## A Novel Vinculin Binding Site of the IpaA invasin of Shigella

#### HaJeung Park<sup>¶</sup>, Cesar Valencia-Gallardo<sup>§</sup>, Andrew Sharff<sup>‡</sup>, Guy Tran Van Nhieu<sup>§</sup>, and Tina Izard<sup>¶1</sup>

From the <sup>¶</sup>Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA; the <sup>§</sup>CIRB, Collège de France, Unité de Communications Intercellulaires et Infections Microbiennes, DR2 Inserm U971, 75005 Paris Cedex, France; and <sup>‡</sup>Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, England

<sup>1</sup>To whom correspondence should be addressed

#### SUPPLEMENTARY METHODS

Cloning, expression, and purification of IpaA(45-633) – The cDNA encoding residues 45 to 633 of IpaA was amplified by PCR from a virulence plasmid derived from the *Shigella flexneri*  $\Delta$ IpaBC strain. We removed the *N*-terminal chaperone-binding domain (residues 1-44) to improve the solubility of IpaA. The PCR product was cloned into the *NdeI/EcoRI* restriction sites of the pET30a vector (Novagen) to generate pET30a-IpaA45-633. A heptahistidine-tag was added to the *C*-terminus to facilitate purification. The plasmid was then transformed into *E. coli* BL21(DE3) strain (Novagen). BL21(DE3) cells harboring pET30a-IpaA(45-633) were grown in auto-induction media (24) overnight at 30 °C. The cells were harvested and sonicated in an ice bath. After centrifugation at 10,000 x g for 20 min, the pellet was solubilized by resuspension in 6 M urea followed by centrifugation at 20,000 x g for 20 min. The supernatant was loaded onto a His-Trap HP chelating affinity chromatography column (GE Healthcare) pre-equilibrated with 6 M urea and 5 mM imidazole (pH 8). The column was washed with 40 column volumes of the equilibration buffer. IpaA 45-633 was eluted with 10 mM Tris-HCl (pH 8), 50 mM imidazole, 300 mM NaCl, 1 mM DTT, and 30 mM L-Arg. IpaA 45-633 was concentrated to ~4 mg/ml.

Analytical size exclusion chromatography – To determine the total number of available VBSs in IpaA that can bind to vinculin, we determined the stoichiometry of the interaction, by incubating almost full-length IpaA (residues 45-633) with increasing amounts of Vh1 and then analyzing the complex using analytical size exclusion chromatography. Protein samples (200 µl) containing IpaA and Vh1 at molar ratios of 1:5, 1:4, 1:3, 1:2, and 1:1, as well as IpaA alone and Vh1 alone were prepared by dilution in running buffer (10 mM Tris-HCl [pH 7.5], 150 mM NaCl, 50 mM L-Arg, and 2 mM DTT). L-Arg was necessary to prevent aggregation. The prepared samples were incubated at room temperature for 20 min before they were loaded onto a Superdex 200 10 x 3000 (GE Healthcare) analytical sizing chromatography column at a flow rate of 0.5 ml/min using an Äkta FPLC system (GE Healthcare). Peak fractions were collected and analyzed by SDS-PAGE.

#### **FIGURE LEGENDS**

Supplementary Figure S1. Temperature factor plot of IpaA-VBS3. The temperature factor for each C $\alpha$  IpaA-VBS3 atom is plotted in red and blue, respectively, for the two IpaA-VBS3 molecules in the asymmetric unit.

**Supplementary Figure S2. Comparison of IpaA-VBS3 and IpaA-VBS1 interactions with Vh1.** The Vh1:IpaA-VBS1 interactions are based on the 2.72 Å crystal structure (PDB entry 2gww), and this was compared to our 1.6 Å Vh1:IpaA-VBS3 structure presented here. IpaA-VBS3 (A) or IpaA-VBS1 (B) residues are labeled in blue while Vh1 interacting residues are labeled in black. Vh1 residues listed on the left of IpaA-VBS engage in polar inter-molecular interactions, while Vh1 residues listed on the right of IpaA-VBS residues engage in hydrophobic inter-molecular interactions. Structurally equivalent IpaA-VBS3 and IpaA-VBS1 residues are on the same line (*e.g.*, IpaA-VBS3 residue Ile-492 corresponds to IpaA-VBS1 residue Ile-612). The greater number of residues involved in the Vh1-IpaA-VBS3 interface is reflected in about 10% increase in buried surface area.

**Supplementary Figure S3. Comparison of IpaA-VBS3 and IpaA-VBS2 interactions with Vh1.** The Vh1:IpaA-VBS2 interactions are based on the 3.97 Å crystal structure (PDB entry 2hsq), and this was compared to our 1.6 Å Vh1:IpaA-VBS3 structure presented here. IpaA-VBS3 (A) or IpaA-VBS2 (B) residues are labeled in blue while Vh1 interacting residues are labeled in black. Vh1 residues listed on the left of IpaA-VBS engage in polar inter-molecular interactions, while Vh1 residues listed on the right of IpaA-VBS residues engage in hydrophobic inter-molecular interactions. Structurally equivalent IpaA-VBS3 and IpaA-VBS2 residues are on the same line (*e.g.* IpaA-VBS3 residue Ile-492 corresponds to IpaA-VBS2 residue Ile-566).

Supplementary Figure S4. Stoichiometry of the Vh1: IpaA complex as determined by size exclusion chromatography. Constant IpaA (residues 45-633) amounts were mixed with increasing molar ratios of Vh1. IpaA to Vh1 molar ratios were (A) 1:5, (B) 1:4, (C) 1:3, (D) 1:2, and (E) 1:1. IpaA alone (F) and Vh1 alone (G, shown twice for clarity) are also shown. Samples were applied to a Superdex 200 10 x 300 sizing chromatography column. The position of the absorption peak corresponding to the IpaA:Vh1 complex advanced (IpaA:Vh1 molar ratio of 1:0, the green dotted line indicates its peak position; 1:1, red; 1:2, blue; 1:3, grey) until the IpaA:Vh1 molar ratio reaches 1:3 and IpaA is saturated. Thus, IpaA can simultaneously bind up to three molecules of Vh1. The absorption peak of free Vh1 (orange dotted line) appears at a molar IpaA:Vh1 ratio of 1:4 (B) and 1:5 (A).

Supplementary Figure S5. SDS-PAGE analysis of peak fractions from the size exclusion chromatography experiment. The identity of the peaks from the size exclusion chromatography experiment (Fig. S4) was confirmed by 8% - 25% gradient SDS-PAGE. *Lanes* 1 and 2, samples were taken at 10 ml elution corresponding to the saturated Vh1:IpaA complex ( $M_r = 154$  kDa), *lanes* 3 and 4 at 10.9 ml corresponding to IpaA alone (residues 45-633,  $M_r = 67$  kDa), and *lanes* 5 and 6 at 15.2 ml corresponding to Vh1 alone (residues 1-258,  $M_r = 29$  kDa).



### А

В

| polar         |              | hydrophobic interactions | polar |           | hydrophobic interactions |
|---------------|--------------|--------------------------|-------|-----------|--------------------------|
| Vh1           | paA-VBS3     | Vh1                      | Vh1   | IpaA-VBS1 | Vh1                      |
| E60           | R489         | E60                      |       |           |                          |
| M53           | E490         |                          |       |           |                          |
|               | T491         | V57                      |       |           |                          |
|               | <b>I</b> 492 | L54, V57, G58, F126      |       | l612      | V57, F126                |
|               | F493         | T8, I12, L123            |       | Y613      | T8, L123, F126           |
|               | E494         |                          |       | K614      |                          |
|               | A495         | L54, V57                 |       | A615      | L54                      |
|               | S496         | l12, T119                |       | A616      | l12, L123                |
| S11, E14 K497 |              | l12                      |       | K617      |                          |
|               | K498         | A50                      |       | D618      | A50                      |
|               | V499         | A50, V51, L54, I115      |       | V619      | A50, V51, I115           |
|               | T500         | V16                      | l12   | T620      | L13, V16                 |
|               | N501         |                          |       | T621      |                          |
|               | S502         | V47                      |       | S622      | A46, V47                 |
|               | L503         | V16, I20, S112,I115      |       | L623      | V16                      |
| Q19           | <b>S</b> 504 | V16                      | Q19   | S624      | V16, Q19                 |
|               | N505         |                          |       | K625      |                          |
|               | L506         | L40. P43, V44, L88       |       | V626      | P43                      |
|               | 1507         | V16, I20, L23            |       | L627      | 120                      |
| Q19           | S508         |                          |       |           |                          |
|               | L509         | L40, P43                 |       |           |                          |
|               | 1510         | L108                     |       |           |                          |

### А

В

| polar         |              | hydrophobic interactions | polar |              | hydrophobic interactions |
|---------------|--------------|--------------------------|-------|--------------|--------------------------|
| Vh1           | IpaA-VBS3    | Vh1                      | Vh1   | IpaA-VBS2    | Vh1                      |
| E60           | R489         | E60                      |       |              |                          |
| M53           | E490         |                          |       |              |                          |
|               | T491         | V57                      |       | A565         | V57                      |
|               | 1492         | L54, V57, G58, F126      |       | 1566         | L123, F126               |
|               | F493         | T8, I12, L123            | D127  | Y567         | T8, I9, L123, F126       |
|               | E494         |                          |       | E568         |                          |
|               | A495         | L54, V57                 |       | K569         | L54, V57                 |
|               | S496         | l12, T119                |       | A570         | L54, L123                |
| S11, E14 K497 |              | l12                      |       | K571         | l12                      |
|               | K498         | A50                      |       | E572         |                          |
|               | V499         | A50, V51, L54, I115      |       | V573         | A50, V51                 |
|               | T500         | V16                      | l12   | <b>S</b> 574 |                          |
|               | N501         |                          |       | S575         |                          |
|               | S502         | V47                      |       | A576         |                          |
|               | L503         | V16, I20, S112, I115     |       | L577         | V16, V47, I88, S112      |
| Q19           | S504         | V16                      | Q19   | S578         |                          |
|               | N505         |                          |       | K579         |                          |
|               | L506         | L40. P43, V44, L88       |       | V580         | P43, V44                 |
|               | 1507         | V16, I20, L23            |       | L581         | V16, I20, S112           |
| Q19           | S508         |                          |       | S582         |                          |
|               | L509         | L40, P43                 |       | K583         | L37, P38, L40            |
|               | <b>I</b> 510 | L108                     |       | 1584         | L23, I37, L40            |
|               |              |                          |       | D585         | L23                      |



