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S1 Materials and Methods

S1.1 Vibrio harveyi strains

All Vibrio harveyi strains are derived from wild-type BB120 (1). V. harveyi deletions and
mutations were constructed using previously described methods (2), and all fluorescent
constructs were introduced onto the chromosome of a V. harveyi ∆luxM, ∆luxS, ∆cqsS
strain by allelic replacement (3). As a result, these strains are not able to synthesize
but remain responsive to two autoinducers (AIs), HAI-1 and AI-2. These strains have no
receptor for the third AI, CAI-1.

An N-terminal YFP-LuxO construct was engineered by overlapping PCR to generate
a (Gly4Ser)3 linker between the two proteins, and this construct was subsequently cloned
into the EcoRI and BamHI sites in pFED342 (pKT1416). The YFP plasmid pDH6-YFP
was a generous gift from Michael Elowitz (California Institute of Technology). A 3-kB frag-
ment containing the V. harveyi luxO region was cloned into the EcoRI and BamHI sites in
pFED342 to generate pKT1322. A Cm resistance gene was recombined downstream of the
qrr1 gene to generate pKT1365. Site-directed mutagenesis was performed to engineer a
mutation that disrupts LuxO auto-repression (luxO-ar, pKT1385). Overlapping PCR was
used to recombine mutations into pBB147 (3) to generate pKT1445 (WT) and pKT1449
(luxO-ar). These cosmids were subsequently conjugated into V. harveyi and genes intro-
duced onto the chromosome. The drug resistance markers were removed by homologous
recombination by conjugating with pTL18 (4).

The qrr4-cfp transcriptional fusion was generated by PCR from pDH3-CFP plasmid
(also from Michael Elowitz), and the construct was subsequently recombined into cosmid
28-13 which contains the V. harveyi qrr4 genomic region to generate pKT1486.

The mCherry plasmid pRSET-B was a generous gift from Roger Tsien (University of
California at San Diego) (5). An N-terminal mCherry-LuxR construct was engineered by
overlapping PCR to generate a (Gly4Ser)3 linker between the two proteins. This construct
was subsequently cloned into the EcoRI and BamHI sites in pFED342 (pKT1412). A KanR

marker was cloned in the downstream BamHI site (pKT1438), and this plasmid was used
as the PCR template to generate a linear DNA product with homologous ends to recom-
bine into the native luxR locus in pBB1805 to generate KT1630, which was subsequently
conjugated into V. harveyi (6).

The final strains KT651 (wt) and KT653 (luxO-ar) used in this study both have three
fluorescent protein fusions: YFP-LuxO replacing the native LuxO, mCherry-LuxR replac-
ing the native LuxR, and qrr4-cfp is used to report the activity of the qrr4 promoter.

Studies of protein stability in E. coli reveal that the majority of protein species that
are synthesized in E. coli are stable, and the turnover rate of those proteins is extremely
slow (7). GFP expressed in E. coli is stable with a half life of more than 1 day. To
make GFP susceptible to the action of indigenous housekeeping proteases, short peptide
sequences need to be added to the C-terminal of GFP (8). Based on the similarity between
fluorescent proteins and between V. harveyi and E. coli, we assume the fluorescent proteins
used in this study are stable in V. harveyi. As there is no previous report of degradation of
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V. harveyi LuxO and LuxR, it is very likely that the fluorescent protein fusions YFP-LuxO
and mCherry-LuxR are stable proteins in V. harveyi.

S1.2 Time-lapse microscopy and image analysis

Cells were grown in AB medium (10 mM KxHyPO4, 300 mM NaCl, 50 mM MgSO4, 0.2%
vitamin-free casamino acids, 10 mM L-arginine, 1% glycerol, pH 7.5) supplied with equal
amounts of HAI-1 and AI-2 at 0 nM (low AI concentration), 50 nM (intermediate AI
concentration) and 1 µM (high AI concentration). The culture was grown to OD ∼ 0.5
at 30◦C. An aliquot of culture was pipetted onto a glass coverslip and covered with a 1%
agarose pad. The agarose pads were pre-soaked overnight in the identical medium in which
the cells were grown. A second piece of coverslip was placed on top of the agarose pad to
prevent water evaporation. Mineral oil was used to seal the agarose pad between the two
coverslips. Multiple sets of these agarose pads were arranged on a single coverslip so that
different strains could be monitored simultaneously.

Growth of microcolonies was monitored by light microscopy at room temperature using
a Nikon TE2000-U microscope equipped with ProScanII microscope automation system
(Prior Scientific, Rockland, MA) and a CFP/YFP/mCherry fluorescence filter set (89006,
Chroma Technology Corp, Bellows Falls, VT). To control the microscope and the EMCCD
camera (DV877-DCS-BV, Andor Technology, South Windsor, CT), custom scripts were
written in Andor Basic. Images were acquired in multiple fluorescent channels as well as
in the transmitted white light channel at 10-minute intervals.

Fluorescence analysis of cell lineages was done with custom MATLAB software, which
has three stages: first, images are segmented to select all individual microcolonies or cells;
next, microcolonies or cells are tracked between frames to establish the cell lineage tree;
and, finally, fluorescence intensities for each microcolony or cell lineage are compiled. Each
step is manually checked and corrected extensively. The mean doubling time, which defines
the time unit “generation”, was measured by fitting the total area of all the microcolonies
to a single exponential function of time.

We found that V. harveyi ’s autofluorescence changes over time after the cells are trans-
ferred from liquid culture to under an agarose pad. A control wt V. harveyi strain without
any fluorescent label (BB120) was imaged to establish the autofluorescence baseline. The
mean autofluorescence of BB120 at time t after transfer was then subtracted from the
measured fluorescence signal also at time t after transfer.

S1.3 Correlation calculation from experimental data

To calculate fluctuation correlation, we define Xi(t) and Yi(t) to represent any two protein
concentrations at time t, and i is used to index the microcolony or single-cell. We define
xi(t) and yi(t) to be any of the concentration deviations from the expected values. The
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expected values and the concentration deviations (fluctuations) are expressed by

〈X(t)〉 =
1

N

N∑
i=1

Xi(t), xi(t) = Xi(t) − 〈X(t)〉. (S1)

The correlation S and normalized correlation R between the fluctuations x and y is given
by

Sx,y(t1, t2) =
1

N

N∑
i=1

xi(t1)yi(t2), (S2)

Rx,y(t1, t2) =
Sx,y(t1, t2)√

Sx,x(t1, t1)Sy,y(t2, t2)
, (S3)

The correlation matrix Rx,y(t1, t2) defined in Eq. S3 plays a major role in our subsequent
analysis. The time coordinates (t1, t2) serve as the indices specifying a matrix element of
Rx,y(t1, t2).

In principle Sx,x(t, t) is the same as true signal standard deviation squared σ2
x(t). In

experiment when xi(t) is measured there is a random imaging noise ξx
i (t) included in the

measurement, with 〈ξx
i (t1)ξ

y
j (t2)〉 ≈ vx

i δxyδijδ(t1 − t2). As a result,

Sraw
x,y (t1, t2) ≈ 1

N

N∑
i=1

xi(t1)yi(t2) + δxyδ(t1 − t2)
N∑

i=1

vx
i . (S4)

Therefore it is not accurate to use Sraw
x,x (t, t) to normalize correlation. Rather we extrapolate

Scorrect
x,x (t, t) from the neighboring elements in the raw autocorrelation matrix

Scorrect
x,x (t, t) = Sraw

x,x (t − dt, t) + Sraw
x,x (t, t − dt) − Sraw

x,x (t − dt, t − dt), (S5)

where dt is the time interval between two consecutive image frames. The correlation ma-
trixes are then normalized as indicated in Eq. S3 using Scorrect

x,x (t1, t1) and Scorrect
y,y (t2, t2).

Ideally, when the regulation process is time-invariant, the two-dimensional correlation
heat map Rx,y(t1, t2) can be reduced to a one-dimensional correlation curve

Rx,y(τ) = 〈Rx,y(t1, t2)〉|t1−t2=τ . (S6)

However, when the correlation matrix is constructed from experimental data, deviations
from this simple pattern indicate that the regulation parameters have changed over the
course of the experiment. Our experiments were designed to minimize such changes. Data
sets in which large regions of the correlation heat map display horizontal or vertical swaths
with nominally uniform values might be caused by individual cells that failed to follow the
population behavior. Such individual cells and their associated microcolonies were carefully
excluded from the analysis.
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S2 Analytical solutions of correlation functions

We consider the same model system as in (9). In this model system, a protein A regulates
the production of mRNA for protein B. The equilibrium concentration relationship between
A and B is shown in Fig. S1 a. The equations for the protein concentrations A, B and
their corresponding mRNAs concentrations mA and mB are

ṁA = αmA − κmA + ηmA + θmAE, (S7)

Ȧ = αAmA − βA + ηA + θAE, (S8)

ṁB = Q(A) − κmB + ηmB + θmBE, (S9)

Ḃ = αBmB − βB + ηB + θBE. (S10)

E represents extrinsic noise whose source is modeled as an Ornstein-Uhlenbeck process

Ė = −βE + ηE. (S11)

We assume the noise terms ηi for i = {mA,A, mB, B, E} are independent, delta-correlated
in time (white), similarly distributed processes that arise from the stochastic nature of
chemical reactions at the single molecule level, 〈ηi(t1)ηj(t2)〉 = Wiδijδ(t1 − t2). Assuming
no protein degradation, β is the dilution rate due to cell volume growth. For a cell that
doubles its volume every cell cycle, β = log 2 generation−1. The parameter κ defines
the total dilution and degradation rate of mRNA molecules. Usually mRNA has a high
degradation rate, κ � β. The degree that a protein is affected by extrinsic noise is set by
θi. Q(A) is a Hill function such that Q(A) = αB

1+(K/A)h , where K is a dissociation constant

and h is either the Hill coefficient (for h > 0, meaning A positively regulates B) or the
negative Hill coefficient (for h < 0, meaning A negatively regulates B). In the case of h = 0,
A does not regulate B.

The noise sources have zero mean so the equilibrium point of the deterministic system
can be calculated as mAeq = αmA

κ
, Aeq = αAαmA

κβ
,mBeq = Q(Aeq)

κ
, and Beq = αBQ(Aeq)

κβ
. We

expect perturbations due to noise to be small, so it is valid to linearize the system about
the equilibrium point. Defining ma = mA − mAeq, a = A − Aeq,mb = mB − mBeq and
b = B − Beq. We obtain the following set of linear kinetic equations

ṁa = −κma + ηmA + θmAE, (S12)

ȧ = αAma − βa + ηA + θAE, (S13)

ṁb = qa − κmb + ηmB + θmBE, (S14)

ḃ = αBmb − βb + ηB + θBE, (S15)

where q is the local sensitivity, q = dQ(A)
dA

|A=Aeq . q > 0 means positive regulation and q < 0
means negative regulation of B by A. (At either very high or very low Aeq where the Q(A)
vs. A curve flattens out, q is close to zero, meaning that regulation is inactive.)

In order to calculate the correlation of two time series, it is convenient to use Fourier
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transforms and to perform the operation in the frequency domain. The correlation of two
time series f(t) and g(t) in the time domain is equivalent to multiplication in the frequency
domain. We have for the convolution

Sf,g(τ) =

∫ +∞

−∞
f(t)g(t + τ)dt = F−1[f̃ ∗(ω)g̃(ω)], (S16)

where f̃(ω) and g̃(ω) are, respectively, the Fourier transforms of f(t) and g(t), and F−1

represents the inverse Fourier transform.
Taking the Fourier transform of Eqs. S11-S15, we find

m̃a =
1

iω + κ
(η̃mA + θmAẼ), (S17)

ã =
1

iω + β
(αAm̃a + η̃A + θAẼ), (S18)

m̃b =
1

iω + κ
(qã + η̃mB + θmBẼ), (S19)

b̃ =
1

iω + β
(αBm̃b + η̃B + θB, Ẽ) (S20)

Ẽ =
1

iω + β
η̃E. (S21)

The correlations can be calculated using Fourier transform and Cauchy’s Residue Theorem.
The white noise terms ηi have a constant power spectral density, viz. 〈η̃∗

i (ω)η̃i(ω)〉 = Wi,
i = {mA,A, mB, B, E}. Moreover, the noise terms for different reactions are assumed to
be uncorrelated, i.e. 〈ηi(t + τ)ηj(t)〉t = 0 for i �= j, thus 〈η̃∗

i (ω)η̃j(ω)〉 = 0 for i �= j. These
features simplify calculations of the cross- and autocorrelations.

Our model becomes the same as that in (9) if we assume the following: first, mRNA
production is not affected by extrinsic noise, θmA = θmB = 0, second, protein intrinsic noise
mainly comes from mRNA noise not from protein synthesizing itself, WA = WB = 0 or
ηA = 0 and ηB = 0, third, protein A and B are equally affected by extrinsic noise θA = θB.
However, these three assumptions cannot always be justified in general. Nevertheless, if all
the parameters are kept, the analytical results become very complicated. Therefore, below
we simplify the system in a way that preserves most kinetic properties but is also intuitive.

S2.1 Should mRNA kinetics always be kept?

In this section we will discuss if we can simplify the system by assuming mRNA always
reach equilibrium fast, therefore we do not need to consider the mRNA kinetics at the
timescale of 1/κ.

For the unregulated protein A, assuming no extrinsic noise, θmA = 0 and θA = 0. From
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Eqs. S12, S13, S17, and S18, without E terms, we have

Sma,ma(τ) =

∫ +∞

−∞
ma(t + τ)ma(t)dt

= F−1(
WmA

ω2 + κ2
)

=
WmA

2κ
e−κ|τ |, (S22)

Sa,a(τ) =

∫ +∞

−∞
a(t + τ)a(t)dt

= F−1(
WA

ω2 + β2
+

α2
AWmA

(ω2 + κ2)(ω2 + β2)
)

=
WA

2β
e−β|τ | +

α2
AWmA

2(κ2 − β2)
(
e−β|τ |

β
− e−κ|τ |

κ
). (S23)

The kinetic process described in Eq. S7 without the E term produces a Poisson distribution
for mA molecules per unit volume. Hence the squared standard deviation σ2 equals mean
〈N〉,

〈NmA〉 = V · mAeq =
V αmA

κ
, (S24)

σ2
mA = V 2 · Sma,ma(0) =

V 2WmA

2κ
= 〈NmA〉, (S25)

yielding

WmA =
2αmA

V
. (S26)

Similarly, if there is no noise in the mA level (WmA = 0), Eq. S8 without the E term also
produces a Poisson distribution of A molecules per unit volume,

〈NA〉|WmA=0 = V · Aeq =
V αAmA

β
, (S27)

σ2
A|WmA=0 = V 2 · Sa,a(0)|WmA=0 =

V 2WA

2β
= 〈NA〉|WmA=0, (S28)

WA =
2αAmA

V
. (S29)

Including both the intrinsic noises from synthesizing mRNA and from synthesizing pro-
tein molecules, the mean protein molecule number 〈NA〉 does not change, but the standard
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deviation becomes larger

σ2
A = V 2 · Sa,a(0)

=
V 2WA

2β
+

V 2α2
AWmA

2κβ(κ + β)

= V Aeq(1 +
αA

β + κ
). (S30)

In the limit of κ � β (10, 11), αA

β+κ
≈ αA

κ
= bA is the burst size, i.e., the average number

of molecules made from a single copy of mRNA before it is degraded. With 〈NA〉 = V Aeq,
we have σ2

A ≈ 〈NA〉(1 + bA), which agrees with previous report (12). b was measured to be
around 20 for the repressed E. coli lacZ gene (13). The autocorrelation of A fluctuation is
then

Sa,a(τ) ≈ Aeq

V
[e−β|τ | + b

κβ

κ − β
(
e−β|τ |

β
− e−κ|τ |

κ
)]

≈ Aeq

V
[(1 + b)e−β|τ | +

bβ

κ
e−κ|τ |] (S31)

On the other hand if one assumes mRNA always reach equilibrium fast, one can formally
write

ṁA = αmA − κmA + ηmA + θmAE = 0, (S32)

mA =
1

κ
(αmA + ηmA + θmAE). (S33)

Insert this the expression for mA into Eq. S8 yields

Ȧ = αmAbA − βA + (ηA + bAηmA) + (θA + bAθmA)E. (S34)

Note that the form is the same as Eq. S7, only the noise strength and time constants are
different. For this simplified form, in the case of no extrinsic noise,

S ′
a,a(τ) =

WA

2β
e−β|τ | + (

αA

κ
)2WmA

2β
e−β|τ |

≈ Aeq

V
(1 + bA)e−β|τ | (S35)

The fractional difference in protein noise due to mRNA kinetics is then

Sa,a(τ) − S ′
a,a(τ)

S ′
a,a(τ)

=
bβeβ|τ |

(1 + b)κeκ|τ | , (S36)

which decreases with increasing |τ |. The maximum fractional difference is bβ
(1+b)κ

at τ = 0.
Thus, if κ � β, i.e., the mRNA turn over rate is much faster than that of protein, it is
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accurate to assume that mRNA always reaches equilibrium fast. Eqs. S7-S10 can then be
simplified as

Ȧ = α′
A − βA + η′

A + θ′AE, (S37)

Ḃ = Q′(A) − βB + η′
B + θ′BE, (S38)

where α′
A = αmAbA, η′

A = ηA+bAηmA, θ′A = θA+bAθmA, Q′(A) = bBQ(A), η′
B = ηB+bBηmB,

and θ′B = θB + bBθmB. We also have W ′
A = 2βAeq(1 + bA)/V and W ′

B = 2βBeq(1 + bB)/V .

S2.2 One protein regulating another

If we linearize Eqs. S37-S38 about equilibrium we have

ȧ = −βa + η′
A + θ′AE, (S39)

ḃ = q′a − βb + η′
B + θ′BE. (S40)

Then, taking the Fourier transform gives

ã =
η̃′

A

iω + β
+

θ′Aη̃E

(iω + β)2
, (S41)

b̃ =
η̃′

B

iω + β
+

θ′B η̃E + q′η̃′
A

(iω + β)2
+

q′θ̃′Aη̃E

(iω + β)3
. (S42)
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The correlations can be calculated as

Sa,a(τ) =

∫ +∞

−∞
a(t + τ)a(t)dt

= F−1(
W ′

A

ω2 + β2
+

θ′2AWE

(ω2 + β2)2
)

=
W ′

A

2β
e−β|τ | +

θ′2AWE

4β3
e−β|τ |(1 + β|τ |), (S43)

Sb,b(τ) =

∫ +∞

−∞
b(t + τ)b(t)dt

= F−1(
W ′

B

ω2 + β2
+

θ′2BWE + q′2W ′
A

(ω2 + β2)2
+

q′2θ′2AWE

(ω2 + β2)3
)

=
W ′

B

2β
e−β|τ | +

θ′2BWE + q′2W ′
A

4β3
e−β|τ |(1 + β|τ |) +

q′2θ′2AWE

16β5
e−β|τ |(3 + 3β|τ | + β2τ 2), (S44)

Sa,b(τ) =

∫ +∞

−∞
a(t + τ)b(t)dt

= F−1(
θ′Aθ′BWE

(ω2 + β2)2
+

q′W ′
A

(ω2 + β2)(−iω + β)
+

q′θ′2AWE

(ω2 + β2)2(−iω + β)
)

=
θ′Aθ′BWE

4β3
e−β|τ |(1 + β|τ |) +{

q′W ′
A

4β2 eβτ (1 − 2βτ) +
q′θ′2AWE

16β4 eβτ (2β2τ 2 − 4βτ + 3) if τ < 0
q′W ′

A

4β2 e−βτ +
q′θ′2AWE

16β4 e−βτ (2βτ + 3) if τ ≥ 0
. (S45)

The correlations are further normalized to

Rf,g(τ) =
Sf,g(τ)√

Sf,f (0)Sg,g(0)
. (S46)

In the limit of low extrinsic noise (WE = 0) we have

Ra,a(τ)|WE=0 = e−β|τ |, (S47)

Rb,b(τ)|WE=0 = n1e
−β|τ | + n2e

−β|τ |(1 + β|τ |), (S48)

Ra,b(τ)|WE=0 =

{
n3e

βτ (1 − 2βτ) if τ < 0
n3e

−βτ if τ ≥ 0
. (S49)
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where the normalization factors are

n1 =
2β2W ′

B

2β2W ′
B + q′2W ′

A

(S50)

n2 =
q′2W ′

A

2β2W ′
B + q′2W ′

A

(S51)

n3 =
q′W ′

A√
2W ′

A(2β2W ′
B + q′2W ′

A)
(S52)

In this case the autocorrelation of A fluctuations Ra,a(τ)|WE=0 has a sharp peak at τ = 0

as dRa,a(τ)

dτ
|τ=0−ε > 0 while dRa,a(τ)

dτ
|τ=0+ε < 0 (ε � 1). The full width at half maximum

(FWHM) is 2 log 2
β

= 2 generations. The autocorrelation of B fluctuations Rb,b(τ)|WE=0 is
wider than that of A regardless whether the regulation is positive or negative. Its peak
width depends on how much of the fluctuation of B comes from its upstream regulator A.
The maximum FWHM of ∼ 4.8 generations can be reached if B fluctuations are dominated
by that propagated from A. In this limit, Rb,b = (1 + |τ |)e−β|τ |, the autocorrelation peak

top is rounded as
dRb,b(τ)

dτ
|τ=0 = 0. The cross-correlation between A and B fluctuations

Ra,b(τ)|WE=0 has an extreme value at τ = − 1
2β

	 −0.72 generation (Fig. S1 d). The

maximum possible absolute cross-correlation is
√

2e−
1
2 	 0.86 when W ′

B = 0 and τ = − 1
2β

.
When WE > 0 but θ′A = 0, meaning that upstream regulator has no extrinsic noise, we

get Ra,b(τ)|θ′A=0 ∝ Ra,b(τ)|WE=0. The time lag that maximizes the normalized correlation
amplitude does not change for θ′A = 0 vs. WE = 0, but the amplitude is lower for θ′A = 0
than WE = 0.

If WE > 0, θ′A > 0 and θ′B > 0, then because the time scale of extrinsic noise (1/β) is
slower than that of intrinsic noise (1/κ for mRNA kinetics and 0 for synthesizing protein
itself), the autocorrelation peaks of A and B fluctuations each becomes wider than without
extrinsic noise. The maximum FWHM of A fluctuation autocorrelation Ra,a(τ) reaches
∼ 4.8 generations if noise in A is dominated by extrinsic noise. The maximum FWHM of
B fluctuation autocorrelation Rb,b(τ) reaches ∼ 6.7 generations if W ′

B = 0, θ′B = 0, and
θ′A � β. With θ′A � β the extreme peak of Ra,b(τ) shifts from τ = − 1

2β
	 −0.72 generation

to τ = − 1√
2β

	 −1.02 generation. In the case that A and B are both directly affected by

extrinsic noise (θ′A > 0, θ′B > 0), the cross-correlation Ra,b(τ) has a symmetric part about
τ = 0. For positive regulation, it shifts the |Ra,b(τ)| peak towards τ = 0. For negative
regulation, it shifts the |Ra,b(τ)| peak away from τ = 0.

S2.3 Autocorrelation for a protein that regulates itself

Now consider a protein P that regulates its own gene expression. The equations for the
protein concentrations P and its mRNA concentration mP are

ṁP = Q(P ) − κmP + ηmP + θmP E, (S53)

Ṗ = αP mP − βP + ηP + θP E, (S54)
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where we let Q(P ) = αP /[1+(K/P )h]. Again, assuming mRNA always reaches equilibrium

mP =
1

κ
[Q(p) + ηmP + θmP E], (S55)

Ṗ = bP Q(P ) − βP + (ηP + bP ηmP ) + (θP + bP θmP )E, (S56)

where bP = αP /κ. The deterministic equilibrium of Eq. S56 is set by bP Q(Peq) = βPeq as
shown in Fig. S1 e. Defining p = P − Peq, and linearizing Eq. S56 about Peq yields

ṗ = −(β − γ)p + η′
P + θ′P E. (S57)

where γ = bP
dQ(P )

dP
|P=Peq . γ > 0 means positive feedback and γ < 0 means negative

feedback or auto-repression. Note that the linearization is only valid for γ < β, for γ ≥ β
Eq. S57 is unstable and non-linear terms have to be included. We also have η′

P = ηP +
bP ηmP , θ′P = θP + bP θmP , and W ′

P = 2βPeq(1 + bP )/V .
The autocorrelation of p can be calculated as

Sp,p(τ) =

∫ +∞

−∞
p(t + τ)p(t)dt

= F−1{ W ′
P

ω2 + (β − γ)2
+

θ′2P WE

[ω2 + (β − γ)2](ω2 + β2)
}

=
W ′

P

2(β − γ)
e−(β−γ)|τ | − θ′2P WE

2γ(2β + γ)
(
e−β|τ |

β
− e−(β−γ)|τ |

β − γ
) (S58)

Without extrinsic noise (WE = 0), the normalized autocorrelation of p is

Rp,p(τ)|WE=0 = e−(β−γ)|τ |. (S59)

This autocorrelation has a sharp peak, whose FWHM is 2 log 2
β−γ

. With positive feedback,
γ > 0, the peak is wider than no feedback. With negative feedback or auto-repression,
γ < 0, the peak is narrower than no feedback. When Peq is such that Q(P ) flattens out, γ
is near zero, the feedback is inactive.

If the noise in P is dominated by extrinsic noise (W ′
P � WE),

Rp,p(τ)|W ′
P�WE

≈ β(γ − β)

γ
(
e−β|τ |

β
− e−(β−γ)|τ |

β − γ
). (S60)

It has a rounded top as d
dτ

Rp,p(τ)|W ′
P�WE

≈ 0. As usual the peak is wider when extrinsic
noise dominates than when intrinsic noise dominates.
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S3 Analytical solutions of microcolony approximation

It is usually assumed that the noise terms ηi in chemical kinetic equations have constant
amplitudes, but this is only true, e.g., for a continuous stirred-tank reactor with fixed
volume. In contrast, most cells double their volumes during the cell cycle. Moreover,
at the level of a microcolony, the total volume change is so significant that it cannot be
ignored.

As we have discussed, at steady state without other noise sources, a Poisson distribution
is expected for molecules that are stochastically produced, diluted, and degraded. Hence
within a fixed volume, the the standard deviation squared equals mean molecule number.
As shown in Eqs. S26 and S29, Wi, the square of noise amplitude, is proportional to 1

V
:

WmA =
2αmA

V
, WA =

2αAmA

V
, (S61)

WmB =
2Q(A)

V
, WB =

2αBmB

V
, (S62)

WmP =
2Q(P )

V
, WP =

2αP mP

V
. (S63)

We assume WE ∝ 1
V

as well.

We can then let ηi = ηi0V
− 1

2 , where ηi0 is white noise with constant amplitude, indepen-
dent of cell volume. With the dilution rate β = V̇ /V , the equations for fluctuations around

equilibrium can be re-written in a volume independent way, if we let x = x0V
− 1

2 , where
x is a concentration fluctuation (x = {ma, a,mb, b,mp, p}). Considering Eqs. S11-S13 as
example, they can be re-written as

Ė0V
− 1

2 − 1

2
E0V̇ V − 3

2 = −E0V̇ V − 3
2 + ηE0V

− 1
2 , (S64)

ṁa0V
− 1

2 − 1

2
ma0V̇ V − 3

2 = −κma0V
− 1

2 + ηmA0V
− 1

2 + θmAE0V
− 1

2 , (S65)

ȧ0V
− 1

2 − 1

2
a0V̇ V − 3

2 = αAma0V
− 1

2 − a0V̇ V − 3
2 + ηA0V

− 1
2 + θAE0V

− 1
2 . (S66)

After canceling V − 1
2 from both sides of the equations and let β0 = β/2, we found

Ė0 = −β0 + ηE0, (S67)

ṁa0 = −(κ − β + β0)ma0 + ηmA0 + θmAE0, (S68)

ȧ0 = αAma0 − β0a0 + ηA0 + θaE0. (S69)

Comparing with Eqs. S11-S13, the effective protein synthesis rate αA, and the mere degra-
dation rate κ − β are not changed, while the dilution rate β becomes β0. Thus the form
of the equations is preserved. All the correlation results derived with the constant volume
assumption can still be used but with β replaced by β0 = β/2. As a result, the correlation
time scales are different at the single-cell level and at the microcolony level. For exam-
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ple, without extrinsic noise or protein degradation, the autocorrelation peak width doubles
at the microcolony level compared to at the single-cell level. The cross-correlation curve
Ra,b(τ)|WE=0 has an extreme value at τ = −0.72 generation at the single-cell level. At the
microcolony level, the extreme value is at τ = −1.44 generations. Here, our calculations at
the “single-cell level” ignore the volume change of cells during the cell cycle. Correlations
at the single-cell level and at the microcolony level measured in experiments are compared
in Fig. S2.

S4 Correlation as a tool to study non-steady state

processes

Although correlation was defined above as a time-averaged quantity, with time course data
of individuals in a population, we can calculate the correlation of cell-to-cell fluctuations at
one time point (t1) with those at another time point (t2). With the time average no longer
performed, the correlation can be used to study non-steady process. Take the simplified
version of Eq. S8 as an example:

dA

dt
= α(t) − β(t)A + η(t), (S70)

in which 〈η(t)〉 = 0 and 〈η(t1)η(t2)〉 = W (t)δ(t1 − t2). Let a(t) = A(t) − 〈A(t)〉, where
〈A(t)〉 is the population average of A(t). We have

d〈A(t)〉
dt

= α(t) − β(t)〈A(t)〉, (S71)

da(t)

dt
= −β(t)a(t) + η(t). (S72)

Let β(t) = dΨ(t)
dt

, Eq. S72 can be written as

d

dt
[aeΨ(t)] = ηeΨ(t). (S73)

a(t) = a(0)eΨ(0)−Ψ(t) + e−Ψ(t)

∫ t

0

η(t′)eΨ(t′)dt′. (S74)
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The correlation is then

〈a(t1)a(t2)〉 = a2(0)e2Ψ(0)−Ψ(t1)−Ψ(t2) +

a(0)eΨ(0)−Ψ(t1)−Ψ(t2)[

∫ t1

0

〈η(t′)〉eΨ(t′)dt′ +
∫ t2

0

〈η(t′′)〉eΨ(t′′)dt′′]

+e−Ψ(t1)−Ψ(t2)

∫ t1

0

∫ t2

0

〈η(t′)η(t′′)〉eΨ(t′)+Ψ(t′′)dt′dt′′

= a2(0)e2Ψ(0)−Ψ(t1)−Ψ(t2) + e−Ψ(t1)−Ψ(t2)

∫ min([t1,t2])

0

W (t′)e2Ψ(t′)dt′ (S75)

which helps to estimate how the correlation matrix responds to changes of cell state. Usually
the protein dilution rate β is constant and Ψ(t) = βt. If the cell state changes at t = 0,
the correlation matrix 〈a(t1)a(t2)〉 loses its memory of the initial state a2(0) via the decay
of memory e−β(t1+t2). An example was simulated and is showed in Fig. S3.

In this study for the weak interaction between YFP-LuxO and mCherry-LuxR one can
notice the slight difference when the cells were moved from liquid culture to under agarose
pad (Fig. 4 A), suggesting the weak regulation was affected by the external environment.
However, for the strong regulatory link between mCherry-LuxR and qrr4-cfp, the correla-
tion was consistent over the course of observation (Fig. 2 A).

S5 Simulation of cross- and autocorrelations

We used Monte-Carlo simulations to investigate protein cross- and autocorrelation functions
for a limited number of cells, and show how these correlations resemble the analytical
solutions given in Sec. S2 and Sec. S3.

One can measure protein level fluctuations in a simulation and calculate the correlation
functions. Under ideal conditions, the result would match the analytical solution when
the number of cells and the observation time are infinite. In practice both are limited.
To gain insight into how experimental results resemble analytical solutions, a Monte-Carlo
simulation was performed using the Gillespie method (14).

As discussed in Sec. S2, protein A positively regulates B, while P represses its own
production. In the simulation, the mean cell volume is 1 at the beginning of cell cycle. The
protein concentration unit is copy number per unit volume. The time unit is the mean cell
doubling time (generation). Taking into account the average volume of V. harveyi cells,
which are about 2 µm long and 1 µm across, 1 molecule per cell corresponds to ∼2 nM.
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For simplicity, extrinsic noise was not included in the simulation. We simulated

dA

dt
= αA − βA (S76)

dB

dt
= αB

Ah

Ah + Kh
− βB (S77)

dP

dt
= αP

Kh

P h + Kh
+ αP1 − βP (S78)

The parameters are β = log 2 (generation)−1, αA = 50β, αB = αP = 200β, αP1 = 0, h = 2,
and K = 50 for active regulations. The sample time-traces are the blue and magenta
curves in Fig. S1 b for A and B and the orange curve in Fig. S1 f for P . Two inactive
auto-repression cases were also simulated for P . For the blue region in Fig. S1 e, K = 1,
αP = 200β, and αP1 = 20β. The sample time-trace is the blue curve in Fig. S1 f. For the
white region in Fig. S1 e, K = 1000, αP = 100β, αP1 = 0. The sample time-trace is the
black curve in Fig. S1 f.

To make the simulations comparable to the experiments, every simulation examined
N = 100 cells at time zero and each simulation spans 4 to 10 generations. To generate
the initial cells, first a seed cell was simulated to grow and divide for 10 generations. At
certain time point of the last generation, N of these 29 cells were picked at random for
further simulation. Cell growth rate was set a constant and cell cycle-time has a Gaussian
distribution centered at 1 with a standard deviation of 0.2. Correlation matrixes were
calculated both at the single-cell level and at the microcolony level. The single-cell level
correlation calculation follows (9).

In the experiment, the average protein concentration changed gradually over the 8-hour
duration of the movie, possibly due to adaptation from the liquid culture to the immobilized
state. The timescale of this gradual relaxation is several cell generations. As our interest
is in gene regulation of timescale ∼1 cell generation, we filter out these slow variations, in
a similar strategy to one used previously (15).

Experimental and simulation correlation matrixes are calculated according to Eq. S1 to
S3. The correlation matrixes for simulated results are shown in Fig. S1 c for Ra,b(tA, tB)
and Fig. S1 g for Rp,p(tP1, tP2). As the regulatory links are invariant over time, the matrixes
show similar values along the main diagonals. However, due to the small sample size and
stochasticity of each time trace, the heat-maps of matrixes are not perfectly smooth. Such
roughness matches the experimental results. To further summarize the correlation results,
correlation curves which plot mean correlation values for t1− t2 = τ is generated. Different
correlation curves are shown in Fig. S1 d for Ra,b(τ) and h for Rp,p(τ) with black curves
representing the theoretical values and colored curves for simulation results. Within the
error bars, the simulated curves agree well with the theoretical values. The simulations
suggest that at low protein levels when fluctuation amplitudes are larger than detection
noise, cross- and autocorrelation are good tools to understand regulation between proteins
under experimental conditions.

Comparison between correlations at the single-cell level and at the microcolony level



Protein Level Fluctuation Correlation, Supporting Material 16

are shown in Fig. S2 c and f. Although the calculated results at the two levels differ
significantly, they both agree with their respective analytical solutions.

A system that is at non-steady state was also simulated (Fig. S3). Initially protein A
positively regulates protein B. After t = 1 generation, the regulation is removed and the
equilibrium value is also changed for B. Before t = 1 generation,

Ȧ = α − βA, (S79)

Ḃ = 4α
Ah

Ah + Kh
− βB. (S80)

After t = 1 generation, the dynamics for A remains unchanged, but

Ḃ = 1.5α − βB. (S81)

Here β = log 2 generation−1, α = 50β, K = 50, h = 2. The cross-correlation matrix Ra,b

shows an asymmetrical pattern typical of A positively regulating B before t = 1. One
generation after the change applies, Ra,b becomes flat and near zero, as expected for two
independent proteins with no extrinsic noise.
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Figure Legends

Figure S1.

Model and simulations of gene regulatory circuits and the correlation matrix of fluctuations.
(a) For a gene regulation network in which protein A positively regulates protein B, the

steady-state concentration relation is shown as a sigmoidal curve. The static concentration
[A] determines static [B]. Regions in which changes in [A] cause changes in [B] are labeled
“Active” (pink area). When [A] falls outside of the active region, either too high or too
low, the regulatory link from A to B is “inactive”.

(b) Simulated time traces of protein A (blue) positively regulating protein B (magenta)
in the active regime.

(c) Heat map of the correlation matrix Ra,b(tA, tB) calculated at the single-cell level for
the concentration fluctuations of proteins A and B (Eq. S3). The axes tA and tB define
the times when fluctuations in protein concentrations A and B, respectively, are sampled.
The value of the matrix element at (tA, tB) is indicated by the color. The contour lines
tend to run parallel to the rising diagonal tA = tB. Higher values above the rising diagonal
represent a positive regulatory link from A to B.

(d) The correlation curve (blue) plots the value of Ra,b(tA − tB) versus tA − tB. The
black curve plots the analytic solution of the linearized model (see Sec. S2).

(e) Plot of the production rate of a protein P repressing itself (solid sigmoidal curve).
In the absence of auto-repression, the production rate is independent of [P] (dashed line).
The protein degradation-dilution rate is directly proportional to the protein concentration
(shown as a solid line passing through the origin). The static state is where the degradation-
dilution rate line intersects the sigmoidal curve. Depending on where the degradation-
dilution rate cross the production curve, there is no repression (white), active repression
(orange), or saturated repression (blue).

(f ) Simulated protein concentration versus t, without repression (upper, black trace),
with active repression (middle, orange trace) and with saturated repression (lower, blue
trace). The protein levels for both active and saturated repression are lower than without
repression. However, with active repression, the protein level fluctuates faster than without
repression or with saturated repression (the time scales for the final two are the dilution-
degradation rate of the protein).

(g) Heat map of the autocorrelation matrix Rp,p(tP1, tP2), calculated at the single-cell
level, of P fluctuation with active auto-repression.

(h) The autocorrelation curves (mean correlation value Rp,p(tP1 − tP2) versus ∆t =
tP1 − tP2) of several types of proteins: a stable protein with noisy production, such as
protein A (blue), a stable protein regulated by another stable protein, such as protein B
(magenta), an active auto-repressing protein, such as protein P with active auto-repression
(orange). These autocorrelation curves mainly differ in peak widths. The black curves are
the analytical solutions for the autocorrelation curves.
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Figure S2.

Comparison between cross-correlation and autocorrelation curves obtained at the micro-
colony level and the single-cell level using the same data set. Correlations at the single-cell
level or the microcolony level are different, but they each have well defined analytical
solutions.

(a, b) The cross-correlation curves RmCherry,CFP at the microcolony level (a) and at the
single-cell level (b) at 0 nM AI (blue) and 50 nM AI (green). (c) Simulation results for
protein A positively regulating protein B at the microcolony level (orange) and at the single-
cell level (pink). Theoretical predictions are in gray. (d, e) Autocorrelation curves at the
microcolony level (d) and at the single-cell level (e) for YFP-LuxO in the wt strain (green)
and in the luxO-ar strain (black). All curves shown are at 0 nM AI. The solid gray line in
(d) is R(∆t) = e−β0|∆t|, in (e) is R(∆t) = e−β|∆t|, β0 = β/2, β = log 2 generation−1. The
experimental autocorrelation peak is wider than the theoretical prediction at the single-cell
level, possibly due to partition noise at cell division. (c) Simulation results for a unregulated
protein A at the microcolony level (orange) and at the single-cell level (pink). Theoretical
predictions are in gray.

(g, h) Autocorrelation curves at the microcolony level (g) and at the single-cell level
(h) for qrr4-cfp (blue) and mCherry-LuxR (red). All curves shown are at 0 nM AI. The
solid gray lines are the same as those in (d) and (e). The dashed gray lines in (g) is
R(∆t) = e−β0|∆t|(1 + β0|∆t|), and in (h) is R(∆t) = e−β|∆t|(1 + β|∆t|).

Correlations at the microcolony level and at the single-cell level were derived using the
same batch of cells (30 to 40 microcolonies, 320 to 760 single-cell lineages).

Figure S3.

Simulation of a non-steady system.
(a) Simulation of protein A (blue) and protein B (green) concentrations in cells. Initially

protein A positively regulates protein B. After t = 1 generation, the regulation is removed
such that the equilibrium value is changed for B.

(b) Normalized cross-correlation Ra,b between A and B concentration fluctuations. Be-
fore t = 1 generation (lower dashed square), Ra,b showed an unsymmetrical pattern typical
for A positively regulating B. After t = 2 (upper dashed square) Ra,b is mostly zero and
flat. The memory of previous regulation is rapidly lost.
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