuAc <sub>2</sub> | 4284.1 | 4283.9 | 4283.9 |
| Fuc <sub>1</sub> Hex <sub>8</sub> HexNAc <sub>7</sub> NeuAc <sub>2</sub> | 4314.2 | 4313.9 | 4314.0 |
| Fuc <sub>2</sub> Hex <sub>7</sub> HexNAc <sub>6</sub> NeuAc <sub>3</sub> | 4400.2 | 4400.6 | 4400.0 |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>7</sub> NeuAc <sub>3</sub> | 4471.2 | 4471.0 | 4471.0 |
| Fuc <sub>1</sub> Hex <sub>8</sub> HexNAc <sub>8</sub> NeuAc <sub>2</sub> | 4559.3 | 4559.0 | 4559.1 |
| Fuc <sub>2</sub> Hex <sub>7</sub> HexNAc <sub>7</sub> NeuAc <sub>3</sub> | 4645.3 | 4645.8 | 4645.1 |
| Fuc <sub>1</sub> Hex <sub>8</sub> HexNAc <sub>7</sub> NeuAc <sub>3</sub> | 4675.3 | 4674.8 | 4675.2 |

| Fuc <sub>1</sub> Hex <sub>9</sub> HexNAc <sub>8</sub> NeuAc <sub>2</sub> | 4763.4 | 4763.0 | 4763.0 |
|--------------------------------------------------------------------------|--------|--------|--------|
| Fuc <sub>1</sub> Hex <sub>8</sub> HexNAc <sub>8</sub> NeuAc <sub>3</sub> | 4920.5 | 4920.7 | 4921.0 |

#### Supplemental Table 2.

Compositional assignments and masses of singly charged sodiated molecular ions [M+Na]<sup>+</sup>, observed in MALDI-TOF MS spectra of permethylated N-glycans derived from the untreated and 4-F-GlcNAc treated T cells.

|                                                         |                     | Detected Mass (m/z) |         |  |
|---------------------------------------------------------|---------------------|---------------------|---------|--|
|                                                         | Calculated          | Untreated 4-F-GlcNA |         |  |
| Composition                                             | mass ( <i>m/z</i> ) | T Cells             | T Cells |  |
| Hex <sub>5</sub> GlcNAc <sub>2</sub>                    | 1579.8              | 1579.8              | 1579.8  |  |
| Hex <sub>6</sub> GIcNAc <sub>2</sub>                    | 1783.9              | 1783.9              | 1783.9  |  |
| $Fuc_1Hex_3HexNAc_4$                                    | 1835.9              | 1835.9              | 1835.9  |  |
| Hex <sub>7</sub> GlcNAc <sub>2</sub>                    | 1988.0              | 1988.0              | 1988.0  |  |
| $Fuc_1Hex_4HexNAc_4$                                    | 2040.0              | 2040.0              | 2040.0  |  |
| Fuc <sub>1</sub> Hex <sub>3</sub> HexNAc <sub>5</sub>   | 2081.1              | 2081.0              | 2081.0  |  |
| Hex <sub>8</sub> GlcNAc <sub>2</sub>                    | 2192.1              | 2192.1              | 2192.1  |  |
| $Fuc_1Hex_5HexNAc_4$                                    | 2244.1              | 2244.1              | 2244.1  |  |
| Fuc <sub>1</sub> Hex <sub>4</sub> HexNAc <sub>5</sub>   | 2285.2              | 2285.1              | 2285.1  |  |
| Hex <sub>5</sub> HexNAc <sub>5</sub>                    | 2315.2              | 2315.1              | 2315.1  |  |
| Hex <sub>9</sub> GlcNAc <sub>2</sub>                    | 2396.2              | 2396.2              | 2396.2  |  |
| Hex <sub>5</sub> HexNAc <sub>4</sub> NeuAc <sub>1</sub> | 2431.2              | 2431.2              | 2431.2  |  |
| $Fuc_1Hex_5HexNAc_5$                                    | 2489.3              | 2489.2              | 2489.2  |  |
| $Fuc_1Hex_6HexNAc_3NeuAc_1$                             | 2564.3              | 2564.3              | 2564.3  |  |
| $Fuc_1Hex_5HexNAc_4NeuAc_1$                             | 2605.3              | 2605.3              | 2605.3  |  |
| Hex <sub>6</sub> HexNAc <sub>4</sub> NeuAc <sub>1</sub> | 2635.3              | 2635.3              | 2635.2  |  |
| $Hex_5HexNAc_5NeuAc_1$                                  | 2676.3              | 2676.3              | 2676.3  |  |
| $Fuc_2Hex_5HexNAc_4NeuAc_1$                             | 2779.4              | 2779.4              | 2779.4  |  |
| Hex <sub>5</sub> HexNAc <sub>4</sub> NeuAc <sub>2</sub> | 2792.4              | 2792.4              | 2792.4  |  |
| $Fuc_{1}Hex_{5}HexNAc_{5}NeuAc_{1}$                     | 2850.4              | 2850.4              | 2850.4  |  |
| Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>1</sub> | 2880.4              | 2880.4              | 2880.4  |  |
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>6</sub>   | 2938.5              | 2938.5              | 2938.5  |  |
| $Fuc_1Hex_5HexNAc_4NeuAc_2$                             | 2966.5              | 2966.5              | 2966.5  |  |
| $Fuc_1Hex_6HexNAc_5NeuAc_1$                             | 3054.5              | 3054.5              | 3054.5  |  |
| $Fuc_2Hex_5HexNAc_4NeuAc_2$                             | 3140.6              | 3140.5              | 3140.5  |  |
| $Fuc_1Hex_5HexNAc_5NeuAc_2$                             | 3211.6              | 3211.6              | 3211.6  |  |
| $Fuc_1Hex_6HexNAc_6NeuAc_1$                             | 3299.7              | 3299.6              | 3299.6  |  |

| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>2</sub> | 3415.7 | 3415.7 | 3415.6 |
|--------------------------------------------------------------------------|--------|--------|--------|
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>6</sub> NeuAc <sub>1</sub> | 3503.8 | 3503.7 | 3503.7 |
| Fuc <sub>2</sub> Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>2</sub> | 3589.8 | 3589.7 | 3589.7 |
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>6</sub> NeuAc <sub>2</sub> | 3660.8 | 3660.9 | 3660.8 |
| Fuc <sub>1</sub> Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>3</sub> | 3776.9 | 3776.8 | 3776.8 |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>6</sub> NeuAc <sub>2</sub> | 3864.9 | 3864.8 | 3864.8 |
| Fuc <sub>2</sub> Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>3</sub> | 3951.0 | 3950.9 | 3950.9 |
| Fuc <sub>1</sub> Hex <sub>8</sub> HexNAc <sub>7</sub> NeuAc <sub>1</sub> | 3953.0 | 3952.9 | 3952.9 |
| Fuc <sub>2</sub> Hex <sub>7</sub> HexNAc <sub>6</sub> NeuAc <sub>2</sub> | 4039.0 | 4038.8 | 4038.8 |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>7</sub> NeuAc <sub>2</sub> | 4110.1 | 4109.5 | 4109.6 |
| Fuc <sub>2</sub> Hex <sub>6</sub> HexNAc <sub>5</sub> NeuAc <sub>3</sub> | 4125.1 | 4124.8 | 4124.8 |
| Fuc <sub>1</sub> Hex <sub>8</sub> HexNAc <sub>8</sub> NeuAc <sub>1</sub> | 4198.1 | 4198.5 | -      |
| Fuc <sub>1</sub> Hex <sub>7</sub> HexNAc <sub>6</sub> NeuAc <sub>3</sub> | 4226.1 | 4226.0 | 4226.0 |
| Fuc <sub>1</sub> Hex <sub>8</sub> HexNAc <sub>7</sub> NeuAc <sub>2</sub> | 4314.2 | 4313.9 | 4313.9 |
| Fuc <sub>2</sub> Hex <sub>7</sub> HexNAc <sub>6</sub> NeuAc <sub>3</sub> | 4400.2 | 4401.0 | 4400.9 |

#### Supplemental Table 3.

GC-MS Linkage Analyses of Partially Methylated Alditol Acetates (PMAA) of KG1a and T cells Obtained after Peptide *N*-glycosidase F Digestion on Non-desialylated and Desialylated Samples.

|                                                                         |            | Relative Abundance <sup>c</sup> , % |                                           |                                 |                                           |  |
|-------------------------------------------------------------------------|------------|-------------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------|--|
|                                                                         | ŧ.         | Non-Desialylated                    |                                           | Desialylated                    |                                           |  |
| Characteristic<br>Fragment Ion <sup>a,b</sup>                           | Assignment | KG1a<br>Untreated<br>4-F-GlcNAc     | <u>T cells</u><br>Untreated<br>4-F-GlcNAc | KG1a<br>Untreated<br>4-F-GlcNAc | <u>T cells</u><br>Untreated<br>4-F-GlcNAc |  |
| 102, 115, 118, 131, 162,<br>175                                         | t-Fuc      | 27.9<br>50.3                        | 54.5<br>48.5                              | 61.3<br>64.3                    | 92.0<br>36.3                              |  |
| 102, 118, 129, 145, 161,<br>162, 205                                    | t-Man      | 115.3<br>135.3                      | 84.4<br>82.1                              | 103.9<br>77.1                   | 163.1<br>75.9                             |  |
| 102, 118, 129, 145, 161,<br>162, 205                                    | t-Gal      | 25.6<br>25.4                        | 41.5<br>31.1                              | 130.3<br>62.6                   | 211.6<br>88.5                             |  |
| 100, 101, 129, 130, 161,<br>190, 205                                    | 2-Man      | 100.0<br>100.0                      | 100.0<br>100.0                            | 100.0<br>100.0                  | 100.0<br>100.0                            |  |
| 118, 129, 143, 161, 174,<br>190, 203, 217, 234, 245,<br>277             | 3-Gal      | 40.6<br>32.9                        | 29.3<br>21.4                              | 29.6<br>6.0                     | 30.4<br>19.4                              |  |
| 99, 102, 118, 129, 159,<br>162, 173, 189, 233                           | 6-Gal      | 9.8<br>11.5                         | 23.7<br>21.9                              | 0.0                             | 0.0                                       |  |
| 113, 130, 173 <sup>6</sup> , 190 <sup>6</sup> , 233 <sup>6</sup>        | 2,4-Man    | 10.8<br>7.8                         | 10.4<br>6.6                               | 17.5<br>2.8                     | 19.1<br>9.4                               |  |
| 99, 100, 129, 130 <sup>b</sup> , 189,<br>190 <sup>b</sup>               | 2,6-Man    | 8.3<br>6.3                          | 10.2<br>6.5                               | 15.7<br>4.0                     | 13.8<br>10.1                              |  |
| 118 <sup>b</sup> , 129, 139, 143, 174, 189, 202, 234 <sup>b</sup> , 305 | 3,6-Man    | 64.8<br>61.2                        | 43.6<br>39.9                              | 77.2<br>35.4                    | 67.0<br>42.0                              |  |
| 118 <sup>b</sup> , 129, 139 <sup>b</sup> , 160, 202, 259, 333           | 3,4,6-Man  | 8.4<br>7.4                          | 3.8<br>3.1                                | 2.0<br>0.6                      | 5.0<br>3.4                                |  |
| 117, 129, 143, 145, 159,<br>203, 205                                    | t-GlcNAc   | 3.8<br>1.3                          | 0.4<br>0.5                                | 0.7<br>0.1                      | 0.5<br>0.3                                |  |
| 117, 129, 143, 159, 173,<br>203, 233                                    | 4-GlcNac   | 32.5<br>13.7                        | 5.7<br>6.3                                | 19.1<br>2.2                     | 6.6<br>6.0                                |  |
| 117, 142, 159, 244, 301                                                 | 3,4-GlcNAc | 1.3<br>0.7                          | 0.6<br>0.6                                | 3.4<br>0.5                      | 0.4                                       |  |
| 117, 143, 159, 261                                                      | 4,6-GlcNAc | 2.2<br>1.0                          | 0.2 0.3                                   | 0.4                             | 0.2                                       |  |

Permethylated N-glycans (non-desialylated and desialylated) were hydrolyzed, reduced, acetylated and analyzed by GC-MS ("Materials and Methods"). Upper panel values correspond to untreated PMAA linkage data (Untreated); lower panel values correspond to 4-F-GlcNAc-treated PMAA linkage data (4-F-GlcNAc). Values correspond to the relative abundance of the residue normalized to the abundance of 2-linked mannose. a. Electron impact fragment ions used for identification of the PMAA residues.

b. For relative abundance, in order to minimize interferences from the baseline and/or contamination, all fragment ions greater than 100 (>100) were used for the extracted ion current (XIC) chromatogram, as indicated above, expect for the following residues: 2,4-linked mannose, *m/z* 173 + *m/z* 190 + *m/z* 233; 2,6-linked mannose, *m/z* 130 + *m/z* 190; 3,6-linked mannose, *m/z* 118 + *m/z* 234; 3,4,6-linked mannose, *m/z* 118 + *m/z* 139
c. Relative abundances are expressed as follows: the integrated area peak of the extracted ion current (XIC) chromatogram of a specific residue was divided with the integrated area peak of the XIC chromatogram of 2-linked mannose.