SUPPLEMENTAL DATA

CHARGE REQUIREMENTS FOR PROTON GRADIENT-DRIVEN TRANSLOCATION OF ANTHRAX TOXIN

Michael J. Brown,¹ Katie L. Thoren,² Bryan A. Krantz^{1,2,3}

From Departments of Molecular & Cell Biology¹, Chemistry², and the California Institute for Quantitative Biosciences³,

University of California, Berkeley, CA, 94720, U.S.A.

Running head: Proton-gradient driven translocation

Address correspondence to: Bryan A. Krantz, University of California, 476 Stanley Hall #3220, Berkeley, CA 94720-3220. E-mail: <u>bakrantz@berkeley.edu</u>

Experimental Procedures

Equilibrium chemical denaturation titrations. Guanidinium chloride titrations carried out on LF_N mutants in 10 mM sodium phosphate, 1 M glucose, pH 7.5, 20 °C as described (1,2). Each titration point is monitored by circular dichroism (CD) spectroscopy at 222 (±2) nm using a Jasco J-810 spectropolarimeter (Easton, MD). The CD-probed curves fit to a four-state thermodynamic model $(N \leftrightarrow I \leftrightarrow J \leftrightarrow U)$, where native (*N*), two intermediates (*I* and *J*), and an unfolded (*U*) state are populated (2). We use the thermodynamic difference between the *N* and *I* states (ΔG_{NI}) to assess the stability of the protein.

REFERENCES

- 1. Thoren, K. L., Worden, E. J., Yassif, J. M., and Krantz, B. A. (2009) *Proc. Natl Acad. Sci. U.S.A.* **106**, 21555-21560
- Krantz, B. A., Trivedi, A. D., Cunningham, K., Christensen, K. A., and Collier, R. J. (2004) J. Mol. Biol. 344, 739-756

<u>Fig. S1.</u> $LF_N des^{(-)}_{1-32}$ has reduced ΔpH dependence relative to LF_N WT regardless of replacement residue or His₆ tag. The $LF_N des^{(-)}_{1-32}$ construct changes the aspartates and glutamates in LF_N 's presequence to (A) serines or (B) their respective nonpolar analogs asparagines and glutamines. Additionally, in (B) the His₆ tags have been removed from the proteins. ΔG^+_* versus ΔpH profiles are shown for (A) His₆-LF_N WT (\blacksquare) and His₆-LF_N des⁽⁻⁾_{1-32}^{D,E \to S} (\circ) or (B) LF_N WT (\blacksquare) and LF_N des⁽⁻⁾_{1-32}^{D,E \to N,Q}. In both cases, conditions are $\Delta \Psi = 60$ mV and $pH_{cis} = 5.6$.

<u>Fig. S2.</u> Acidic residues within LF_N's folded domain are also critical to ΔpH-driven translocation. (A) The change in protein stability ($\Delta\Delta G_{NI}$) for the His₆-LF_N des⁽⁻⁾ series relative to His₆-LF_N WT estimated from guanidinium chloride denaturant melts probed by circular dichroism. The thermodynamic quantity, $\Delta\Delta G_{NI}$, compares difference in the *N* and *I* state free energies of the mutant (MUT) to WT as follows: $\Delta\Delta G_{NI} = \Delta G_{NI}(MUT) - \Delta G_{NI}(WT)$. Error bars are the mean ±s.d (*n* = 2). (B-D) Translocation records for His₆-LF_N WT (black), His₆-LF_N des⁽⁻⁾₁₋₁₈ (red), His₆-LF_N des⁽⁻⁾₁₋₂₄ (green), His₆-LF_N des⁽⁻⁾₁₋₃₂ (purple), His₆-LF_N des⁽⁻⁾₁₋₄₆ (blue), His₆-LF_N des⁽⁻⁾₁₋₅₆ (brown), and His₆-LF_N des⁽⁻⁾₁₋₆₈ (gold) under different ΔpH and ΔΨ driving force conditions: (B) ΔpH = 1.0, pH_{cis} = 5.6, ΔΨ = 20 mV; (C) ΔpH = 0.6, pH_{cis} = 5.6, $\Delta\Psi = 40 \text{ mV}$; and (D) ΔpH = 0, pH_{cis} = 5.6, and $\Delta\Psi = 60 \text{ mV}$, as summarized in Fig. 4B.

<u>Fig S3.</u> Acidic-residue positions in LF_N's presequence are most critical to Δ pH-driven translocation. Acidic residues were reintroduced in their wild-type positions into the His₆-LF_N des⁽⁻⁾₁₋₃₂ background. (A) The sequences of the first 32 residues of LF_N WT and LF_N des⁽⁻⁾₁₋₃₂ are shown, where acidic residues in the WT sequence are shaded red. (B) The relative translocation $t_{1/2}$ times for Δ pH-driven translocation are given as the ratio $t_{1/2}(des^{(-)}_{1-32}) / t_{1/2}(MUT)$, where the mutant (MUT) is the construct with the reintroduced acidic residue(s). The numbers on the *x*-axis indicate the position(s) in which acidic residues are reintroduced into the His₆-LF_N des⁽⁻⁾₁₋₃₂ backgrounds. Multisite acidic-residue reintroductions are indicated with slashes separating the residue number. Δ pH-driven translocation conditions were Δ pH = 0.6, pH_{cis} = 5.6, and $\Delta \psi$ = 35 mV. Error bars are the mean ±s.d. (*n* = 2). For reference, the relative translocation time for LF_N WT compared to LF_N des⁽⁻⁾₁₋₃₂, $t_{1/2}(des^{(-)}_{1-32}) / t_{1/2}(WT)$, is 14.8 (±3.0).