GEF	Alteration in cancer	References
Ras GEFs		
CNrasGEF	RNAi Knockdown in melanoma cell lines increased proliferation	1
RasGEF1A	mRNA overexpressed in patient samples and RNAi knockdown decreased proliferation in	2
	cholangiocarcinoma tumor cells	
RasGRF2	One missense and one nonsense mutation in colon cancer screen of 35 tumors	3
	Hypermethylation and decreased mRNA expression in NSCLC cell lines and patient	4
	tumors.	
RasGRP1	Targeted overexpression in mouse keratinocytes leads to squamous cell papillomas and	5
	carcinomas	
RasGRP2	Deletion accelerated the T-cell lymphoma formation caused by a Vav1 deficiency	6
RasGRP4	Transforming gene expressed in patient-derived acute myeloid leukemia encoding a	7
	missense mutation	
Sos1	Gain-of-function mutations in Noonan syndrome	8, 9
	Three possible missense mutations found in the analyses of 810 tumors or cell lines	10
	mRNA and protein overexpression in prostate cancer patient tumors. RNAi knockdown	11
	in cell lines reduced proliferation, migration and invasion	
RapGEFs		
C3G	DNA amplification, mRNA and protein overexpressed in NSCLC patient samples	12
DOCK4	Several missense mutations found in a variety of cancer cell lines, restoration of wild-	15
	type but not mutant into an osteosarcoma cell line missing DOCK4 reduced anchorage-	
	independent growth and invasion. This study described DOCK4 as a Rap activation,	
	although later studies showed DOCK4 activation of Rac, which is more consistent with its	
	sequence homology to other DOCK family proteins 13, 14.	
PLCε	Null mice have reduced incidence of carcinogen-induced skin tumors	16
RalGEFs		
RalGDS	Null mice have reduced incidence and size of carcinogen-induced skin tumors	17
	One Missense mutation found in 11 colon cancers	18
RGL1	Two missense mutations in 35 breast cancers	18
	W272*, G314R mutation in skin cancer	COSMIC
RGL2	Protein overexpressed in pancreatic cancer patient samples; knockdown reduces	19
	anchorage-independent growth and invasion in pancreatic cancer cell lines	
RGR	N-terminal deletion splice variants in T-cell lymphoma patient samples	20
RhoGEFs		
ARHGEF10	Two missense mutations in colorectal cancer screen of 35 tumors	3
ASEF/ARHGEF4	Identified as APC tumor suppressor binding protein and activated by mutant APC to	21, 22

Supplementary information S1 | Ras superfamily GEFs implicated in human cancer

	promote cell migration.	
	One missense mutation identified in 11 breast cancers	18
	Activated by wild type and not mutant APC and knockdown in colorectal cancer cell lines	23
	with mutant APC support tumor suppressor function; breast cancer-associated missense	
	mutation causes loss of RhoGEF activity.	
	ASEF deficiency in the Apc(Min/+) background have reduced size and number of tumors	24
	and reduced tumor angiogenesis	
	Loss in mice prevents growth and angiogenesis of xenograft tumors	25
Asef2	ASEF2 deficiency reduced migration of APC-mutant colorectal cancer cells	26
	Mouse ASEF2 knockouts in the Apc(Min/+) background have reduced size and number	24
	of tumors and tumor angiogenesis	
β-Pix	mRNA and protein overexpression in breast cancer patient samples	27
Dbs	RNAi suppression of endogenous Dbs expression reduced breast cancer cell line motility	28
Ect2	High mRNA and protein expression in a variety of cancer cell lines	29
	mRNA and protein overexpressed in glioblastoma patient samples, associated with	30
	decreased survival	
	mRNA and protein expressed in glioblastoma patient samples, associated with	31
	decreased survival; RNAi suppression reduced proliferation and invasion	
	mRNA and protein overexpressed in NSCLC and esophageal carcinomas patient	32
	samples; knockdown reduces proliferation	
	mRNA overexpressed in pancreatic cancer patient samples	33
	Genomic amplification and mRNA overexpression in NSCLC patients samples;	34
	knockdown decreased anchorage-independent growth and invasion	
GEF-	Identified as a mutant p53-regulated gene and mRNA overexpression in mutant p53	35
HI/ARHGEF2	tumor cells. RNAi suppression reduced proliferation in mutant p53 tumor lines.	
	One missense and one nonsense mutation in breast cancer screen of 35 tumors	3
LARG	Truncated and fusion to MLL in acute myelogenous leukemia	36
Net-1	mRNA overexpressed in gastric cancer patient samples and cell lines; RNAi	37
	suppression reduced proliferation and invasion	
	Coexpression of NET1 and $\alpha 6 \beta 4$ integrin protein in node-positive breast cancer patients	38
	was associated with high risk for distant metastasis.	
Obscurin	Missense, nonsense, deletion mutations in primary breast (4 of 35) and colon (7 of 35)	18
	cancers	
P-Rex1	Upregulated in mouse brain tumors;	39
	Protein overexpressed in metastatic prostate cancer patient samples and cell lines;	40
	knockdown decreased invasion of metastastic cell lines; overexpression of wild-type but	

	not GEF-dead promoted invasion and metastasis of non-metastatic cell lines	
P-Rex2a	Three-fold higher mRNA expression in PTEN wild type breast tumors. P-Rex2a	41
	identified as a PTEN-binding protein and RNAi suppression of PREX2 decreased AKT	
	activation and decreased proliferation of PTEN wild type but not mutant breast carcinoma	
	cell lines.	
PDZ-RhoGEF	SNPs modulate lung cancer risk in Mexican-Americans	42
TEM4/ARHGEF17	mRNA overexpressed in tumor endothelium, during angiogenesis	43
Tiam1	Identified in a functional screen for T-cell invasion and metastasis inducing genes	44
	Mutated (A441G) in renal cell carcinoma lines and tumors	45
	Protein overexpressed in both pre-neoplastic high-grade prostatic intraepithelium	46
	neoplasia and prostate carcinoma patient samples	
	Protein overexpression in a subset of colorectal cancer patient samples; RNAi	47
	suppression promoted anoikis and decreased migration	
	Null mice form less carcinogen-induced HRAS mutation-associated skin tumors, but the	48
	tumors that arose were more metastatic	
	Two missense mutations in human colorectal cancer screen of 35 tumors	3
	mRNA significantly higher in tumour tissue from patients who died from breast cancer	49
	when compared with those who survived.	
	Protein expression decreased with the progression of breast carcinomas	50
Trio	mRNA overexpressed in glioblastoma patient samples, and RNAi suppression reduced	31
	invasion and proliferation	
	Alternative gene splicing and expression in a patient with T-cell leukaemia of a truncated	51
	protein with transforming activity	
	mRNA and protein overexpressed in breast cancer patient tumor when compared with	49
	normal tissue, and associated with poor predictive outcome	
Vav1	Protein overexpressed in pancreatic cancer patient samples and cell lines, and RNAi	52
	suppression reduced anchorage-independent growth and xenograft growth in mice.	
	Protein overexpressed in a subset of neuroblastomas, no correlation with stage or	53
	outcome of disease	
	Decreased mRNA expression in breast cancer patient tumors associated with poorer	49
	survival	
	Protein overexpressed in lung cancer cell lines and patient tumors, and RNAi	54
	suppression reduced anchorage-independent growth and tumor xenograft growth in mice	
	Deletion in mice accelerates T-cell lymphoma formation; not seen with Vav2 and/or Vav3	6
	-/- mice.	
Vav2	RNAi suppression impaired CXCL12 chemokine-stimulated melanoma cell line invasion	55
	in vitro.	

	Elevated protein phosphorylation in head and neck squamous cell carcinoma cell lines	56
	and RNAi suppression reduced invasion in vitro.	
Vav3	mRNA and protein overexpressed in androgen-independent prostate cancer cell lines,	57
	regulated androgen receptor expression by GEF-independent mechanism.	
	mRNA overexpressed in glioblastoma patient samples, knockdown reduced invasion	31
	Protein overexpressed in breast cancer patient tumor but not normal tissue; RNAi	58
	suppression in breast carcinoma cell lines reduced estrogen-independent and dependent	
	proliferation, regulated estrogen receptor expression	
DOCK1/DOCK180	Protein overexpressed in glioblastoma patient samples, and RNAi suppression reduced	59
	invasion.	
DOCK2	Two missense mutations identified in discovery genomic DNA sequencing screen of 24	60
	pancreatic cancers	
DOCK3	NEDD9 overexpression in metastatic melanoma cells causes DOCK3 activation of Rac	61
	and promoted mesenchymal-type cell movement.	
DOCK8	Decreased mRNA expression in 62/71 primary lung cancers (mixed types) when	62
	compared to normal lung tissue and decreased in 58/61 lung cancer cell lines (mixed	
	types)	
Dock10	RNAi suppression in melanoma cell lines redumced Cdc42 activation, but enhanced Rac	63
	activation and enhanced invasion in vitro; concurrent inhibition of Rac inhibited invasion	
ArfGEFs		
GEP100/BRAG2	Protein overexpressed in breast cancer patient tumors and cell lines, frequently together	64
	with EGFR overexpression. RNAi suppression reduced invasion	
ARFGEF2/BIG2	Two missense mutations in breast cancer screen of 35 tumors	3
Abbreviations: NSCI	LC, non-small cell lung carcinoma;	

- 1. Amsen, E.M., Pham, N., Pak, Y. & Rotin, D. The guanine nucleotide exchange factor CNrasGEF regulates melanogenesis and cell survival in melanoma cells. *J Biol Chem* **281**, 121-8 (2006).
- 2. Ura, K. et al. Enhanced RASGEF1A expression is involved in the growth and migration of intrahepatic cholangiocarcinoma. *Clin Cancer Res* **12**, 6611-6 (2006).
- 3. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. *Science* **318**, 1108-13 (2007).
- 4. Chen, H. et al. Aberrant methylation of RASGRF2 and RASSF1A in human non-small cell lung cancer. *Oncol Rep* **15**, 1281-5 (2006).
- 5. Oki-Idouchi, C.E. & Lorenzo, P.S. Transgenic overexpression of RasGRP1 in mouse epidermis results in spontaneous tumors of the skin. *Cancer Res* **67**, 276-80 (2007).
- 6. Ruiz, S., Santos, E. & Bustelo, X.R. The use of knockout mice reveals a synergistic role of the Vav1 and Rasgrf2 gene deficiencies in lymphomagenesis and metastasis. *PLoS ONE* **4**, e8229 (2009).
- 7. Reuther, G.W. et al. RasGRP4 is a novel Ras activator isolated from acute myeloid leukemia. *J* Biol Chem **277**, 30508-14 (2002).

- 8. Roberts, A.E. et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. *Nat Genet* **39**, 70-4 (2007).
- 9. Tartaglia, M. et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. *Nat Genet* **39**, 75-9 (2007).
- 10. Swanson, K.D. et al. SOS1 mutations are rare in human malignancies: implications for Noonan Syndrome patients. *Genes Chromosomes Cancer* **47**, 253-9 (2008).
- 11. Timofeeva, O.A. et al. Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. *Int J Oncol* **35**, 751-60 (2009).
- 12. Hirata, T. et al. Amplification, up-regulation and over-expression of C3G (CRK SH3 domainbinding guanine nucleotide-releasing factor) in non-small cell lung cancers. *J Hum Genet* **49**, 290-5 (2004).
- 13. Lu, M. et al. A Steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs. *Curr Biol* **15**, 371-7 (2005).
- 14. Yan, D. et al. An isoform of GTPase regulator DOCK4 localizes to the stereocilia in the inner ear and binds to harmonin (USH1C). *J Mol Biol* **357**, 755-64 (2006).
- 15. Yajnik, V. et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. *Cell* **112**, 673-84 (2003).
- 16. Bai, Y. et al. Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development. *Cancer Res* **64**, 8808-10 (2004).
- 17. Gonzalez-Garcia, A. et al. RalGDS is required for tumor formation in a model of skin carcinogenesis. *Cancer Cell* **7**, 219-26 (2005).
- 18. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. *Science* **314**, 268-74 (2006).
- 19. Vigil, D. et al. Aberrant overexpression of the RGL2 ral small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through ral-dependent and -independent mechanisms. *J Biol Chem.* Epub ahead of print (2010).
- 20. Leonardi, P. et al. Human rgr: transforming activity and alteration in T-cell malignancies. *Oncogene* **21**, 5108-16 (2002).
- 21. Kawasaki, Y. et al. Asef, a link between the tumor suppressor APC and G-protein signaling. *Science* **289**, 1194-7 (2000).
- 22. Kawasaki, Y., Sato, R. & Akiyama, T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. *Nat Cell Biol* **5**, 211-5 (2003).
- 23. Mitin, N. et al. Release of autoinhibition of ASEF by APC leads to CDC42 activation and tumor suppression. *Nat Struct Mol Biol* **14**, 814-23 (2007).
- 24. Kawasaki, Y. et al. The adenomatous polyposis coli-associated exchange factors Asef and Asef2 are required for adenoma formation in Apc(Min/+)mice. *EMBO Rep* **10**, 1355-62 (2009).
- 25. Kawasaki, Y. et al. The adenomatous polyposis coli-associated guanine nucleotide exchange factor Asef is involved in angiogenesis. *J Biol Chem* **285**, 1199-207.
- 26. Kawasaki, Y. et al. Identification and characterization of Asef2, a guanine-nucleotide exchange factor specific for Rac1 and Cdc42. *Oncogene* **26**, 7620-267 (2007).
- 27. Ahn, S.J. et al. Overexpression of betaPix-a in human breast cancer tissues. *Cancer Lett* **193**, 99-107 (2003).
- 28. Liu, Z., Adams, H.C., 3rd & Whitehead, I.P. The rho-specific guanine nucleotide exchange factor Dbs regulates breast cancer cell migration. *J Biol Chem* **284**, 15771-80 (2009).
- 29. Saito, S. et al. Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains. *J Cell Biochem* **90**, 819-36 (2003).
- 30. Sano, M. et al. Expression level of ECT2 proto-oncogene correlates with prognosis in glioma patients. *Oncol Rep* **16**, 1093-8 (2006).
- 31. Salhia, B. et al. The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma. *Am J Pathol* **173**, 1828-38 (2008).
- 32. Hirata, D. et al. Involvement of epithelial cell transforming sequence-2 oncoantigen in lung and esophageal cancer progression. *Clin Cancer Res* **15**, 256-66 (2009).
- Zhang, M.L., Lu, S., Zhou, L. & Zheng, S.S. Correlation between ECT2 gene expression and methylation change of ECT2 promoter region in pancreatic cancer. *Hepatobiliary Pancreat Dis Int* 7, 533-8 (2008).

- 34. Justilien, V. & Fields, A.P. Ect2 links the PKCiota-Par6alpha complex to Rac1 activation and cellular transformation. *Oncogene* (2009).
- 35. Mizuarai, S., Yamanaka, K. & Kotani, H. Mutant p53 induces the GEF-H1 oncogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells. *Cancer Res* **66**, 6319-26 (2006).
- 36. Kourlas, P.J. et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. *Proc Natl Acad Sci U S A* **97**, 2145-50 (2000).
- 37. Leyden, J. et al. Net1 and Myeov: computationally identified mediators of gastric cancer. *Br J Cancer* **94**, 1204-12 (2006).
- 38. Gilcrease, M.Z. et al. Coexpression of alpha6beta4 integrin and guanine nucleotide exchange factor Net1 identifies node-positive breast cancer patients at high risk for distant metastasis. *Cancer Epidemiol Biomarkers Prev* **18**, 80-6 (2009).
- 39. Johansson, F.K., Goransson, H. & Westermark, B. Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. *Oncogene* **24**, 3896-905 (2005).
- 40. Qin, J. et al. Upregulation of PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer metastasis. *Oncogene* **28**, 1853-63 (2009).
- 41. Fine, B. et al. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. *Science* **325**, 1261-5 (2009).
- 42. Gu, J. et al. A nonsynonymous single-nucleotide polymorphism in the PDZ-Rho guanine nucleotide exchange factor (Ser1416Gly) modulates the risk of lung cancer in Mexican Americans. *Cancer* **106**, 2716-24 (2006).
- 43. St Croix, B. et al. Genes expressed in human tumor endothelium. *Science* 289, 1197-202 (2000).
- 44. Habets, G.G. et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. *Cell* **77**, 537-49 (1994).
- 45. Engers, R. et al. Tiam1 mutations in human renal-cell carcinomas. *Int J Cancer* **88**, 369-76 (2000).
- 46. Engers, R. et al. Prognostic relevance of Tiam1 protein expression in prostate carcinomas. *Br J Cancer* **95**, 1081-6 (2006).
- 47. Minard, M.E., Ellis, L.M. & Gallick, G.E. Tiam1 regulates cell adhesion, migration and apoptosis in colon tumor cells. *Clin Exp Metastasis* **23**, 301-13 (2006).
- 48. Malliri, A. et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. *Nature* **417**, 867-71 (2002).
- 49. Lane, J., Martin, T.A., Mansel, R.E. & Jiang, W.G. The expression and prognostic value of the guanine nucleotide exchange factors (GEFs) Trio, Vav1 and TIAM-1 in human breast cancer. *Int Semin Surg Oncol* **5**, 23 (2008).
- 50. Stebel, A., Brachetti, C., Kunkel, M., Schmidt, M. & Fritz, G. Progression of breast tumors is accompanied by a decrease in expression of the Rho guanine exchange factor Tiam1. *Oncol Rep* **21**, 217-22 (2009).
- 51. Yoshizuka, N. et al. An alternative transcript derived from the trio locus encodes a guanosine nucleotide exchange factor with mouse cell-transforming potential. *J Biol Chem* **279**, 43998-4004 (2004).
- 52. Fernandez-Zapico, M.E. et al. Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. *Cancer Cell* **7**, 39-49 (2005).
- 53. Hornstein, I. et al. The haematopoietic specific signal transducer Vav1 is expressed in a subset of human neuroblastomas. *J Pathol* **199**, 526-33 (2003).
- 54. Lazer, G., Idelchuk, Y., Schapira, V., Pikarsky, E. & Katzav, S. The haematopoietic specific signal transducer Vav1 is aberrantly expressed in lung cancer and plays a role in tumourigenesis. *J Pathol* **219**, 25-34 (2009).
- 55. Bartolome, R.A. et al. Activation of Vav/Rho GTPase signaling by CXCL12 controls membranetype matrix metalloproteinase-dependent melanoma cell invasion. *Cancer Res* **66**, 248-58 (2006).
- 56. Patel, V. et al. Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. *Carcinogenesis* **28**, 1145-52 (2007).

- 57. Lyons, L.S. & Burnstein, K.L. Vav3, a Rho GTPase guanine nucleotide exchange factor, increases during progression to androgen independence in prostate cancer cells and potentiates androgen receptor transcriptional activity. *Mol Endocrinol* **20**, 1061-72 (2006).
- 58. Lee, K. et al. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer. *BMC Cancer* **8**, 158 (2008).
- 59. Jarzynka, M.J. et al. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. *Cancer Res* **67**, 7203-11 (2007).
- 60. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. *Science* **321**, 1801-6 (2008).
- 61. Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. *Cell* **135**, 510-23 (2008).
- 62. Takahashi, K. et al. Homozygous deletion and reduced expression of the DOCK8 gene in human lung cancer. *Int J Oncol* **28**, 321-8 (2006).
- 63. Gadea, G., Sanz-Moreno, V., Self, A., Godi, A. & Marshall, C.J. DOCK10-mediated Cdc42 activation is necessary for amoeboid invasion of melanoma cells. *Curr Biol* **18**, 1456-65 (2008).
- 64. Morishige, M. et al. GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. *Nat Cell Biol* **10**, 85-92 (2008).

GAP	Alteration in cancer	References
Ras family GAPs		
C3G/RapGAP1	DNA amplification and protein overexpression in a subset of NSCLC tumors	1
DAB2IP	Loss causes metastatic prostate cancer in an orthotopic mouse model through RasGAP dependent and independent ways. Protein is lost in human prostate patient samples, and its expression negatively correlates with tumor grade and patient prognosis	2
IQGAP1	Protein overexpressed in colorectal cancer patient tumor tissue when compared to normal tissue and is associated with invasive fronts of tumors	3
	High protein expression in glioblastoma patient samples correlated with poor prognosis,	4
	Elevated protein expression in breast tumor when compared to match normal tissue; RNAi suppression in a breast cancer cell line reduced proliferation and anchorage-independent growth, whereas	5
IQGAP2	Null mice developed higher frequency of hepatocellular carcinoma that was associated with increased IQGAP1 protein expression; concurrent IQGAP1 deficiency reduced tumor development. Reduced protein expression and hypermethylation in gastric cancer	6
Neurofibromin	patient tumors and cell lines. RNAi suppression promoted invasion Single base changes (frameshift, missense), deletions, in neurofibromatosis type 1 patients.	COSMIC
	Somatic nonsense, splice site, missense changes, frameshift mutations and deletions found in glioblastoma tumors.	8, 9
	Single copy genomic loss in glioblastoma and reduced protein expression by proteosomal degradation in patient samples and cell lines; restoration of degradation-resistant NF1 reduced anchorage- independent growth and xenograft growth in mice	10
Plexin-B1	Missense mutations in 56/115 prostate cancers, mRNA and protein overexpression in patient samples; mutations hinder R-RasGAP activity, resulting in an increase in cell invasion	11
	Reduced mRNA and protein expression in renal cell carcinoma patient samples, ectopic restoration reduced proliferation in vitro.	12

Supplementary information S2 \mid Ras superfamily GAPs implicated in human cancer

	Lowered mRNA and protein levels in estrogen receptor-positive	13
	breast cancer tumors and loss correlates with poor prognosis	
Plexin C1	Significant loss of mRNA and protein expression in metastatic	14, 15
	melanoma compared with primary melanoma and cell lines	
Rap1GAP	Lowered protein expression in invasive pancreatic cancer patient	16
	samples, restoration reduced proliferation, invasion, and tumor	
	progression and metastasis in an orthotopic mouse model	
	Protein expression correlated with MMP9 expression in head and	17
	neck squamous cell carcinoma patient tumors and in vitro tumor cell	
	line analyses found MMP9-dependent Matrigel invasion by	
	overexpressed Rap1GAP.	
	Lowered protein expression and hypermethylation in melanoma	18
	patient samples and cell lines, restoration of expression reduced	
	proliferation of cell lines	
	Decreased protein expression correlated with increased Rap-GTP	19
	levels and invasiveness of prostate tumor cell lines. Ectopic	
	expression decreased whereas RNAi suppression increased	
	Matrigel invasion. Ectopic Rap1 activation increased metastasis in	
	vivo.	
RASAL1	Lowered mRNA and protein expression in advanced wild-type Ras	20
	colorectal cancer patient samples, restoration reduced proliferation,	
	RNAi suppression reduced tumor xenograft growth in mice	
RASAL2	One missense and one nonsense mutation identified in 35 breast	21
	cancers	
Sipa1	Amino acid polymorphism lowers RapGAP activity and associated	22
	with increased risk of breast cancer metastasis in mice, mRNA	
	overexpression correlates with human prostate cancer metastasis,	
	knockdown reduced, while overexpression promoted lung	
	metastasis in a mammary breast cancer cell line	
	Germline DNA polymorphisms are associated with breast cancer	23
	lymph node metastasis and estrogen receptor negative status	
Tuberin-Harmartin	Base changes, insertions, deletions in nearly all exons of TSC1 or	COSMIC
	TSC2 in tuberous sclerosis patients	
	The Eker rat strain that develops renal cell carcinoma contains a	24, 25
	germline retrotransposon insertion inactivation mutation of one	
	TSC2 allele	
	TSC1 heterozygous null mice develop kidney cystadenomas and	26

	liver hemangiomas	
Rho family GAPs		
ARHGAP5/p190-B	Gene amplification and protein overexpressed in hepatocellular	27
RhoGAP	carcinoma cell lines, RNAi suppression reduced migration.	
	Haploinsufficiency (p190-B +/-) in the mouse epithelium impaired	28
	MMTV-Neu induced mammary tumor progression, associated with	
	reduced tumor angiogenesis	
ARHGAP8	mRNA overexpression in colorectal cancer patient samples.	29
ARHGAP22	Knockdown suppresses mesenchymal-like invasion of melanoma	30
	cells	
ARHGAP25	One missense and one deletion mutation in breast cancer screen of	31
	35 tumors	
Bcr	Fused to the Abl kinase in chronic myelogenous leukemia, fusion	32
	protein lacks the RhoGAP domain	
DLC-1	Genomic deletion or reduced mRNA and expression by promoter	33-43
	methylation in non-small cell lung carcinoma, hepatocellular	
	carcinoma, breast, colon, ovarian, uterine, gastric, pancreatic,	
	prostate, renal, nasopharyngeal, multiple myeloma, lymphoma, and	
	ALL	
	Restoration of DLC1 in DLC1 negative prostate, NSCLC, breast,	35, 38, 39, 41, 43-52
	HCC, nasopharyngeal, esophageal, menangiomas, multiple	
	myeloma, and renal cancer cell lines inhibits proliferation,	
	anchorage-indepent growth, invasion or tumorigenicity or metastasis	
	in mice	
	Downregulation of endogenous DLC1 cooperates with Myc to form	53
	HCC in mice	
	Two missense mutations identified in discovery genomic DNA	54
	sequencing screen of 24 pancreatic cancers	
DLC-2/STARD13	Deletion or reduced mRNA expression in NSCLC, HCC, ovarian,	33, 55
	renal, gastric, colorectal, kidney, breast and uterine cancers.	
	Restoration of DLC2 in HCC cells inhibits proliferation and migration	56
DLC-3/STARD8	Two missense mutations in 35 breast cancers	21
	Reduced mRNA expression in prostate, kidney, NSCLC, ovarian,	57
	uterine and breast cancer patient samples.	
	Restoration of DLC3 in prostate cancer cells inhibited proliferation	57
	in vitro	
GRAF/ARHGAP26	Chromosome translocation and formation of fusion protein with MLL	58, 59

	in one myelomonocytic leukemia and one AML patient. Additionally,	
	missense mutation or DNA insertions were found in three AML	
	patients.	
RalBP1	Protein overexpression in bladder, colorectal and ovarian cancer	60-62
	RNA suppression reduced melanoma, NSCLC, colorectal, prostate	63-66
	and renal cancer cell xenograft growth in mice	
	RNAi suppression promoted lung cancer cell anti-cancer drug	67, 68
	sensitivity	
Arf familyGAPs		
AGAP2/PIKE-A/GGAP2	Gene amplification and mRNA overexpression in glioblastoma cell	69, 70
	lines and tumors, knockdown promoted apoptosis	
	Protein overexpression in prostate cancer patient samples and cell	71
	lines	
	Mutations in cell lines of various cancer types enhance AKT	72
	activation.	
	Overexpression promoted proliferation in a glioblastoma cell lines	73
ASAP1/DDEF1/AMAP1	Protein overexpressed in invasive breast cancer patient samples	74
	and cell lines, knockdown reduced invasion	
	DNA amplification and mRNA protein overexpression in uveal	75
	melanoma patient samples.	
	mRNA and protein overexpressed in metastatic prostate cancer	76
	patient samples and cell lines. Knockdown reduced invasion.	
ASAP3/DDEFL1/UPLC1	mRNA overexpression in hepatocellular carcinoma patient samples.	77

- 1. Hirata, T. et al. Amplification, up-regulation and over-expression of C3G (CRK SH3 domain-binding guanine nucleotide-releasing factor) in non-small cell lung cancers. *J Hum Genet* **49**, 290-5 (2004).
- 2. Min, J. et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. *Nat Med* **16**, 286-94.
- 3. Nabeshima, K., Shimao, Y., Inoue, T. & Koono, M. Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. *Cancer Lett* **176**, 101-9 (2002).
- 4. McDonald, K.L. et al. IQGAP1 and IGFBP2: valuable biomarkers for determining prognosis in glioma patients. *J Neuropathol Exp Neurol* **66**, 405-17 (2007).
- 5. Jadeski, L., Mataraza, J.M., Jeong, H.W., Li, Z. & Sacks, D.B. IQGAP1 stimulates proliferation and enhances tumorigenesis of human breast epithelial cells. *J Biol Chem* **283**, 1008-17 (2008).
- 6. Schmidt, V.A., Chiariello, C.S., Capilla, E., Miller, F. & Bahou, W.F. Development of hepatocellular carcinoma in Iqgap2-deficient mice is IQGAP1 dependent. *Mol Cell Biol* **28**, 1489-502 (2008).
- 7. Jin, S.H. et al. IQGAP2 inactivation through aberrant promoter methylation and promotion of invasion in gastric cancer cells. *Int J Cancer* **122**, 1040-6 (2008).

- 8. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. *Nature* **455**, 1061-8 (2008).
- 9. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. *Science* **321**, 1807-12 (2008).
- 10. McGillicuddy, L.T. et al. Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis. *Cancer Cell* **16**, 44-54 (2009).
- 11. Wong, O.G. et al. Plexin-B1 mutations in prostate cancer. *Proc Natl Acad Sci U S A* **104**, 19040-5 (2007).
- 12. Gomez Roman, J.J. et al. Plexin B1 is downregulated in renal cell carcinomas and modulates cell growth. *Transl Res* **151**, 134-40 (2008).
- 13. Rody, A. et al. Poor outcome in estrogen receptor-positive breast cancers predicted by loss of plexin B1. *Clin Cancer Res* **13**, 1115-22 (2007).
- 14. Lazova, R., Gould Rothberg, B.E., Rimm, D. & Scott, G. The semaphorin 7A receptor Plexin C1 is lost during melanoma metastasis. *Am J Dermatopathol* **31**, 177-81 (2009).
- 15. Scott, G.A., McClelland, L.A., Fricke, A.F. & Fender, A. Plexin C1, a receptor for semaphorin 7a, inactivates cofilin and is a potential tumor suppressor for melanoma progression. *J Invest Dermatol* **129**, 954-63 (2009).
- 16. Zhang, L. et al. Identification of a putative tumor suppressor gene Rap1GAP in pancreatic cancer. *Cancer Res* **66**, 898-906 (2006).
- 17. Mitra, R.S. et al. Rap1GAP promotes invasion via induction of matrix metalloproteinase 9 secretion, which is associated with poor survival in low N-stage squamous cell carcinoma. *Cancer Res* **68**, 3959-69 (2008).
- 18. Zheng, H. et al. Down-regulation of Rap1GAP via promoter hypermethylation promotes melanoma cell proliferation, survival, and migration. *Cancer Res* **69**, 449-57 (2009).
- 19. Bailey, C.L., Kelly, P. & Casey, P.J. Activation of Rap1 promotes prostate cancer metastasis. *Cancer Res* 69, 4962-8 (2009).
- 20. Ohta, M. et al. Decreased expression of the RAS-GTPase activating protein RASAL1 is associated with colorectal tumor progression. *Gastroenterology* **136**, 206-16 (2009).
- 21. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. *Science* **314**, 268-74 (2006).
- 22. Park, Y.G. et al. Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. *Nat Genet* **37**, 1055-62 (2005).
- 23. Crawford, N.P. et al. Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer. *Breast Cancer Res* **8**, R16 (2006).
- 24. Yeung, R.S. et al. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. *Proc Natl Acad Sci U S A* **91**, 11413-6 (1994).
- 25. Kobayashi, T., Hirayama, Y., Kobayashi, E., Kubo, Y. & Hino, O. A germline insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer. *Nat Genet* **9**, 70-4 (1995).
- 26. Kwiatkowski, D.J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. *Hum Mol Genet* **11**, 525-34 (2002).
- 27. Gen, Y. et al. A novel amplification target, ARHGAP5, promotes cell spreading and migration by negatively regulating RhoA in Huh-7 hepatocellular carcinoma cells. *Cancer Lett* **275**, 27-34 (2009).
- 28. Li, N. et al. Proteomic analysis of differentially expressed proteins in hepatitis B virusrelated hepatocellular carcinoma tissues. *J Exp Clin Cancer Res* **28**, 122 (2009).
- 29. Johnstone, C.N. et al. ARHGAP8 is a novel member of the RHOGAP family related to ARHGAP1/CDC42GAP/p50RHOGAP: mutation and expression analyses in colorectal and breast cancers. *Gene* **336**, 59-71 (2004).
- Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. *Cell* 135, 510-23 (2008).
- 31. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. *Science* **318**, 1108-13 (2007).

- 32. Shtivelman, E., Lifshitz, B., Gale, R.P. & Canaani, E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. *Nature* **315**, 550-4 (1985).
- 33. Ullmannova, V. & Popescu, N.C. Expression profile of the tumor suppressor genes DLC-1 and DLC-2 in solid tumors. *Int J Oncol* **29**, 1127-32 (2006).
- 34. Yuan, B.Z. et al. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. *Cancer Res* **58**, 2196-9 (1998).
- 35. Yuan, B.Z. et al. DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. *Oncogene* **22**, 445-50 (2003).
- 36. Yuan, B.Z., Durkin, M.E. & Popescu, N.C. Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. *Cancer Genet Cytogenet* **140**, 113-7 (2003).
- 37. Wong, C.M., Lee, J.M., Ching, Y.P., Jin, D.Y. & Ng, I.O. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. *Cancer Res* **63**, 7646-51 (2003).
- 38. Yuan, B.Z. et al. DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas. *Oncogene* **23**, 1405-11 (2004).
- 39. Seng, T.J. et al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. *Oncogene* **26**, 934-44 (2007).
- 40. Harada, T., Chelala, C., Crnogorac-Jurcevic, T. & Lemoine, N.R. Genome-wide analysis of pancreatic cancer using microarray-based techniques. *Pancreatology* **9**, 13-24 (2009).
- 41. Hankins, G.R. et al. Identification of the deleted in liver cancer 1 gene, DLC1, as a candidate meningioma tumor suppressor. *Neurosurgery* **63**, 771-80; discussion 780-1 (2008).
- 42. Song, Y.F. et al. High-frequency promoter hypermethylation of the deleted in liver cancer-1 gene in multiple myeloma. *J Clin Pathol* **59**, 947-51 (2006).
- 43. Ullmannova-Benson, V. et al. DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway. *Leukemia* **23**, 383-90 (2009).
- 44. Guan, M., Tripathi, V., Zhou, X. & Popescu, N.C. Adenovirus-mediated restoration of expression of the tumor suppressor gene DLC1 inhibits the proliferation and tumorigenicity of aggressive, androgen-independent human prostate cancer cell lines: prospects for gene therapy. *Cancer Gene Ther* **15**, 371-81 (2008).
- 45. Healy, K.D. et al. DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. *Mol Carcinog* **47**, 326-37 (2008).
- 46. Zhou, X. et al. DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. *Int J Oncol* **32**, 1285-91 (2008).
- 47. Zhang, T. et al. Overexpression of DLC-1 induces cell apoptosis and proliferation inhibition in the renal cell carcinoma. *Cancer Lett* (2009).
- 48. Goodison, S. et al. The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. *Cancer Res* **65**, 6042-53 (2005).
- 49. Kim, T.Y. et al. DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. *Biochem Biophys Res Commun* **355**, 72-7 (2007).
- 50. Zhou, X., Thorgeirsson, S.S. & Popescu, N.C. Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. *Oncogene* **23**, 1308-13 (2004).
- 51. Ng, I.O., Liang, Z.D., Cao, L. & Lee, T.K. DLC-1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC-1. *Cancer Res* **60**, 6581-4 (2000).
- 52. Vanroelen, C. & Vakaet, L. The influence of tissue handling before fixation on the morphology of the chick blastoderm. *J Microsc* **134**, 173-6 (1984).
- 53. Xue, W. et al. DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. *Genes Dev* **22**, 1439-44 (2008).

- 54. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. *Science* **321**, 1801-6 (2008).
- 55. Ching, Y.P. et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. *J Biol Chem* **278**, 10824-30 (2003).
- 56. Leung, T.H. et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. *Proc Natl Acad Sci U S A* **102**, 15207-12 (2005).
- Durkin, M.E., Ullmannova, V., Guan, M. & Popescu, N.C. Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth. *Oncogene* 26, 4580-9 (2007).
- 58. Borkhardt, A. et al. The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. *Proc Natl Acad Sci U S A* **97**, 9168-73 (2000).
- 59. Panagopoulos, I. et al. MLL/GRAF fusion in an infant acute monocytic leukemia (AML M5b) with a cytogenetically cryptic ins(5;11)(q31;q23q23). *Genes Chromosomes Cancer* **41**, 400-4 (2004).
- 60. Smith, S.C. et al. Expression of ral GTPases, their effectors, and activators in human bladder cancer. *Clin Cancer Res* **13**, 3803-13 (2007).
- 61. Roberts, A.E. et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. *Nat Genet* **39**, 70-4 (2007).
- 62. Hudson, M.E., Pozdnyakova, I., Haines, K., Mor, G. & Snyder, M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. *Proc Natl Acad Sci U S A* **104**, 17494-9 (2007).
- 63. Singhal, S.S., Awasthi, Y.C. & Awasthi, S. Regression of melanoma in a murine model by RLIP76 depletion. *Cancer Res* **66**, 2354-60 (2006).
- 64. Singhal, S.S. et al. Regression of lung and colon cancer xenografts by depleting or inhibiting RLIP76 (Ral-binding protein 1). *Cancer Res* **67**, 4382-9 (2007).
- 65. Singhal, S.S. et al. Regression of prostate cancer xenografts by RLIP76 depletion. *Biochem Pharmacol* **77**, 1074-83 (2009).
- 66. Singhal, S.S. et al. RLIP76: a target for kidney cancer therapy. *Cancer Res* **69**, 4244-51 (2009).
- 67. Singhal, S.S. et al. Depletion of RLIP76 sensitizes lung cancer cells to doxorubicin. *Biochem Pharmacol* **70**, 481-8 (2005).
- 68. Stuckler, D. et al. RLIP76 transports vinorelbine and mediates drug resistance in nonsmall cell lung cancer. *Cancer Res* **65**, 991-8 (2005).
- 69. Ahn, J.Y. et al. PIKE (phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity and mediates cellular invasion. *J Biol Chem* **279**, 16441-51 (2004).
- 70. Ahn, J.Y., Hu, Y., Kroll, T.G., Allard, P. & Ye, K. PIKE-A is amplified in human cancers and prevents apoptosis by up-regulating Akt. *Proc Natl Acad Sci U S A* **101**, 6993-8 (2004).
- 71. Čai, Y. et al. GGAP2/PIKE-a directly activates both the Akt and nuclear factor-kappaB pathways and promotes prostate cancer progression. *Cancer Res* **69**, 819-27 (2009).
- 72. Hu, Y., Liu, Z. & Ye, K. Phosphoinositol lipids bind to phosphatidylinositol 3 (PI3)-kinase enhancer GTPase and mediate its stimulatory effect on PI3-kinase and Akt signalings. *Proc Natl Acad Sci U S A* **102**, 16853-8 (2005).
- 73. Liu, X., Hu, Y., Hao, C., Rempel, S.A. & Ye, K. PIKE-A is a proto-oncogene promoting cell growth, transformation and invasion. *Oncogene* **26**, 4918-27 (2007).
- 74. Onodera, Y. et al. Expression of AMAP1, an ArfGAP, provides novel targets to inhibit breast cancer invasive activities. *EMBO J* **24**, 963-73 (2005).
- 75. Ehlers, J.P., Worley, L., Onken, M.D. & Harbour, J.W. DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma. *Clin Cancer Res* **11**, 3609-13 (2005).
- 76. Lin, D. et al. ASAP1, a gene at 8q24, is associated with prostate cancer metastasis. *Cancer Res* **68**, 4352-9 (2008).
- 77. Okabe, H. et al. Isolation of development and differentiation enhancing factor-like 1 (DDEFL1) as a drug target for hepatocellular carcinomas. *Int J Oncol* **24**, 43-8 (2004).